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Chapter 1 – Introduction

In game theory, a game is a formal representation of a situation involving multiple agents, called

players, who interact by making moves within the structure of the game. A player chooses which

moves to make according to a strategy and is awarded a payoff at the end of the game that

quantifies their success. The goal of each player is to maximize their own individual payoff.

Games are abstract mathematical entities that are usually intended to reflect real-world prob-

lems of practical importance, but they are most often presented and discussed in terms of simple,

contrived scenarios. As an example (adapted from [24]), consider a game show in which four

contestants are each given $100. Each contestant makes a single move in which they secretly and

independently choose how much money to allocate to a common pool. Any money not allocated

is theirs to keep, while the pool of allocated money is doubled by the show’s host and dispersed

evenly to all contestants (regardless of how much they allocated). Obviously, each player wants

to maximize the amount of money they take home. How should they proceed?

This game is interesting because it induces a very famous and well-studied dilemma known as

the “tragedy of the commons” [18]. The dilemma is that it is in the best interest of the players as

a group to allocate all of their money to the pool (since total allocation results in the most total

money earned), but each player is individually dissuaded from this because each dollar allocated

yields only 50 cents in return. The best interests of the group are in direct opposition to the best

interests of the individual, but if all players play selfishly, each will be in a worse position than

if they had cooperated (taking home $100 each instead of $200). This basic dilemma is reflected

in many important world problems like the conservation of natural resources, protection of the

environment, and the proliferation of nuclear weapons [18, 24].

Traditionally, game theory has been used as an analytical tool for prescribing the best course

of action for an individual player by mathematically determining an optimal strategy. This can

be used to predict how a group will play by assuming that all players are rational and so play

their optimal strategies. Unfortunately for our players, the analytical approach prescribes and

predicts selfish play. Since there is no incentive for any rational player to unilaterally deviate

from keeping all of their money (since doing so always results in a decreased individual payoff),

all rational players will play this strategy.1

However, the expectation of selfish play depends on two important factors. First, it assumes

that the game accurately reflects the scenario of interest. In the case of the above world problems,

1A stable situation like this is called a Nash equilibrium [34].
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the game obviously drastically oversimplifies things. Factors like shared information, continuous

play, and reputation may offer routes of escape from the tragedy of the commons [24]. These

factors can be difficult to quantify in the analytical approach. Second, it assumes that all players

are rational. Experimental results have shown that when games like the above are executed

literally with real people, this assumption does not hold [20, 24]. Actual humans “irrationally”

cooperate, and sometimes achieve better results because of it.

Experimental game theory is a complimentary alternative to analytical game theory in which

strategies and players are evaluated not mathematically, but through competitive experimenta-

tion. It can be used to help understand and explain strategic behavior in situations where the

analytical approach fails or is difficult to apply, and it can be used to help identify seemingly

sub-optimal strategies like cooperation that perform well in practice or under certain conditions.

This thesis collects three papers that provide domain-specific language (DSL) support for

research using experimental game theory. In many ways, game theory is an ideal experimental

platform. Games provide structure with well-defined variation points and payoffs provide a built-

in means to quantify the results. The execution of games and strategies can also be automated,

making it cheap to empirically analyze the interaction of several different alternative strategies

over many iterations [7]. This is a very powerful research tool, as demonstrated by Robert

Axelrod’s breakthrough behavioral studies on cooperation [1], discussed several times throughout

this thesis. Experimental game theory is increasingly used by economists, evolutionary biologists,

and behavioral scientists [4].

Despite the reliance on software for this type of research, there is not much tool support for

experimental game theory. Most experiments seem to be implemented from scratch in general-

purpose languages. Not only does this pose a huge amount of effort, but it forces researchers to

realize and manage their experiments at a very low-level of abstraction. In Chapter 2 we address

this problem with Hagl, a domain-specific embedded language (DSEL) in Haskell that supports

the declarative definition and easy execution of game-theoretic experiments [35].

The language of Hagl can be separated into three main pieces for representing games, strate-

gies, and experiments, each of which can be considered a sort of mini-DSL within the larger

language. Games are represented in Hagl in extensive form, an explicit tree representation where

each internal node represents a player’s decision point and each leaf is a set of payoffs [34]. Smart

constructors (which produce values of the internal extensive form representation directly) are pro-

vided for defining other common types of games, such as normal form games, where each player

makes a simultaneous move that indexes a grid of potential payoffs, and state-based games, where

players interact by manipulating some shared state, as in tic-tac-toe. Games are also inherently

iterative in Hagl, meaning that players can expect to play several (perhaps hundreds or thou-

sands) games in a row against the same opponents, accumulating payoffs. Almost all research

with experimental game theory involves iterated games. Strategies are defined by a flexible com-
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binator library with natural language-like support for declaratively accessing and analyzing the

history of previous iterations, together with a suite of high-level constructs for defining the most

common types of strategies. Experiments are defined in a simple monadic command language.

Chapter 3 presents several extensions to Hagl [36]. On the surface, this work adds imple-

mentations of common solution strategies from analytical game theory, which are often useful

as control or reference points in experiments, and better support for state-based games. These

additions are supported, however, by much more significant changes to the core game represen-

tation of Hagl. The design away from the explicit tree representation, adopting instead a more

flexible type-class representation. Previously, the immediate translation (via smart constructors)

of normal form and state-based games into extensive form lost important structural information

essential for analyzing and strategizing about these types of games. The new representation

allows normal form and state-based games to be represented and used directly. It also makes

it significantly easier to add entirely new game representations to Hagl, expanding the range of

potential applications.

Interaction is at the heart of game theory—the effectiveness of a player’s strategy often de-

pends critically on the strategies of the other players. As the two papers on Hagl show repeatedly,

often a strategy will be very successful against one strategy and very unsuccessful against an-

other, and these interactions can become quite complex. While Hagl can reduce the amount of

effort needed to say which strategies are the most effective against which opponents, it can often

remain difficult to unravel why.

In Chapter 4 we switch gears by presenting a domain-specific visual language for explaining

the interaction of strategies in experimental game theory [12]. This language is used to intro-

duce the new paradigm of explanation-oriented programming (EOP). EOP focuses on producing

explanations of a result rather than on attaining the result itself, and promotes explainability

as a principal design criterion. This work also introduces the notational quality of traceability,

which emphasizes the explanatory importance of a clear mapping between program notation and

program output. In this case, two game strategies (which constitute the program) combine to

form a visual representation of their execution, called a game trace.

Compared to Hagl, the visual language supports a much narrower domain, focusing exclusively

on pattern-based strategies for iterated games represented in normal form. These restrictions sac-

rifice expressiveness for explainability. The restriction to normal form games allows us to directly

reuse the normal form notation used by game theorists to attain a high closeness of mapping

with the domain [16]. The restriction to pattern-based strategies flattens the relationship between

strategies and their execution, resulting in high traceability.

Since the work collected in this thesis, we have further refined Hagl and developed the

paradigm of EOP through application to other domains. Chapter 5 describes some of this

subsequent work.
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Chapter 2 – Hagl: A Haskell DSEL for Experimental Game Theory

Abstract: Experimental game theory is increasingly important for research in many

fields. Unfortunately, it is poorly supported by computer tools. We have created

Hagl, a domain-specific language embedded in Haskell, to reduce the development

time of game-theoretic experiments and make the definition and exploration of games

and strategies simple and fun.

Published as:

Eric Walkingshaw and Martin Erwig.

A Domain-Specific Language for Experimental Game Theory.

Journal of Functional Programming, Volume 19, pages 645–661, 2009.
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2.1 Introduction

Experimental game theory is the use of game-theoretic models in simulations and experiments

to understand strategic behavior. It is an increasingly important research tool in many fields,

including economics, biology and many social sciences [4], but computer support for such projects

is primarily found only in custom programs written in general-purpose languages.

Here we present Hagl1, a domain-specific language embedded in Haskell, intended to drasti-

cally reduce the development time of such experiments, and make the definition and exploration

of games and strategies simple and fun.

In game theory, a game is a situation in which agents interact by playing moves, with the

goal of maximizing their own payoff. In Hagl, a game is a tree.

data GameTree mv = Decision PlayerIx [(mv, GameTree mv)]

| Chance [(Int, GameTree mv)]

| Payoff [Float]

Payoff nodes form the leaves of a game tree. Payoffs represent outcomes, in the form of scores,

for each player at the end of a game. The tree Payoff [1,2] indicates that the first player receives

one point and the second player two points. The type of awarded payoffs could be generalized

to any instance of the standard Num type class, but this would inflate type signatures throughout

Hagl while providing little benefit.

Internal nodes are either Decision nodes or Chance nodes and can be sequenced arbitrarily

with the tree. Decision nodes represent locations in the game tree where a player must choose to

make one of several moves. PlayerIx is a type synonym for Int and indicates which player must

make the decision. An association list maps available moves to their resulting subtrees. In the

following very simple game, the first (and only) player is presented with a decision; if they choose

move A, they will receive zero points, but if they choose move B, they will receive five points.

easyChoice = Decision 1 [(A, Payoff [0]), (B, Payoff [5])]

Finally, Chance nodes represent points where an external random force pushes the players

down some path or another based on a distribution. Distributions are given here by a list of

subtrees prefixed with their relative likelihood; given [(1,a),(3,b)], the subtree b is three times

as likely to be chosen as a. A random die roll, while not technically a game (since there are no

decisions and thus no players), is illustrative and potentially useful as a component in a larger

game. It can be represented as a single Chance node where each outcome is equally likely and

the payoff of each is the number showing on the die.

die = Chance [(1, Payoff [n]) | n <- [1..6]]

1Short for “Haskell game language”, and loosely intended to evoke the homophone “haggle”.
Available for download at: http://web.engr.oregonstate.edu/∼walkiner/hagl/
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This tree-oriented representation is known as extensive form in game theory, and provides

a flexible and powerful representation upon which many different types of games can be built.

However, it also has sometimes undesirable side effects. Many games require moves by each

player to be played simultaneously, without knowledge of the other players’ moves. This is not

possible with the simple tree representation, which forces decisions to be made in sequence as we

traverse a path through the tree. The reachable payoffs from a later player’s decision node are

constrained by the moves made by earlier players, essentially revealing the earlier players’ moves.

As a solution, game theory introduces information groups. An information group is a set

of decision nodes for the same player, from within which a player knows only the group she is

in, not the specific node. A game with information groups of size one is said to have perfect

information, while a game with potentially larger groups has imperfect information. In Hagl,

information groups are represented straightforwardly.

data InfoGroup mv = Perfect (GameTree mv)

| Imperfect [GameTree mv]

Whenever players attempt to view their current position in the tree, Hagl returns a value of

type InfoGroup rather than a GameTree value directly, obfuscating the exact position if necessary.

Game definitions must therefore provide a way to get the information group associated with any

decision node in the game tree.

A complete game definition in Hagl is thus a game tree, a function to provide the information

group of nodes in the tree, and the number of players to play the game.

data Game mv = Game { numPlayers :: Int,

info :: GameTree mv -> InfoGroup mv,

tree :: GameTree mv }

In the next section we will look at a specific game in more detail, the iterated prisoner’s

dilemma, which will provide both motivation for Hagl and a vehicle for introducing increasingly

advanced functionality.

2.2 The Iterated Prisoner’s Dilemma

The prisoner’s dilemma is a game in which each player must choose to either “cooperate” or

“defect”. Defection yields the higher payoff regardless of the other player’s choice, but if both

players cooperate they will do better than if they both defect. The game is typically represented

as a matrix of payoffs indexed by each player’s move, as shown in Fig. 2.2, a notation known

as normal form. In the iterated form, the game is played repeatedly, with the payoffs of each

iteration accumulating.
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Player 2

C D

Player 1 C 2, 2 0, 3

D 3, 0 1, 1

Figure 2.1: Normal-form representation of the prisoner’s dilemma

Robert Axelrod’s seminal book The Evolution of Cooperation [1] provides one of the best

documented successes of experimental game theory. In 1980 Axelrod held an iterated prisoner’s

dilemma tournament. Game theorists from around the world submitted strategies to the com-

petition. The winning strategy was “Tit for Tat”, a much simpler strategy than many of its

opponents, it cooperates in the first game and thereafter plays the move last played by its op-

ponent. Thus, if an opponent always cooperates, Tit for Tat will always cooperate, but if an

opponent defects, Tit for Tat will retaliate by defecting on the next turn. The surprising success

of such a simple strategy turned out to be a breakthrough in the study of cooperative behavior.

A 2004 attempt to recreate and extend Axelrod’s experiments highlights the need for domain-

specific language support for experimental game theory. Experimenters wrote a custom Java

library (IPDLX) to run the tournament [21]. Excluding user interface and example packages,

this library is thousands of lines of code. This represents a huge amount of effort that, since the

library is heavily tied to the prisoner’s dilemma, cannot be easily reused in different experiments.

Hagl provides a general platform for creating and running experiments, enabling the concise

definition of the Axelrod tournament below. First we define the prisoner’s dilemma, then a

tournament in which each player faces every player (including itself) for a 1000 game match,

printing the final score of each.

data Dilemma = Cooperate | Defect

pd :: Game Dilemma

pd = matrix [Cooperate, Defect] [[2,2],[0,3],

[3,0],[1,1]]

axelrod :: [Player Dilemma] -> IO ()

axelrod players = roundRobin pd players (times 1000 >> printScore)

A player who plays the Tit-for-Tat strategy can also be defined concisely.

tft :: Player Dilemma

tft = "Tit for Tat" ::: play Cooperate ‘atFirstThen‘ his (last game’s move)

The ::: operator takes a name and a strategy and produces a Player value. The combinators
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used to define strategies are named from a first-person perspective; that is, his (last game’s

move) (or her (last game’s move)) refers to the move played by the opponent’s strategy in the

previous game, whereas my (last game’s move) refers to the move played by this strategy in the

previous game. These combinators will be explained in more detail in Section 4.2.1, but first

let’s turn our attention to the definition of normal-form games.

2.3 Normal-Form Games

The matrix function used in the definition of pd in the previous section is just one of Hagl’s many

smart constructors for defining different types of normal-form games. These functions build on

terminology and notation familiar to game theorists. The type of the most general normal-form

game constructor is given below.

normal :: Int -> [[mv]] -> [[Float]] -> Game mv

This function takes as arguments:

• the number of players, n, that play the game,

• a list of lists of available moves for each player, m1,m2, ...,mn,

• and a list of |m1|× |m2|× ...×|mn| payoffs, where each individual payoff has length n (one

value for each player).

It produces a game tree with depth n + 1, one level for each player’s decision, plus one for the

payoff nodes. The generated game tree for the prisoner’s dilemma is shown below. Hagl includes

pretty-printing functions for viewing game trees more concisely, but the verbose rendering is used

here for explicitness.

Decision 1 [(Cooperate, Decision 2 [(Cooperate, Payoff [2.0,2.0]),

(Defect, Payoff [0.0,3.0])]),

(Defect, Decision 2 [(Cooperate, Payoff [3.0,0.0]),

(Defect, Payoff [1.0,1.0])])]

Recall from Section 3.1 that in addition to a game tree, a Game value contains a function info

for returning the information group associated with each decision node in the tree. Normal-form

games have imperfect information since all moves are assumed to be made simultaneously. For

any decision node, the associated information group contains all other decision nodes at the same

depth in the game tree.

The matrix function used to define pd is a specialization of normal, which makes the common

assumptions of two players and a square matrix in which the same moves are available to each

player.
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matrix :: [mv] -> [[Float]] -> Game mv

matrix ms = normal 2 [ms,ms]

An additional assumption that is made in a large subset of so-called matrix games is that for

any outcome, the scores of both players sum to zero. These are known as zero-sum games and

can be defined in Hagl with the following smart constructor.

zerosum :: [mv] -> [Float] -> Game mv

zerosum ms vs = matrix ms [[v, -v] | v <- vs]

These games represent situations in which one player wins and another loses. A simple example

is the traditional game rock-paper-scissors, defined below.

data RPS = Rock | Paper | Scissors

rps = zerosum [Rock, Paper, Scissors] [0,-1, 1,

1, 0,-1,

-1, 1, 0]

Here, only one value is given for each outcome, the payoff awarded to the first player. The second

player’s payoff can be automatically derived from this to produce a zero-sum game.

Hagl strives to be concise and familiar to game theorists by utilizing existing terminology

and notations, allowing users to define the large class of normal-form games easily. In the next

section we introduce operators and constructors for easing the definition of extensive-form games

as well.

2.4 Extensive-Form Games

Recall from Section 3.1 that games in Hagl are internally represented as trees, a representation

known as extensive form. While the internal representation is intentionally austere, a few conve-

niences are afforded for defining larger games which are best represented in extensive form. To

illustrate these, we will work through the definition of an extensive-form representation of the

Cuban Missile Crisis, based on an example in [34].

In this simplified representation of the crisis there are two players, the USSR and the USA,

represented as follows.

ussr = player 1

usa = player 2

The player function has type PlayerIx -> (mv, GameTree mv) -> GameTree mv; it takes a player

index and a single decision branch and creates a decision node. This allows for flexible creation

of decision trees when combined with the <|> operator introduced below.
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One reason the USSR sent nuclear weapons to Cuba was as a response to US nuclear weapons

in Turkey. Thus we have at least two factors which could contribute to the payoff of each country.

American missiles in Turkey are a strategic advantage for the US and a disadvantage for the

USSR, while Soviet missiles in Cuba are an advantage for the USSR and a disadvantage for the

US. We can represent these outcomes with simple Payoff nodes.

nukesInTurkey = Payoff [-2, 1]

nukesInCuba = Payoff [ 1,-2]

Note that the penalty of having nuclear weapons near you outweighs the benefit of having nuclear

weapons near your opponent. Essentially, this means that both countries would prefer to have

nuclear weapons in neither country than in both countries. Additionally, if nuclear war breaks

out, it would be devastating to both countries, so we’ll assign big negative payoffs to that outcome.

nuclearWar = Payoff [-100,-100]

Alternatively, if we suspect that some nuclear wars are worse than others, we might model this

possibility with a Chance node, giving one-to-four odds of a truly devastating war.

nuclearWar = Chance [(1, Payoff [-100,-100]), (4, Payoff [-20,-20])]

Finally, with a happy resolution, there won’t be nuclear weapons in either country.

noNukes = Payoff [0,0]

Let’s assume at the start of the game that the American missiles are already in Turkey. The

USSR has the first decision to make: they can choose to send nuclear weapons to Cuba, or they

can choose to do nothing. We represent this choice as follows.

start = ussr ("Send Missiles to Cuba", usaResponse)

<|> ("Do Nothing", nukesInTurkey)

If the USSR chooses to send missiles to Cuba, the US must respond; if the USSR chooses to

do nothing, the game is over and the payoff is simply the result of having nuclear weapons in

Turkey. Here we introduce the decision branching operator <|>, which has type GameTree mv

-> (mv, GameTree mv) -> GameTree mv, but is only defined for Decision nodes. Each option is

represented by a tuple containing a move and the corresponding branch to follow if the move is

played. The player function creates a decision node from a single branch (normally a decision

node requires a list of such tuples), and the branching operator appends additional branches to

this node.

The USA’s potential response to missiles in Cuba is modeled as follows.



11

usaResponse = usa ("Do Nothing", nukesInTurkey <+> nukesInCuba)

<|> ("Blockade", ussrBlockadeCounter)

<|> ("Air Strike", ussrStrikeCounter)

The US could choose to do nothing, in which case there are missiles in both Turkey and Cuba.

This introduces a second operator, <+>, which combines two game trees. For Decision and

Chance nodes this means concatenating all branches, for Payoff nodes, the payoffs are simply

added together. If the US chooses action, either by a naval blockade or an air strike, the USSR

must counter-respond.

ussrBlockadeCounter = ussr ("Agree to Terms", noNukes)

<|> ("Escalate", nuclearWar)

ussrStrikeCounter = ussr ("Pull Out", nukesInTurkey)

<|> ("Escalate", nuclearWar)

Since every path through the decision tree terminates with a payoff node, the game tree is

complete. However, we still need to turn this Hagl GameTree value into a Game value. For this, the

smart constructor extensive is provided, which has type GameTree mv -> Game mv. This function

traverses the game tree (Hagl provides helper functions for accessing game tree nodes in both

breadth-first and depth-first order) and extracts the number of players from finite-sized trees.

All nodes in an extensive-form game defined in this way are assumed to have perfect information.

As an interesting aside that shows Hagl in action, we can use this game to demonstrate a

possible weakness of the traditional minimax strategy in non-zero-sum games. Hagl provides a

built-in implementation of this strategy named minimax, which determines the “optimal” move

from the current location in the game tree (assuming perfect information and a finite depth).

Let’s assume that the Americans use this strategy.

kennedy = "Kennedy" ::: minimax

For the Soviets, we will define an approximation of what their strategy may have been: send

missiles to Cuba, but avoid nuclear war at all costs.

khrushchev = "Khrushchev" :::

play "Send Missiles to Cuba" ‘atFirstThen‘

do m <- his move ‘inThe‘ last turn

play $ case m of "Blockade" -> "Agree to Terms"

"Air Strike" -> "Pull Out"

Don’t worry about completely understanding this strategy now; the next section covers the

strategy combinator library in depth.

Running the game once and printing its transcript produces the following output.
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> runGame crisis [khrushchev, kennedy] (once >> printTranscript)

Game 1:

Khrushchev’s move: "Send Missiles to Cuba"

Kennedy’s move: "Do Nothing"

Payoff: [-1.0,-1.0]

At first glance, Kennedy’s decision, as determined by the minimax strategy, seems reasonable.

The risk of nuclear war is so terrible that the best move is to play passively, ensuring that it

won’t occur. However, if we assume that Khrushchev is rational, then even without knowing his

strategy beforehand we can be sure that he won’t choose to pursue nuclear war since it would

result in a huge negative payoff for the USSR as well.

The minimax algorithm assumes that the opposing player is trying to minimize the current

player’s score. But this assumption doesn’t hold in non-zero-sum games. In game theory a

player’s only goal is to maximize his or her own score—minimizing an opponent’s score is only a

side-effect when payoffs sum to zero.

The best response from Kennedy would seem to be an air strike, since it would allow the US

to keep their nuclear weapons in Turkey. That history did not follow this course could mean

that Kennedy played this game sub-optimally. Much more likely, our model could be incomplete.

The payoffs do not account for international reputation, national pride, economic impact, and

many other factors that certainly played a role in the actual crisis. Fortunately, the <+> and

<|> operators makes adding these additional payoff modifiers, and additional decisions that may

result, very straightforward.

Now that we can define many types of games, we would like to play them. In the next

section we introduce Hagl’s suite of smart constructors for defining simple strategies, and in the

subsequent subsections, a library of combinators for defining more complex ones.

2.5 Defining Strategies

Strategies in Hagl are computations executed within the outermost of two layers of state monad

transformers. Fortunately, Hagl is designed to make strategies easy to define without understand-

ing the intricacies of the representation. Many of the types in this section will be left undefined

until Sections 2.6 and 2.7, on game execution and player and strategy representation. In this

section we focus on the concrete syntax of strategy definition.

The simplest strategies in game theory just return the same move every time. Game theorists

call these pure strategies. Hagl provides a function pure which takes a move and produces a pure

strategy.

Also common in game theory are mixed strategies, which play a move based on some distribu-

tion. The following strategy cooperates with a probability of 5/6, and defects with a probability
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of 1/6.

rr = "Russian Roulette" ::: mixed [(5,Cooperate), (1,Defect)]

Other strategy functions include randomly, which randomly selects one of the available moves

(based on a linear distribution), and periodic, which cyclically plays a sequence of moves. There

is also the built-in minimax strategy introduced in Section 2.4.

More complex strategies, like Tit for Tat defined in Section 2.2 and Khrushchev in Section 2.4,

can be built from a suite of functions designed for the task. These functions primarily fall into

two categories: data accessors and list selectors.

2.5.1 Data Accessors

Strategies have access to a wealth of information about the current state of a game’s execution. In

Section 2.6 we define this state explicitly, while in this section we describe the interface presented

to strategies for accessing it. The data accessor functions extract data from the execution state

and transform it into some convenient form.

Before we get to the accessors themselves, we must introduce a set of types which are central

to strategy definition in Hagl. These types simply wrap a list of data, indicating whether each

element in the list corresponds to a particular game iteration, turn, or player.

newtype ByGame a = ByGame [a]

newtype ByTurn a = ByTurn [a]

newtype ByPlayer a = ByPlayer [a]

These act as type-level annotations of the contents of a list and provide many advantages. Firstly,

they help programmers understand the structure of values returned by accessors functions. More

importantly, they enforce through the Haskell type system a proper ordering of the list selectors

described in the next subsection. For the rare case when one wishes to handle all types of

dimensioned lists generically, a type class ByX is provided which unifies the the three types and

provides generic toList and fromList functions which convert dimensioned lists into standard

Haskell lists and vice versa.

Below we list a useful subset of the data accessors provided by Hagl, along with their types

and a brief description. The GameMonad type class present in each of the types will be explained

in Section 2.7.

• location :: GameMonad m mv => m (InfoGroup mv)

The information group of the current node in the game tree.

• numMoves :: GameMonad m mv => m (ByPlayer Int)

The total number of moves played by each player so far.
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• moves :: GameMonad m mv => m (ByGame (ByPlayer (ByTurn mv)))

A triply nested list of all moves played so far, indexed first by game, then by player, then

by the order in which they were performed.

• payoff :: GameMonad m mv => m (ByGame (ByPlayer Float))

A doubly nested list of the payoff received by each player in each game.

• score :: GameMonad m mv => m (ByPlayer Float)

The current cumulative scores, indexed by player.

Working directly with the values returned by these functions would be cumbersome. Different

indexing conventions are used for each type of list, and although the types help to prevent mixing

them up, there are still many details to keep track of. Although we know, for example, that the

score accessor returns a list of scores indexed by player, if we are writing a strategy, how do we

know which score corresponds to our own? The list selectors presented in the next subsection

manage these minutiae for us.

2.5.2 List Selectors

Two features distinguish Hagl selectors from generic list operators. First, they provide increased

type safety by only operating on lists of the appropriate type. Second, they may use information

from the execution state to make different selections depending on the context in which they are

run. Below are the list selectors for ByPlayer lists.

• my :: GameMonad m mv => m (ByPlayer a) -> m a

Select the element corresponding to the current player.

• her :: GameMonad m mv => m (ByPlayer a) -> m a

his :: GameMonad m mv => m (ByPlayer a) -> m a

Select the element corresponding to the other player in a two-player game.

• our :: GameMonad m mv => m (ByPlayer a) -> m [a]

Select the elements corresponding to all players (i.e. all elements).

• their :: GameMonad m mv => m (ByPlayer a) -> m [a]

Select the elements corresponding to every player except the current player.

These selectors have names corresponding to possessive pronouns from the first-person perspec-

tive of the current player. For example, the expression my score returns the current player’s

score. Because selectors are context-sensitive, two different strategies can refer to my score and

get the two different scores corresponding to their respective players.
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The selectors for ByGame and ByTurn lists share a set of adjectivally-named functions through

the use of a type class named ByGameOrTurn. An example of one such selector is the function last

which returns the element corresponding to either the last game iteration or the last turn in this

iteration, depending on the types of its arguments.

last :: (ByGameOrTurn d, GameMonad m mv) => d a -> m (d a) -> m a

The first argument to last is used only for its type and to increase readability. For example, the

function last game’s payoff, where game’s is declared as undefined :: ByGame a, would select

the payoff corresponding to the previous game iteration. A similar undefined value turn’s has

type ByTurn a for specifying ByTurn selectors. The variations games’, turns’, and turn are all

included to maximize readability in different situations.

Other ByGame and ByTurn selectors include the following.

• first :: (ByGameOrTurn d, GameMonad m mv) => d a -> m (d a) -> m a

Select the element corresponding to the first game iteration or turn.

• every :: (ByGameOrTurn d, GameMonad m mv) => d a -> m (d a) -> m [a]

Select the elements corresponding to all iterations or turns (i.e. all elements).

• this :: GameMonad m mv => ByGame a -> m (ByGame a) -> m a

Select the elements corresponding to the current game iteration.

Note that ByTurn lists do not have an element corresponding to the current turn, so the this

selector applies to ByGame lists only. This is enforced by the type of the function.

One might suspect that the first argument of a ByGameOrTurn selector is superfluous since the

type of a list can be determined from the list itself. However, there is one accessor function whose

return type varies depending on the types of the selectors applied to it. The move data accessor

was not introduced in Section 2.5.1 but has been used in the strategies of both Tit for Tat and

Khrushchev; it is defined in the following type class.

class (ByX d, ByX e) => MoveList d e where

move :: GameMonad m mv => m (d (e mv))

This is a multi-parameter type class, requiring an extension to Haskell 98 available in GHC [14].

There are two instances of the class MoveList. The first defines a move function which returns

lists of type ByGame (ByPlayer mv), a doubly nested list of the last move played by each player in

each game. This is most useful for games in which each player makes only a single move, as in

most normal-form games. The expression his (last game’s move) in Tit for Tat’s strategy relies

on this implementation.
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The second instance of MoveList defines a move function that returns a list of type ByPlayer

(ByTurn mv), a list of each move played by each player in this game. Khrushchev uses this version

of move in the expression his move ‘inThe‘ last turn. The inThe function is defined as flip ($),

and is used to reorder selectors to improve readability.

Most of the selectors above can be easily composed. For example, my (last game’s payoff)

applies a ByGame selector followed by a ByPlayer selector to an accessor of the appropriate type.

Unfortunately, this composability breaks down after selectors which return a list of elements.

For example, we cannot write my (every games’ payoff) because every returns a value of type m

[ByPlayer Float] rather than the m (ByPlayer Float) that ByPlayer selectors accept. That the

list is the result of a monadic computation complicates things further, making it cumbersome to

use standard list operations like map.

As a solution, Hagl introduces the eachAnd operator which composes two selectors by mapping

the first over the list returned by the second. Using eachAnd we can get a list of our payoffs for

every game by writing my ‘eachAnd‘ every game’s payoff.

We can build some pretty sophisticated strategies using only the tools we have seen so far.

For example, consider another important iterated prisoner’s dilemma strategy called the “Grim

Trigger” that cooperates until the opponent defects once, after which it defects forever.

grim = "Grim Trigger" :::

do ms <- her ‘eachAnd‘ every games’ move

if Defect ‘elem‘ ms then play Defect else play Cooperate

The only unknown function in this strategy is play which is just a synonym for the monadic

return. The expression her ‘eachAnd‘ every games’ move returns a list of all previous moves

played by the opponent. If any of these moves represent defection, Grim Trigger will defect,

otherwise it will cooperate.

Notice that the implementation of Grim Trigger above is robust in that it will do the correct

thing even when the move history is empty (i.e. in the first game). In general, this is not always

possible. For these other cases, a small suite of strategy composition functions are provided for

the initialization of strategies.

2.5.3 Initializing Strategies

Many strategies rely on information from previous iterations and require one or more temporary

initial strategies until that information is available. Since this is very common, it is essential to

have concise idioms for expressing these strategies. The definition of Tit for Tat in Section 2.2

demonstrates the simplest such case, where a single move must be played before the primary

strategy is applicable. This situation is captured by Hagl’s atFirstThen function which takes two
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strategies, a strategy to play for the first move and one to play thereafter, combining them to

form a single strategy.

atFirstThen :: Strategy mv s -> Strategy mv s -> Strategy mv s

The strategy of the following player, named after Pavlov’s dogs, utilizes atFirstThen and the

built-in randomly function to play a random move in the first game, before moving on to the

main body of the strategy.

pavlov = "Pavlov" :::

randomly ‘atFirstThen‘

do p <- my (last game’s payoff)

m <- my (last game’s move)

if p > 0 then return m else randomly

This player is intended for use in zero-sum games such as the rock-paper-scissors game defined

in Section 2.3. The strategy plays randomly in the first game, then plays its own previous move

if that move earned a positive payoff. Otherwise, it continues to play randomly.

The atFirstThen function is defined in terms of the more general function thereafter, which

takes a list of initial strategies and a primary strategy to play when that list is exhausted.

thereafter :: [Strategy mv s] -> Strategy mv s -> Strategy mv s

thereafter ss s = my numMoves >>= \n -> if n < length ss then ss !! n else s

For example, the following strategy would play rock in the first game, paper in the second game,

and scissors thereafter.

plan = [play Rock, play Paper] ‘thereafter‘ play Scissors

Throughout this section we have referred to the game execution state, but have only defined it

indirectly by the type of data that can be extracted from it. In the next section we are much more

explicit, defining the monadic structure underlying Hagl and how it is used in game execution.

2.6 Game Execution

In Hagl, game execution occurs within the game execution monad. Execution is performed in

steps, where each step corresponds to processing one node in the game tree. When a payoff node

is reached, information about the completed game is saved to a history of past iterations and

state corresponding to the current execution is reset. The game execution monad is defined by

the following type.

newtype GameExec mv a = GameExec (StateT (ExecState mv) IO a)
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This type wraps a state monad transformer, and is itself an instance of Monad, MonadState, and

MonadIO, simply deferring to the StateT monad it wraps in all cases. The innermost monad is the

IO monad, which is needed for printing output and obtaining random numbers.

The state maintained by the GameExec monad is a value of type ExecState, which contains all

of the information needed for game execution and to write strategies for an iterated game.

data ExecState mv = ExecState (Game mv) [Player mv] (ByPlayer Int)

(GameTree mv) (Transcript mv) (History mv)

The arguments to the ExecState constructor represent, in order:

• the game being played,

• the players currently playing the game,

• the total number of moves made by each player,

• the current location in the traversal of the game tree,

• a transcript of events in this iteration, and

• a history of past iterations.

The definitions of Game and GameTree were given in Section 3.1. The definition of the Player type

will be given in Section 2.7. Here, let’s examine the Transcript and History types, values of

which are generated by game execution.

A Transcript is a list of Event values, where each event corresponds to an already-processed

node in the game tree.

type Transcript mv = [Event mv]

data Event mv = DecisionEvent PlayerIx mv

| ChanceEvent Int

| PayoffEvent [Float]

As nodes are traversed, their corresponding events are generated and appended to the transcript.

A DecisionEvent records a decision made at a Decision node, capturing the index of the player

involved and the move they played; a ChanceEvent records the branch taken at a Chance node;

and a PayoffEvent records the payoffs awarded at a Payoff node.

History values are essentially just lists of past transcripts, combined with a Summary value

which redundantly stores only the moves made by each player and the final payoffs for a particular

iteration, for performance reasons.

type History mv = ByGame (Transcript mv, Summary mv)

type Summary mv = (ByPlayer (ByTurn mv), ByPlayer Float)
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Many of the data accessors in Section 2.5.1 extract their information from History value in the

game execution state.

Games are executed by running computations within the GameExec monad. The most funda-

mental of these is the step function, which has type GameExec m (); that is, it is a computation

within the GameExec monad with no return value. Each time step is run, it processes one node

in the game tree, updating the location, transcript, game summaries and payoffs, all stored in

the ExecState value, accordingly. For example, if the current location in the game tree is a

Decision node, step will request a move from the player indicated by the Decision node, update

the location based on that move, and add an event to the transcript.

Since step is a monadic computation, multiple invocations of step can be sequenced using

the monad bind operation (>>). The function step >> step >> step could be used to run one

iteration of the prisoner’s dilemma; since the depth of the prisoner’s dilemma is three, it takes

three executions of step to fully evaluate a single game. Fortunately, Hagl provides a function

once which recursively executes step, running a game to completion a single time, obviating the

need to know the depth of a game to run it. Additionally, the function times takes an integer and

runs the game that many times. For example, times 100 runs a game 100 times consecutively.

The runGame function, whose type is given below, is used to execute computations like once

on combinations of players and games.

runGame :: Game m -> [Player m] -> GameExec m a -> IO (ExecState m)

This function takes a game, a list of players, and a computation in the GameExec monad; it

generates an initial ExecState, then runs the given computation on that state. The following,

run from an interactive prompt (e.g. GHCi), would play ten iterations of the prisoner’s dilemma

between players a and b.

> runGame pd [a,b] (times 10)

Unfortunately, running ten iterations of the prisoner’s dilemma isn’t very useful if we don’t know

anything about the results of those games. In addition to step, once, and times, Hagl provides a

suite of functions for printing information about the current state of game execution. The most

generally useful of these are printTranscript, which prints the transcript of all completed games,

and printScore, which prints the current score of each player. In order to see these in action,

let us first define a couple of simple players: one that always cooperates, and one that always

defects.

mum = "Mum" ::: pure Cooperate

fink = "Fink" ::: pure Defect

From an interactive prompt we can now instruct Hagl to run one game of the prisoner’s dilemma

between Mum and Fink, print the transcript of that game, run 99 more games, and print the
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final score.

> runGame pd [mum, fink] (once >> printTranscript >> times 99 >> printScore)

Game 1:

Mum’s move: Cooperate

Fink’s move: Defect

Payoff: [0.0,3.0]

Score:

Mum: 0.0

Fink: 300.0

Clearly, pure cooperation is not a good strategy against pure defection.

Often we want to run a game between not just one set of opponents, but a series of opponents,

as in the Axelrod tournament described in Section 2.2. The function runGames provides a general

means of doing so.

runGames :: Game m -> [[Player m]] -> GameExec m a -> IO ()

The type of runGames is similar to that of runGame, except that in place of a list of players, there

is a list of lists of players. In runGames, the provided computation is executed once for each list

of players. The scores of all players are accumulated and the final scores printed.

The definition of the axelrod function in Section 2.2 uses the function roundRobin, one of a

few functions for producing standard types of tournaments. This function takes a single list of

players, and runs every unique combination (including each player against itself). Below we run

axelrod with the two players defined above and Tit for Tat from Section 2.2. Only the final score

is shown below; scores of individual matchups are omitted for space.

> axelrod [mum, fink, tft]

Final Scores:

Tit for Tat: 6999.0

Fink: 6002.0

Mum: 6000.0

Although still finishing last, here Mum performs much better relative to Fink since it has both Tit

for Tat and itself to cooperate with. Tit for Tat outperforms both by being willing to cooperate,

but also being flexible enough to avoid being exploited by Fink.

In the next section we finally give a formal definition of player and strategy representations

in Hagl. For strategies, we introduce another monadic layer that allow each strategy to maintain

its own independent state.
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2.7 Player and Strategy Representation

A player in Hagl is represented by the Player data type defined below. Values of this type contain

the player’s name (e.g. “Tit for Tat”), an arbitrary state value, and a strategy which may utilize

that state.

data Player mv = forall s. Player Name s (Strategy mv s)

The Name type is just a synonym for String. A player’s name is used both to distinguish amongst

different players within Hagl, and for labelling output like player scores. Also notice that Player

is a locally quantified data constructor [23], another extension to Haskell 98 available in GHC.

This allows players to maintain their own different state types, while still being stored and

manipulated generically.

The definition of the Strategy type requires introducing the outermost monadic layer in Hagl.

The StratExec monad, defined below, wraps the GameExec monad introduced in Section 2.6,

providing an additional layer of state management available to strategies through the standard

get and put functions.

newtype StratExec mv s a = StratExec (StateT s (GameExec mv) a)

Like GameExec, StratExec instantiates Monad, MonadState, and MonadIO. Additionally, both GameExec

and StratExec instantiate the GameMonad type class first mentioned in Section 2.5.1. This allows

many combinators, including all of the accessor and selector functions, to be used identically

(without lifting) from within either monad.

Finally, a Strategy is a computation within the StratExec monad which returns the next move

to be played.

type Strategy mv s = StratExec mv s mv

Since many strategies in Hagl do not require the use of state, an additional data constructor

is provided for defining players with stateless strategies.

(:::) :: Name -> Strategy mv () -> Player mv

This constructor has been used throughout the paper to define players with stateless strategies.

Since we have made it this far without state in strategies, one may wonder whether this extra

complexity is justified. In the next section we make a case for stateful strategies, and provide an

example of their use.

2.8 Stateful Strategies

We have mostly ignored the role of state in strategy definitions thus far. This is partly be-

cause stateless strategies simply look nicer than their stateful counterparts, but also because the
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examples have all been small enough that the benefits of maintaining state are minimal.

Since the entire game execution history is available to every strategy at any time, state is not

strictly necessary for the definition of any strategy. Any stateful strategy could be transformed

to a stateless strategy by regenerating the state from scratch at every iteration. However, since

experimental game theorists will often want to run thousands of iterations of each game with

many different strategies, state becomes a necessity for any strategies which consider all past

iterations, especially as the amount of work at each iteration increases. The construction of

Markov models, which have particular relevance in iterated games, are one such example of state

which would be prohibitively expensive to regenerate from scratch at every iteration.

On a smaller scale, consider the definition of Grim Trigger from Section 2.5.2. This implemen-

tation runs in linear time with respect to the number of iterations played, since it must search

the list of previous moves each time it is called. By utilizing state, we can define a constant-time

Grim Trigger as follows.2

grim’ = Player "Stately Grim Trigger" False $

play Cooperate ‘atFirstThen‘

do m <- her (last game’s move)

triggered <- update (|| m == Defect)

if triggered then play Defect else play Cooperate

The function update used here applies a function to the state within a state monad, then stores

and returns the resulting state. Instead of scanning the entire history of past games, Stately

Grim Trigger considers only the most recent game and updates its state accordingly. Even with

this simple example, 10,000 iterations involving grim’ complete in a few seconds, while the same

experiment with grim takes over 30 minutes on our hardware.

2.9 Conclusion

Although originally intended as analytical tools, game theoretic models have proven extremely

conducive to research through simulation and experimentation. Despite the utility of experi-

mental game theory, however, there does not seem to be much in the way of language support.

Hagl attempts to lower the barriers to entry for researchers using experimental game theory. By

utilizing existing formalisms and notations, Hagl provides a familiar interface to domain experts,

and by embedding the language in Haskell, users can extend and supplement the language with

arbitrary Haskell code as needed. Additionally, Hagl makes heavy use of the Haskell type system

to statically ensure that list selectors and other language elements are ordered correctly.

2This example actually has a clever, stateless, constant-time algorithm as well—defect if either you or your
opponent defected on the previous move—but this will not always be the case.
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In addition to the types of games presented here, Hagl can be used to define games which are

more naturally described by transitions between states. For example, in the paper and pencil

game of tic-tac-toe, a state of nine squares is maintained, each of which may be empty, or contain

an ’X’ or an ’O’; players’ moves are defined by transforming the state by marking empty squares.

Similarly, board games like chess are defined by the state of their board, and moves alter that

state by moving pieces around. Hagl provides smart constructors which transform state-based

game definitions into standard Hagl game trees. Thanks to the laziness of the host language,

these trees are generated on-demand, making even large state-based games tractable.

This project is part of a larger effort to apply language design concepts to game theory.

In our previous work we have designed a visual language for defining strategies for normal-

form games, which focused on the explainability of strategies and on the traceability of game

executions [10]. In future work we plan to extend Hagl by allowing for multiple internal game

representations. This would facilitate the use of existing algorithms for computing equilibria in

normal-form games, and ease the writing of strategies for state-based games and auctions, which

are of particular interest in experimental game theory.
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Chapter 3 – Extending the Expressiveness of Hagl

Abstract: Experimental game theory is an increasingly important research tool in

many fields, providing insight into strategic behavior through simulation and ex-

perimentation on game theoretic models. Unfortunately, despite relying heavily on

automation, this approach has not been well supported by tools. Here we present our

continuing work on Hagl, a domain-specific language embedded in Haskell, intended

to drastically reduce the development time of such experiments and support a highly

explorative research style.

In this paper we present a fundamental redesign of the underlying game representation

in Hagl. These changes allow us to better utilize domain knowledge by allowing

different classes of games to be represented differently, exploiting existing domain

representations and algorithms. In particular, we show how this supports analytical

extensions to Hagl, and makes strategies for state-based games vastly simpler and

more efficient.

Published as:

Eric Walkingshaw and Martin Erwig.

Varying Domain Representations in Hagl – Extending the Expressiveness of a DSL for Experi-

mental Game Theory.

IFIP Working Conf. on Domain-Specific Languages, LNCS 5658, pages 310–334, 2009.
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3.1 Introduction

Game theory has traditionally been used as an analytical framework. A game is a formal model of

a strategic situation in which players interact by making moves, eventually achieving a payoff in

which each player is awarded a value based on the outcome of the game. Classical game theorists

have derived many ways of solving such situations, by mathematically computing “optimal”

strategies of play, usually centered around notions of stability or equilibrium [13].

The derivation of these optimal strategies, however, almost always assumes perfectly rational

play by all players—an assumption which rarely holds in practice. As such, while these methods

have many practical uses, they often fair poorly at predicting actual strategic behavior by humans

and other organisms.

One striking example of sub-optimal strategic behavior is the performance of humans in a

class of simple guessing games [25]. In one such game, a group of players must each guess a

number between 0 and 100 (inclusive). The goal is to guess the number closest to 1/2 of the

average of all players’ guesses. Traditional game theory tells us that there is a single equilibrium

strategy for this game, which is to choose zero. Informally, the reasoning is that since each player

is rational and assumes all other players are rational, any value considered above zero would lead

the player to subsequently consider 1/2 of that value. That is, if a player initially thinks the

average of the group might be 50 (based on randomly distributed guesses), 25 would initially

seem a rational guess. However, since all other players are assumed to be rational, the player

would assume that the others came to the same conclusion and would also choose 25, thereby

making 12.5 a better guess. But again, all players would come to the same conclusion, and after

halving their guesses once again it quickly becomes clear that an assumption of rationality among

all players leads each to recursively consider smaller and smaller values, eventually converging to

zero, which all rational players would then play.

It has been demonstrated experimentally, however, that most human players choose values

greater than zero [20]. Interestingly, a nonzero guess does not necessarily imply irrationality on

the part of the player, who may be rational but assumes that others are not. Regardless, it is

clear that the equilibrium strategy is sub-optimal when playing against real opponents.

Experimental game theory attempts to capture, understand, and predict strategic behavior

where analytical game theory fails or is difficult to apply. The use of game theoretic models in

experiments and simulations has become an important research tool for economists, biologists,

political scientists, and many other researchers. This shift towards empirical methods is also

supported by the fact that game theory’s formalisms are particularly amenable to direct execution

and automation [7]. Interactions, decisions, rewards, and the knowledge of players are all formally

defined, allowing researchers to conduct concise and quantifiable experiments.

Perhaps surprisingly, despite the seemingly straightforward translation from formalism to
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computer automation, general-purpose tool support for experimental game theory is extremely

low. A 2004 attempt to recreate and extend the famous Axelrod experiments on the evolution of

cooperation [1] exemplifies the problem. Experimenters wrote a custom Java library (IPDLX) to

conduct the experiments [21]. Like the original, the experiments were structured as tournaments

between strategies submitted by players from around the world, competing in the iterated form

of a game known as the prisoner’s dilemma. Excluding user interface and example packages,

the library used to run the tournament is thousands of lines of Java code. As domain-specific

language designers, we knew we could do better.

Enter Hagl1, a domain-specific language embedded in Haskell designed to make defining

games, strategies, and experiments as simple and fun as possible. In Hagl, the Axelrod experi-

ments can be reproduced in just a few lines.

data Cooperate = C | D

dilemma = symmetric [C, D] [2, 0, 3, 1]

axelrod players = roundRobin dilemma players (times 100)

In our previous work on Hagl [35] we have provided a suite of operators and smart constructors

for defining common types of games, a combinator library for defining strategies for playing

games, and a set of functions for carrying out experiments using these objects. Continuing the

example above, we provide a few example players defined in Hagl below, then run the Axelrod

experiment on this small sample of players.

At each iteration of the iterated prisoner’s dilemma, each player can choose to either cooperate

or defect. The first two very simple players just play the same move every time.

mum = "Mum" ‘plays‘ pure C

fink = "Fink" ‘plays‘ pure D

A somewhat more interesting player is one that plays the famous “Tit for Tat” strategy, winner

of the original Axelrod tournament. Tit for Tat cooperates in the first iteration, then always

plays the previous move played by its opponent.

tft = "Tit for Tat" ‘plays‘ (C ‘initiallyThen‘ his (prev move))

With these three players defined, we can carry out the experiment. The following, run from an

interactive prompt (e.g. GHCi), plays each combination of players against each other 100 times,

printing out the final scores.

1Short for “Haskell game language”.
Available for download at: http://web.engr.oregonstate.edu/~walkiner/hagl/
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> axelrod [mum,fink,tft]

Final Scores:

Tit for Tat: 699.0

Fink: 602.0

Mum: 600.0

Since this original work we have set out to add various features to the language. In this paper

we primarily discuss two such additions, the incorporation of operations from analytical game

theory, and adding support for state-based games, which together revealed substantial bias in

Hagl’s game representation.

3.1.1 Limitations of the Game Representation

The definition of the prisoner’s dilemma above is nice since it uses the terminology and structure

of notations in game theory. Building on this, we would like to support other operations famil-

iar to game theorists. In particular, we would like to provide analytical functions that return

equilibrium solutions like those mentioned above. This is important since experimental game

theorists will often want to use classically derived strategies as baselines in experiments. Unfor-

tunately, algorithms that find equilibria of games like the prisoner’s dilemma rely on the game’s

simple structure. This structure, captured in the concrete syntax of Hagl’s notation above, is

immediately lost since all games are converted into a more general internal form, making it very

difficult to provide these operations to users. This is an indication of bias in Hagl—the structure

inherent in some game representations is lost by converting to another. Instead, we would like all

game representations to be first-class citizens, allowing games of different types to be structured

differently.

The second limitation is related to state-based games. A state-based game is a game that is

most naturally described as a series of transformations over some state. As we’ve seen, defining

strategies for games like the prisoner’s dilemma is very easy in Hagl. Likewise for the extensive

form games introduced in Section 3.2.2. Unfortunately, the problem of representational bias

affects state-based games as well, making the definition of strategies for these kinds of games

extremely difficult.

In Section 3.2.3 we present a means of supporting state-based games within the constraints

of Hagl’s original game representation. The match game is a simple example of a state-based

game that can be defined in this way. In the match game n matches are placed on a table.

Each player takes turns drawing some limited number of matches until the player who takes

the last match loses. The function below generates a two-player match game with n matches in

which each player may choose some number from ms matches each turn. For example, matches

15 [1,2,3] would generate a match game in which 15 matches are placed on the table, and each
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move consists of taking away 1, 2, or 3 matches.

matches :: Int -> [Int] -> Game Int

matches n ms = takeTurns 2 end moves exec pay n

where end n _ = n <= 0

moves n _ = [m | m <- ms, n-m >= 0]

exec n _ m = n-m

pay _ 1 = [1,-1]

pay _ 2 = [-1,1]

The takeTurns function is described in Section 3.2.3. Here it is sufficient to understand that the

state of the game is the number of matches left on the table and that the game is defined by the

series of functions passed to takeTurns, which describe how that state is manipulated.

Defining the match game in this way works fairly well. The problem is encountered when we

try to write strategies to play this game. In Section 3.3.2, we show how state-based games are

transformed into Hagl’s internal, stateless game representation. At the time a strategy is run,

the game knows nothing about the state. This means that a strategy for the match game has no

way of seeing how many matches remain on the table! In Section 3.5.2 we provide an alternative

implementation of the match game using the improved model developed in Section 3.4. Using

this model, which utilizes type classes to support games with diverse representations, we can

write strategies for the match game, an example of which is also given in Section 3.5.2.

3.1.2 Outline of Paper

In the following section we provide an interleaved introduction to Hagl and game theory. This

summarizes our previous work and also includes more recent additions such as preliminary sup-

port for state-based games, improved dimensioned list indexing operations, and support for sym-

metric games. Additionally, it provides a foundation of concepts and examples which is drawn

upon in the rest of the paper. In Section 3.3 we discuss the bias present in our original game

representation and the limitations it imposes. In Section 3.4 we show how we can overcome this

bias, generalizing our model to support many distinct domain representations. In Section 3.5 we

utilize the new model to present solutions to the problems posed in Section 3.3.

3.2 A Language for Experimental Game Theory

In designing Hagl, we identified four primary domain objects that must be represented: games,

strategies, players, and simulations/experiments. Since this paper is primarily concerned with

game representations, this section is correspondingly heavily skewed towards that subset of Hagl.
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C D

C 2, 2 0, 3

D 3, 0 1, 1

(a) Prisoner’s dilemma

C D

C 3, 3 0, 2

D 2, 0 1, 1

(b) Stag hunt

Figure 3.1: Normal form representation of two related games

Sections 3.2.1, 3.2.2, and 3.2.3 all focus on the definition of different types of games in Hagl, while

Section 3.2.4 provides an extremely brief introduction to other relevant aspects of the language.

For a more thorough presentation of the rest of the language, please see our earlier work in [35].

Game theorists utilize many different representations for different types of games. Hagl at-

tempts to tap into this domain knowledge by providing smart constructors and operators which

mimic existing domain representations as closely as possible given the constraints of Haskell

syntax. The next two subsections focus on these functions, while Section 3.2.3 introduces pre-

liminary support for state-based games. Each of these subsections focuses almost entirely on

concrete syntax, the interface provided to users of the system. The resulting type and inter-

nal representation of these games, Game mv, is left undefined throughout this section but will be

defined and discussed in depth in Section 3.3.

3.2.1 Normal Form Game Definition

One common representation used in game theory is normal form. Games in normal form are

represented as a matrix of payoffs indexed by each player’s move. Fig. 3.1 shows two related

games which are typically represented in normal form. The first value in each cell is the payoff

for the player indexing the rows of the matrix, while the second value is the payoff for the player

indexing the columns.

The first game in Fig. 3.1 is the prisoner’s dilemma, which was briefly introduced in Sec-

tion 3.1; the other is called the stag hunt. These games will be referred to throughout the paper.

In both games, each of two players can choose to either cooperate (C) or defect (D). While

these games are interesting from a theoretical perspective and can be used to represent many

real-world strategic situations, they each (as with many games in game theory) have a canonical

story associated with them from which they derive their names.

In the prisoner’s dilemma the two players represent prisoners suspected of collaborating on

a crime. The players are interrogated separately, and each can choose to cooperate with his

criminal partner by sticking to their fabricated story (not to be confused with cooperating with
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the interrogator, who is not a player in the game), or they can choose to defect by telling the

interrogator everything. If both players cooperate they will be convicted of only minor crimes—

a pretty good outcome considering their predicament, and worth two points to each player as

indicated by the payoff matrix. If both players defect, they will be convicted of more significant

crimes, represented by scoring only one point each. Finally, if one player defects and the other

cooperates, the defecting player will be pardoned, while the player who sticks to the fabricated

story will be convicted of the more significant crime in addition to being penalized for lying to

the investigators. This outcome is represented by a payoff of 3, 0, getting pardoned having the

best payoff, and being betrayed leading to the worst.

In the stag hunt, the players represent hunter-gathers. Each player can choose to either

cooperate in the stag hunt, or defect by spending their time gathering food instead. Mutual

cooperation leads to the best payoff for each player, as the players successfully hunt a stag and

split the food. This is represented in the payoff matrix by awarding three points to each player.

Alternatively, if the first player cooperates but the second defects, a payoff of 0, 2 is awarded,

indicating zero points for the first player, who was unsuccessful in the hunt, and two points for

the second player, who gathered some food, but not as much as could have been acquired through

a hunt. Finally, if both choose to gather food, they will have to split the food that is available

to gather, earning a single point each.

Hagl provides the following smart constructor for defining normal form games.

normal :: Int -> [[mv]] -> [[Float]] -> Game mv

This function takes the number of players the game supports, a list of possible moves for each

player, a matrix of payoffs, and returns a game. For example, the stag hunt could be defined as

follows.

stag = normal 2 [[C,D],[C,D]] [[3,3],[0,2],

[2,0],[1,1]]

The syntax of this definition is intended to resemble the normal form notation in Fig. 3.1. By

leveraging game theorists’ existing familiarity with domain representations, we hope to make

Hagl accessible to those within the domain.

Since two-player games are especially common amongst normal form games, game theorists

have special terms for describing different classes of two-player, normal form games. The most

general of which is a bimatrix game, which is simply an arbitrary two player, normal form game.

bimatrix = normal 2

Somewhat more specialized are matrix games and symmetric games. A matrix game is a two-

player, zero-sum game. In these games, whenever one player wins, the other player loses a



31

corresponding amount. Therefore, the payoff matrix for the matrix function is a simple list of

floats, the payoffs for the first player, from which the payoffs for the second player can be derived.

matrix :: [mv] -> [mv] -> [Float] -> Game mv

The traditional game rock-paper-scissors, defined below, is an example of such a game. When

one player wins (scoring +1) the other loses (scoring −1), or the two players can tie (each scoring

0) by playing the same move.

data RPS = R | P | S

rps = matrix [R,P,S] [R,P,S] [0,-1, 1,

1, 0,-1,

-1, 1, 0]

Symmetric games are similar in that the payoffs for the second player can be automatically

derived from the payoffs for the first player. In a symmetric game, the game appears identical

from the perspective of both players; each player has the same available moves and the payoff

awarded to a player depends only on the combination of their move and their opponent’s, not on

whether they are playing along the rows or columns of the grid.

symmetric :: [mv] -> [Float] -> Game mv

Note that all of the games discussed so far have been symmetric. Below is an alternative, more

concise definition of the stag hunt, using this new smart constructor.

stag = symmetric [C,D] [3, 0, 2, 1]

Recall that the definition of the prisoner’s dilemma given in Section 3.1 utilized this function as

well.

Although it is theoretically possible to represent any game in normal form, it is best suited

for games in which each player plays simultaneously from a finite list of moves. For different,

more complicated games, game theory relies on other representations. One of the most common

and general of which is extensive form, also known as decision or game trees.

3.2.2 Extensive Form Game Definition

Extensive form games are represented in Hagl by the following data type, which makes use of

the preceding set of type synonyms.
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type PlayerIx = Int

type Payoff = ByPlayer Float

type Edge mv = (mv, GameTree mv)

type Dist a = [(Int, a)]

data GameTree mv = Decision PlayerIx [Edge mv]

| Chance (Dist (Edge mv))

| Payoff Payoff

Payoff nodes are the leaves of a game tree, containing the score awarded to each player for

a particular outcome. The type of a payoff node’s value, ByPlayer Float, will be explained in

Section 3.2.4, but for now we’ll consider it simply a type synonym for a list of Float values.

Internal nodes are either Decision or Chance nodes. Decision nodes represent locations in the

game tree where a player must choose to make one of several moves. Each move corresponds to

an Edge in the game tree, a mapping from a move to its resulting subtree. The player making the

decision is indicated by a PlayerIx. The following example presents the first (and only) player of

a game with a simple decision; if he chooses move A, he will receive zero points, but if he chooses

move B, he will receive five points.

easyChoice = Decision 1 [(A, Payoff [0]), (B, Payoff [5])]

Finally, Chance nodes represent points where an external random force pushes the game along

some path or another based on a distribution. Currently, that distribution is given by a list

of edges prefixed with their relative likelihood; e.g. given [(1,a),(3,b)], the edge b is three

times as likely to be chosen as a. However, this definition of Dist could easily be replaced by

a more sophisticated representation of probabilistic outcomes, such as that presented in [9]. A

random die roll, while not technically a game from a game theoretic perspective, is illustrative

and potentially useful as a component in a larger game. It can be represented as a single Chance

node where each outcome is equally likely and the payoff of each is the number showing on the

die.

die = Chance [(1, (n, Payoff [n])) | n <- [1..6]]

The function extensive, which has type GameTree mv -> Game mv is used to turn game trees

into games which can be run in Hagl. Hagl also provides operators for incrementally building

game trees, but those are not presented here.

3.2.3 State-Based Game Definition

One of the primary contributions of this work is the addition of support for state-based games

in Hagl. While the normal and extensive forms are general in the sense that any game can be
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translated into either representation, games which can be most naturally defined as transitions

between states seem to form a much broader and more diverse class. From auctions and bargain-

ing games, where the state is the highest bid, to graph games, where the state is the location of

players and elements in the graph, to board games like chess and tic-tac-toe, where the state is

the configuration of the board, many games seem to have natural notions of state and well-defined

transitions between them.

The preliminary support provided for state-based games described here has been made ob-

solete by the redesign described in Section 3.4, but presenting our initial design is valuable as a

point of reference for future discussion.

As with other game representations, support for state-based games is provided by a smart

constructor, whose type is given below.

stateGame :: Int -> (s -> PlayerIx) -> (s -> PlayerIx -> Bool) ->

(s -> PlayerIx -> [mv]) -> (s -> PlayerIx -> mv -> s) ->

(s -> PlayerIx -> Payoff) -> s -> Game mv

The type of the state is determined by the type parameter s. The first argument to stateGame

indicates the number of players the game supports, and the final argument provides an initial

state. The functional arguments in between describe how players interact with the state over the

course of the game. Each of these takes the current state and (except for the first) the current

player, and returns some information about the game. In order, the functional arguments define:

• which player’s turn it is,

• whether or not the game is over,

• the available moves for a particular player,

• the state resulting from executing a move on the given state, and

• the payoffs for some final state.

The result type of this function is the same Game mv type as the other games described in previous

sections. Notice that s, the type of the state, is not reflected in the type signature of the resulting

game. This is significant, reflecting the fact that the notion of state is completely lost in the

generated game representation.

Since players alternate in many state-based games, and tracking which player’s turn it is can

be cumbersome, another smart constructor, takeTurns, is provided which manages this aspect of

state games automatically. The takeTurns function has the same type as the stateGame function

above minus the second argument, which is used to determine whose turn it is.
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takeTurns :: Int -> (s -> PlayerIx -> Bool) -> (s -> PlayerIx -> [mv]) ->

(s -> PlayerIx -> mv -> s) -> (s -> PlayerIx -> Payoff) ->

s -> Game mv

The match game presented in Section 3.1.1 is an example of a state-based game defined using

this function.

The definition of players, strategies, and experiments are less directly relevant to the contri-

butions of this paper than the definition of games, but the brief introduction provided in the next

subsection is necessary for understanding later examples. The definition of strategies for state-

based games, in particular, are one of the primary motivations for supporting multiple domain

representations.

3.2.4 Game Execution and Strategy Representation

All games in Hagl are inherently iterated. In game theory, the iterated form of a game is just the

original game played repeatedly, with the payoffs of each iteration accumulating. When playing

iterated games, strategies often rely on the events of previous iterations. Tit for Tat, presented

in Section 3.1.1, is one such example.

Strategies are built from a library of functions and combinators which, when assembled,

resemble English sentences written from the perspective of the player playing the strategy (i.e.

in Tit for Tat, his corresponds to the other player in a two player game). Understanding these

combinators requires knowing a bit about how games are executed.

In Hagl, all games are executed within the following monad.

data ExecM mv a = ExecM (StateT (Exec mv) IO a)

This data type wraps a state transformer monad, and is itself an instance of the standard Monad,

MonadState and MonadIO type classes, simply deferring to the monad it wraps in all cases. The

inner StateT monad transforms the IO monad, which is needed for printing output and obtaining

random numbers (e.g. for Chance nodes in extensive form games).

The state of the ExecM monad, a value of type Exec mv, contains all of the runtime information

needed to play the game, including the game itself and the players of the game, as well as a

complete history of all previous iterations. The exact representation of this data type is not

given here, but the information is made available in various formats through a set of accessor

functions, some of which will be shown shortly.

A player in Hagl is represented by the Player data type defined below. Values of this type

contain the player’s name (e.g. “Tit for Tat”), an arbitrary state value, and a strategy which

may utilize that state.
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data Player mv = forall s. Player Name s (Strategy mv s)

The type Name is simply a synonym for String. More interestingly, notice that the s type pa-

rameter is existentially quantified, allowing players with different state types to be stored and

manipulated generically within the ExecM monad.

The definition of the Strategy type introduces one more monadic layer to Hagl. The StratM

monad adds an additional layer of state management, allowing players to store and access their

own personal state of type s.

data StratM mv s a = StratM (StateT s (ExecM mv) a)

The type Strategy mv s found in the definition of the Player data type, is simply a type synonym

for StratM mv s mv, an execution in the StratM monad which returns a value of type mv, the move

to be played.

Since many strategies do not require additional state, the following smart constructor is

provided which circumvents this aspect of player definition.

plays :: Name -> Strategy mv () -> Player mv

plays n s = Player n () s

This function reads particularly well when used as an infix operator, as in the definition of Tit

for Tat.

Hagl provides smart constructors for defining simple strategies in game theory, such as the

pure and mixed strategies discussed in Section 3.3.1, but for defining more complicated strategies

we return to the so-called accessor functions mentioned above. The accessors extract data from

the execution state and transform it into some convenient form. Since they are accessing the

state of the ExecM monad, we would expect their types to have the form ExecM mv a, where a is

the type of the returned information. Instead, they have types of the form GameM m mv => m a,

where GameM is a type class instantiated by both ExecM and StratM. This allows the accessors to be

called from within strategies without needing to be “lifted” into the context of a StratM monad.

A few sample accessors are listed below, with a brief description of the information they

return. The return types of each of these rely on two data types, ByGame a and ByPlayer a. Each

is just a wrapper for a list of as, but are used to indicate how that list is indexed. A ByPlayer

list indicates that each element corresponds to a particular player, while a ByGame list indicates

that each element corresponds to a particular game iteration.

• move :: GameM m mv => m (ByGame (ByPlayer mv))

A doubly nested list of the last move played by each player in each game.

• payoff :: GameM m mv => m (ByGame Payoff)

A doubly nested list of the payoff received by each player in each game.
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• score :: GameM m mv => m (ByPlayer Float)

The current cumulative scores, indexed by player.

The benefits of the ByGame and ByPlayer types become apparent when we start thinking about

how to process these lists. First, they help us keep indexing straight. The two different types of

lists are organized differently, and the two indexing functions, forGame and forPlayer, perform

all of the appropriate conversions and abstract the complexities away. Second, the data types

provide additional type safety by ensuring that we never index into a ByPlayer list thinking

that it is ByGame, or vice versa. This is especially valuable when we consider our other class of

combinators, called selectors, which are used to process the information returned by the accessors.

While the accessors above provide data, the selector functions constrain data. Two features

distinguish Hagl selectors from generic list operators. First, they provide the increased type

safety already mentioned. Second, they utilize information from the current execution state

to make different selections depending on the context in which they are run. Each ByPlayer

selector corresponds to a first-person, possessive pronoun in an effort to maximize readability.

An example is the his selector used in the definition of Tit for Tat above.

his :: GameM m mv => m (ByPlayer a) -> m a

This function takes a monadic computation that returns a ByPlayer list and produces a computa-

tion which returns only the element corresponding to the opposing player (in a two player game).

Other selectors include her, a synonym for his, my, which returns the element corresponding to

the current player, and our, which selects the elements corresponds to all players.

Similar selectors exist for processing ByGame lists, except these have names like prev, for

selecting the element corresponding to the previous iteration, and every, for selecting the elements

corresponding to every iteration.

While this method of defining strategies with a library of accessor and selector functions and

other combinators has proven to be very general and extensible, we have run into problems with

our much more rigid game representation.

3.3 A Biased Domain Representation

In Sections 3.2.1, 3.2.2, and 3.2.3 we introduced a suite of functions and operators for defining

games in Hagl. However, we left the subsequent type of games, Game mv, cryptically undefined.

It turns out that this data type is nothing more than an extensive form GameTree value, plus a

little extra information.

data Game mv = Game { numPlayers :: Int,

info :: GameTree mv -> InfoGroup mv,

tree :: GameTree mv }
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Thus, all games in Hagl are translated into extensive form. This is nice since it provides a

relatively simple and general internal representation for Hagl to work with. As we’ll see, however,

it also introduces a substantial amount of representational bias, limiting what we can do with

games later.

In addition to the game tree, a Hagl Game value contains an Int indicating the number of

players that play the game, and a function from nodes in the game tree to information groups.

In game theory, information groups are an extension to the simple model of extensive form

games. The need for this extension can be seen by considering the translation of a simple normal

form game like the stag hunt into extensive form. A straightforward translation would result in

something like the following.

Decision 1 [(C, Decision 2 [(C, Payoff (ByPlayer [3,3])),

(D, Payoff (ByPlayer [0,2]))]),

[(D, Decision 2 [(C, Payoff (ByPlayer [2,0])),

(D, Payoff (ByPlayer [1,1]))])]

Player 1 is presented with a decision at the root of the tree; each move leads to a decision by

player 2, and player 2’s move leads to the corresponding payoff, determined by the combination

of both players’ moves.

The problem is that we’ve taken two implicitly simultaneous decisions and sequentialized

them in the game tree. If player 2 examines her options, the reachable payoffs will reveal player

1’s move. Information groups provide a solution by associating with each other a set of decision

nodes for the same player, from within which a player knows only the group she is in, not the

specific node.

An information group of size one implies perfect information, while an information group of

size greater than one implies imperfect information. In Hagl, information groups are represented

straightforwardly.

data InfoGroup mv = Perfect (GameTree mv)

| Imperfect [GameTree mv]

Therefore, the definition of a new game type in Hagl must not only be translated into a Hagl

GameTree but must also provide a function for returning the information group corresponding to

each Decision node. As we can see from the definition of the smart constructor for normal form

games introduced earlier, this process is non-trivial.
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normal :: Int -> [[mv]] -> [[Float]] -> Game mv

normal np mss vs = Game np group (head (level 1))

where level n | n > np = [Payoff (ByPlayer v) | v <- vs]

| otherwise = let ms = mss !! (n-1)

bs = chunk (length ms) (level (n+1))

in map (Decision n . zip ms) bs

group (Decision n _) = Imperfect (level n)

group t = Perfect t

Herein lies the first drawback of this approach—defining new kinds of games is difficult due to

the often complicated translation process. Until this point in Hagl’s history, we have considered

the definition of new kinds of games to be part of our role as language designers. This view is

limiting for Hagl’s use, however, given the incredible diversity of games in game theory, and that

the design of new games is often important to a game theorist’s research.

A more fundamental drawback of converting everything into a decision tree, however, is

that it introduces representational bias. By converting from one representation to another we

at best obscure, and at worst completely lose important information inherent in the original

representation. The next two subsections demonstrate both ends of this spectrum.

3.3.1 Solutions of Normal Form Games

As mentioned in the introduction, classical game theory is often concerned with computing

optimal strategies for playing games. There are many different definitions of optimality, but two

particularly important definitions involve computing Nash equilibria and finding Pareto optimal

solutions [13].

A Nash equilibrium is defined as a set of strategies for each player, where each player, knowing

the others’ strategies, would have nothing to gain by unilaterally changing his or her own strategy.

More colloquially, Nash equilibria describe stable combinations of strategies—even if a player

knows the strategies of the other players, he or she would still not be willing to change.

Nash equilibria for normal form games can be pure or mixed. A pure equilibrium is one where

each player plays a specific move. In a mixed equilibrium, players may play moves based on

some probability. A good example of a game with an intuitive mixed equilibrium is rock-paper-

scissors. If both players randomly play each move with equal probability, no player stands to gain

by changing strategies. Going back to our examples from Section 3.2.1, the stag hunt has two

pure Nash equilibria, (C, C) and (D, D). If both players are cooperating, they are each earning

3 points; a player switching to defection would earn only 2 points. Similarly, if both players

are defecting, they are each earning 1 point; switching to cooperation would cause the switching

player to earn 0 points. The prisoner’s dilemma has only one Nash equilibrium, however, which
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is (D, D). In this case, mutual cooperation is not stable because a player unilaterally switching

to defection will earn 3 points instead of 2.

While the focus of Nash equilibria are on ensuring stability, Pareto optimality is concerned

with maximizing the benefit to as many players as possible. A Pareto improvement is a change

from one solution (i.e. set of strategies) to another that causes at least one player’s payoff to

increase, while causing no players’ payoffs to decrease. A solution from which no Pareto im-

provement is possible is said to be Pareto optimal. The only Pareto optimal solution of the

stag hunt is mutual cooperation, since any other solution can be improved by switching to pure

cooperation. In the prisoner’s dilemma (C, D) and (D, C) are also both Pareto optimal, since

any change would cause the defecting player’s payoff to decrease.

Nash equilibria and Pareto optimal solutions are guaranteed to exist for every game, but they

are hard to compute, in general. Finding a Nash equilibrium for an arbitrary game is known

to be PPAD-complete (computationally intractable) [26], and even the much more constrained

problem of deciding whether a game has a pure Nash equilibrium is NP-hard [15]. There do

exist, however, simpler algorithms for certain variations of these problems on highly constrained

games. Finding pure Nash equilibria and Pareto optimal solutions on the kinds of games typically

represented in normal form is comparatively easy [34].

While Hagl’s primary focus is experimental game theory, we would like to begin providing

support for these kinds of fundamental, analytical operations. Unfortunately, the bias in Hagl’s

game representation makes this very difficult. We would like to add functions for finding pure

Nash equilibria and Pareto optimal solutions, and have them only apply to simple normal form

games, but this is impossible since all games have the same type. Additionally, although the

structure of a game’s payoff matrix is available at definition time, it is instantly lost in the

translation to a decision tree.

While this subsection demonstrated how representational bias can obscure the original struc-

ture of a game, the next provides an example where the structure is completely and irrecoverably

lost.

3.3.2 Loss of State in State-Based Games

Section 3.2.3 introduced preliminary support for games defined as transformations of some state.

The smart constructor stateGame takes an initial state and a series of functions describing how

to manipulate that state, and produces a standard Hagl game tree representation. Below is the

implementation of this function.
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stateGame np who end moves exec pay init = Game np Perfect (tree init)

where tree s | end s p = Payoff (pay s p)

| otherwise = Decision p [(m, tree (exec s p m))

| m <- moves s p]

where p = who s

The most interesting piece here is the tree function, which threads the state through the provided

functions to generate a standard, stateless decision tree. Haskell’s laziness makes this viable for

even the very large decision trees often generated by state-based games. But there is still a

fundamental problem with this solution: we’ve lost the state.

At first this way of folding the state away into a game tree was very appealing. The solution

is reasonably elegant, and seemed to emphasize that even the most complex games could be

represented in our general form. The problem is first obvious when one goes to write a strategy

for a state-based game. Because the state is folded away, it is forever lost immediately upon

game definition; strategies do not and cannot have access to the state during game execution.

Imagine trying to write a strategy for a chess player without being able to see the board!

Of course, there is a workaround. Since players are afforded their own personal state, as

described in Section 3.2.4, each player of a state-based game could personally maintain his or

her own copy of the game state, modifying it as other players make their moves. In addition to

being wildly inefficient, this makes defining strategies for state-based games much more difficult,

especially considering strategies may have their own additional states to maintain as well.

This limitation of strategies for state-based games is perhaps the most glaring example of

representational bias. The translation from a state-based representation to a stateless extensive

form representation renders the game nearly unusable in practice.

3.4 Generalizing Game Representations

In setting about revising Hagl’s game representation, we established four primary goals, listed

here roughly in order of significance, from highest to lowest.

1. Better accommodate state in games. Many kinds of games are very naturally represented

as transitions between states. The inability of strategies to directly access these states, as

described in Section 3.3.2, was the most egregious instance of representational bias in the

language.

2. Lessen representational bias in general by allowing for multiple different game representa-

tions. Although dealing with the state issue was a pressing need, we sought a more general

solution to the underlying problem. This would also help us overcome the problems de-

scribed in Section 3.3.1.
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3. Lower the barrier to entry for defining new classes of games. Having one general game

representation is nice, but requiring a translation from one representation to another is

difficult, likely preventing users of the language from defining their own game types.

4. Minimize impact on the rest of the language. In particular, high-level game and strategy

definitions should continue to work, with little to no change.

In the rest of this section we will present a design which attempts to realize these goals, touching

briefly on the motivations behind important design decisions.

From the goals stated above, and the second goal in particular, it seems clear that we need to

introduce a type class for representing games. Recall the game representation given in Section 3.3:

A game is represented by the Game data type which contains the number of players that play the

game, an explicit game tree as a value of the GameTree data type, and a function for getting the

information group associated with a particular node. One approach would be to simply redefine

the Game data type as a type class as shown below.

class Game g where

type Move g

numPlayers :: g -> Int

gameTree :: g -> GameTree (Move g)

info :: g -> GameTree (Move g) -> Info (Move g)

Note that this definition uses associated types [5], an extension to Haskell 98 [28] available in

GHC [14], which allow us to use type classes to overload types in the same way that we overload

functions. Move g indicates the move type associated with the game type g and is specified in

class instances, as we’ll see later.

In effect, the use of a type class delays the translation process, maintaining diverse game

representations and converting them into game trees immediately before execution. However,

this solution still does not support state-based games, nor does it make defining new types of

games any easier since we must still provide a translation to a game tree. Enabling state-based

games would be fairly straightforward; we could simply add a state value to each node in the

game tree, making it trivial to retain the state that was previously folded away, and to provide

easy access to it by strategies. Making game definition easier, on the other hand, requires a more

radical departure from our original design.

3.4.1 Final Game Representation

Ultimately, we decided to abandon the game tree representation altogether and define games as

arbitrary computations within the game execution monad. The final definition of the Game type

class is given below.
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class Game g where

type Move g

type State g

initState :: g -> State g

runGame :: ExecM g Payoff

Note that we provide explicit support for state-based games by adding a new associated type

State and a function initState for getting the initial state of the game. This state is then stored

with the rest of the game execution state and can be accessed and modified from within the

monadic runGame function, which describes the execution of the game.

Also note that we have removed the numPlayers method from the previous type class. This

change eliminates another small source of bias, reflecting the fact that many games support a

variable number of players, violating the functional relationship between a game and a constant

number of players that was previously implied. Game instances should now handle this aspect

of game definition on their own, as needed.

To ease the definition of new types of games, we also provide a library of game definition com-

binators. These combinators provide a high-level interface for describing the execution of games,

while hiding all of the considerable minutiae of game execution briefly discussed in Section 3.2.4.

Some of these combinators will be introduced in the next subsection, but first we discuss some

of the trade-offs involved in this design change.

Perhaps the biggest risk in moving from an explicit representation (game trees) to an implicit

representation (monadic computations) is the possibility of overgeneralization. While abstraction

helps in removing bias from a representation, one has to be careful not to abstract so far away

from the domain that it is no longer relevant. After all, we initially chose game trees since they

were a very general representation of games. Does a monadic computation really capture what

it means to be a game?

Another subtle drawback is that, with the loss of an explicit game representation, it is no

longer possible to write some generic functions which relied on this explicitness. For example,

we can no longer provide a function which returns the available moves for an arbitrary game.

Such functions would have to be provided per game type, as needed. For games where an explicit

representation is more suitable, another type class is provided, similar to the initial type class

suggested in Section 3.4 that defines a game in terms of a game tree, as before.

These risks and minor inconveniences are outweighed by many substantial benefits. First

and foremost, the monadic representation is much more flexible and extensible than the tree-

based approach. Because games were previously defined in terms of a rigid data type, they

were limited to only three types of basic actions, corresponding to the three constructors in the

GameTree data type. Adding a fundamentally new game construct required modifying this data

type, a substantial undertaking involving the modification of lots of existing code. Adding a new
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construct in the new design, however, is as easy as adding a new function.

Another benefit of the new design is that games can now vary depending on their execution

context. One could imagine a game which changes during execution to handicap the player with

highest score, or a game where the payoff of a certain outcome depends on past events, perhaps

to simulate diminishing returns. These types of games were not possible before. Since games

now define their execution directly and have complete access to the execution context through

the ExecM monad, we can define games which change as they play.

Finally, as the examples given in Section 3.5 demonstrate, defining game execution in terms

of the provided combinators is substantially easier than translating game representations into

extensive form. This lowers the barrier to entry for game definition in Hagl, making it much

more reasonable to expect users of the system to be able to define their own game types as

needed. In the next subsection we provide an introduction to some of the combinators in the

game definition library.

3.4.2 Game Definition Combinators

Game execution involves a lot of bookkeeping. Various data structures are maintained to keep

track of past moves and payoffs, the game’s current state, which players are involved, etc. The

combinators introduced in this section abstract away all of these details, providing high-level

building blocks for describing how games are executed.

The first combinator is one of the most basic and will be used in most game definitions. This

function executes a decision by the indicated player.

decide :: Game g => PlayerIx -> ExecM g (Move g)

This function retrieves the indicated player, executes his or her strategy, updates the historical

information in the execution state accordingly, and returns the move that was played.

The allPlayers combinator is used to carry out some action for all players simultaneously,

returning a list of the accumulated results.

allPlayers :: Game g => (PlayerIx -> ExecM g a) -> ExecM g (ByPlayer a)

Combining these first two combinators as allPlayers decide, we define a computation in which

all players make a simultaneous (from the perspective of the players) decision. This is used, for

example, in the definition of normal form games in Section 3.5.1.

While the allPlayers combinator is used for carrying out simultaneous actions, the takeTurns

combinator is used to perform sequential actions. It cycles through the list of players, executing

the provided computation for each player, until the terminating condition (second argument) is

reached.
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takeTurns :: Game g => (PlayerIx -> ExecM g a) -> ExecM g Bool -> ExecM g a

This combinator is used in the revised definition of the match game given in Section 3.5.2.

There are also a small number of functions for constructing common payoff values. One

example is the function winner, whose type is given below.

winner :: Int -> PlayerIx -> Payoff

When applied as winner n p, this function constructs a payoff value (recall that Payoff is a

synonym for ByPlayer Float) where the winning player p receives 1 point, and all other players,

out of n, receive −1 point. There is a similar function loser, which gives a single player −1 point

and all other players 1 point, and a function tie which takes a single Int and awards all players

0 points.

3.5 Flexible Representation of Games

In this section we demonstrate the improved flexibility of the game representation by solving some

of the problems posed earlier in the paper. Section 3.5.1 demonstrates the new representation

of normal form games and provides functions for computing analytical solutions. Section 3.5.2

provides a new implementation of the match game and a strategy that can access its state in the

course of play.

3.5.1 Representing and Solving Normal Form Games

The fundamental shortcoming of the original game representation with regard to normal form

games was that the structure of the games was lost. Now, we can capture this structure explicitly

in the following data type.

data Normal mv = Normal Int (ByPlayer [mv]) [Payoff]

Note that the arguments to this data constructor are almost exactly identical to the normal

form smart constructor introduced in Section 3.2.1. A second data type resembles another smart

constructor from the same section, for constructing two-player, zero-sum games.

data Matrix mv = Matrix [mv] [mv] [Float]

Even though these games are closely related, we represent them with separate data types

because some algorithms, such as the one for computing saddle point equilibria described below,

apply only to the more constrained matrix games. To tie these two data types together, we

introduce a type class that represents all normal form games, which both data types implement.



45

class Game g => Norm g where

numPlayers :: g -> Int

payoffFor :: g -> Profile (Move g) -> Payoff

moves :: g -> PlayerIx -> [Move g]

This type class allows us to write most of our functions for normal form games in a way that

applies to both data types. The Profile type here refers to a strategy profile, a list of moves

corresponding to each player. This is reflected in the definition of Profile mv, which is just

a type synonym for ByPlayer mv. The payoffFor method returns the payoff associated with a

particular strategy profile by looking it up in the payoff matrix. The moves method returns the

moves available to a particular player.

Using the type class defined above, and the combinators from Section 3.4.2, we can define the

execution of normal form games as follows.

runNormal :: Norm g => ExecM g Payoff

runNormal = do g <- game

ms <- allPlayers decide

return (g ‘payoffFor‘ ms)

Contrast this definition with the smart constructor in Section 3.3 that translated normal form

to extensive form. We think that this dichotomy is extremely compelling motivation for the

generalized representation. Defining new types of games is now a much simpler process.

Finally, in order to use normal form games within Hagl, we must instantiate the Game type

class for both data types. This is very straightforward using the runNormal function above, and

we show only one instance here since the other is nearly identical.

instance Eq mv => Game (Normal mv) where

type Move (Normal mv) = mv

type State (Normal mv) = ()

initState _ = ()

runGame = runNormal

Since normal form games do not require state, the associated state type of is just the unit type

(). Similarly, for any normal form game, the initial state value is the unit value.

Now we can run experiments on, and write strategies for, normal form games just as before.

And with the addition of some very straightforward smart constructors, we can directly reuse

our earlier definitions of the prisoner’s dilemma and stag hunt. We can also, however, write

the analytical functions which we previously could not. Below are type definitions for functions

which return the pure Nash equilibria and Pareto optimal solutions of normal form games.

nash :: (Norm g, Eq (Move g)) => g -> [Profile (Move g)]

pareto :: (Norm g, Eq (Move g)) => g -> [Profile (Move g)]
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Using these we can define a function to find Pareto-Nash equilibria, solutions which are both

Pareto optimal and a Nash equilibrium, and which represent especially desirable strategies to

play [17].

paretoNash g = pareto g ‘intersect‘ nash g

Applying this new analytical function to the stag and hunt and prisoner’s dilemma provides some

interesting results.

> paretoNash stag

[ByPlayer [C,C]]

> paretoNash pd

[]

This likely demonstrates why prisoner’s dilemma is a far more widely studied game than the stag

hunt. The stag hunt is essentially solved—a strategy which is both Pareto optimal and a Nash

equilibria is a truly dominant strategy. Compare this to the following analysis of the prisoner’s

dilemma.

> nash pd

[ByPlayer [D,D]]

> pareto pd

[ByPlayer [C,C],ByPlayer [C,D],ByPlayer [D,C]]

In the prisoner’s dilemma, the only Nash equilibrium is not Pareto optimal, while all other

solutions are. This makes for a much more subtle and complex game.

Saddle points represent yet another type of equilibrium solution, but one that only applies to

matrix games. Essentially, a saddle point of a matrix game is strategy profile which corresponds

to a value which is both the smallest value in its row and the largest value in its column [34]. Such

a value is ideal for both players, and thus we would expect two rational players to always play a

strategy corresponding to a saddle point, if one exists. Hagl provides the following function for

finding saddle points in matrix games.

saddle :: Eq mv => Matrix mv -> [Profile mv]

A key feature of this function is that the type system prevents us from applying it to a normal

form game which is not of the right form. Being able to better utilize the type system is another

advantage of the more flexible representation enabled by type classes.

3.5.2 Representing and Playing the Match Game

In Section 3.1.1 we presented a definition of the match game only to discover that we could not

write a strategy for it. In this subsection we present a redefinition of the game with the improved
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representation, and an unbeatable strategy for playing it.

First, we create a data type to represent an instance of the match game. As with our normal

form game definition in Section 3.5.1, this data type resembles the original smart constructor for

building match games.

data Matches = Matches Int [Int]

Here, the first argument indicates the number of matches to set on the table, while the second

argument defines the moves available to the players (i.e. the number of matches that can be

drawn on a turn).

Instantiating the Game type class for the match game is mostly straightforward, with only the

implementation of runGame being non-trivial.

instance Game Matches where

type Move Matches = Int

type State Matches = Int

initState (Matches n _) = n

runGame = ...

The associated Move type of the match game is Int, the number of matches to draw; the State

type is also Int, the number of matches remaining on the table; and the initial state of the match

game is just extracted from the data type. To define the execution of the match game, we build

up a series of helper functions.

First we define two simple functions which make manipulating the state of the match game

a little nicer.

matches = gameState

draw n = updateGameState (subtract n)

Both the gameState and updateGameState functions are part of the game definition combinator

library. gameState is used to return the current game state, while updateGameState updates the

current game state by applying a provided function. These functions have the following types.

gameState :: (Game g, GameM m g) => m (State g)

updateGameState :: Game g => (State g -> State g) -> ExecM g (State g)

Note that, the type of gameState is somewhat more general than the type of updateGameState.

The type variable m in the type of gameState ranges over the monadic type constructors ExecM and

StratM, which are both instances of GameM, while updateGameState applies only to computations

in the ExecM monad. This means that access to the game’s state is available from within both

game definitions (ExecM) and strategy definitions (StratM), whereas modifying the game state is
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only possible from within game definitions—strategies may only manipulate the state indirectly,

by playing moves.

Thus, the matches function returns the current number of matches on the table, while the

draw function updates the state by removing the given number of matches from the table.

From here we can define a computation which determines when the game is over, that is,

when there are no matches remaining on the table.

end = do n <- matches

return (n <= 0)

And a function which executes a turn for a given player.

turn p = decide p >>= draw >> return p

On a player’s turn, the player makes a decision and the move indicates how many matches to

draw from the table. The reason this function returns the player’s index will be seen in a moment.

First, we define a computation which returns the payoff for the game, given the player who draws

the last match.

payoff p = do n <- numPlayers

return (loser n p)

The player who draws the last match loses, earning −1 point, while other players win 1 point.

We now have everything we need to define the execution of the match game. Recall the

takeTurns function introduced in Section 3.4.2 which takes two arguments, the first of which

represents a player’s turn, and the second is a function indicating when to stop looping through

the players, applying the turn functions. We have just shown the definition of both of these

functions for the match game, turn and end.

instance Game Matches where

...

runGame = takeTurns turn end >>= payoff

The result of the takeTurns function is the value produced on the last player’s turn, in this case,

the player’s index, which is passed to the payoff function indicating that the player taking the

last match lost.

With the match game now defined, and with a representation that allows easy access to the

state of state-based games, we can look towards defining strategies. First, we define two helper

functions. The first returns the moves that are available to player.

moves = do n <- matches

(Matches _ ms) <- game

return [m | m <- ms, n-m >= 0]
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This function extracts the available moves from the game representation, and filters out the

moves that would result in a negative number of matches. Second, we define a function which

returns a move randomly.

randomly = moves >>= randomlyFrom

The randomlyFrom function is part of Hagl’s strategy combinator library, and returns a random

element from a list.

Finally, a strategy for playing the match game is given below. The two-player match game

is solvable for the first player, which means that the first player to move can always win if he or

she plays correctly. The following player demonstrates one such solution.

matchy = "Matchy" ‘plays‘

do n <- matches

ms <- moves

let winning m = mod (n-1) (maximum ms + 1) == m

in maybe randomly return (find winning ms)

The winning function, defined in this strategy, takes a move and returns true if it is a move that

leads to an eventual win. The strategy plays a winning move if it can find one (which it always

will as the first player), and plays randomly otherwise. While a proof that this player always wins

when playing first is beyond the scope of this paper, we can provide support for this argument by

demonstrating it in action against another player. The following player simply plays randomly.

randy = "Randy" ‘plays‘ randomly

We now run an experiment with these two players playing the match game against each other.

The following command runs the game 1000 times consecutively, then printing the accumulated

score.

> execGame (Matches 15 [1,2,3]) [matchy,randy] (times 1000 >> printScore)

Score: Matchy: 1000.0

Randy: -1000.0

This shows that, when playing from the first position, the optimal strategy won every game.

Even from the second position Matchy is dominant, since it only takes one poor play by Randy

for Matchy to regain the upper hand.

> execGame (Matches 15 [1,2,3]) [randy,matchy] (times 1000 >> printScore)

Score: Randy: -972.0

Matchy: 972.0
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These types of simple experiments demonstrate the potential of Hagl both as a simulation

tool, and as a platform for exploring and playing with problems in experimental game theory.

By providing support for the large class of state-based games, and making it easier for users to

define their own types of games, we greatly increase its utility.

3.6 Conclusions and Future Work

Hagl provides much needed language support to experimental game theory. As we extended the

language, however, we discovered many problems related to bias in Hagl’s game representation.

In this work we fundamentally redefine the concept of a Hagl game in a way that facilitates

multiple underlying representations, eliminating this bias. In addition, we provide a combinator

library which drastically simplifies the process of defining new classes of games, enabling users of

the language to define new games and new game constructs as needed. Finally, we added explicit

support for the broad class of games defined as transitions between states, resolving one of the

primary weaknesses of earlier versions of the language.

In Section 3.4.1 we briefly introduced the idea of games which vary depending on their ex-

ecution context. This represents a subset of a larger class of games which vary depending on

their environment. Examples include games where the payoffs change based on things like the

weather or a stock market. Since we have access to the IO monad from with execution monad,

such games would be possible in Hagl. Other games, however, change depending on the players

that are playing them. Auctions are a common example where, since each player may value the

property up for auction differently, the payoff values for winning or losing the game will depend

on the players involved. While it would be possible to simply parameterize a game definition

with valuation functions corresponding to each player, it would be nice if we could capture this

variation in the representation of the players themselves, where it seems to belong. Since auctions

are an important part of game theory, finding an elegant solution to this problem represents a

potentially useful area for future work.

Another potential extension to Hagl is support for human-controlled players. This would

have many possible benefits. First, it would support more direct exploration of games; often the

best way to understand a game is to simply play it yourself. Second, it would allow Hagl to be

used as a platform for experiments on humans. Experimenters could define games which humans

would play while the experimenters collect the results. Understanding how people actually play

games is an important aspect of experimental game theory, and a significant niche which Hagl

could fill.

This project is part of a larger effort to apply language design concepts to game theory. In our

previous work we have designed a visual language for defining strategies for normal form games,

which focused on the explainability of strategies and on the traceability of game executions [10].
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In future work we hope to utilize ideas from both of these projects to make game theory accessible

to a broader audience. One of the current limitations of Hagl, common in DSELs in general, is

a presupposition of knowledge of the host language, in this case, Haskell. Our visual language

is targeted at a much broader audience, but has a correspondingly smaller scope than Hagl.

Somewhere in between there is a sweet spot. One possibility is using Hagl as a back-end for an

integrated game theory tool which incorporates our visual language as part of an interface for

defining, executing and explaining concepts in game theory.
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Chapter 4 – A Visual Language for Representing and Explaining

Strategies

Abstract: We present a visual language for strategies in game theory, which has poten-

tial applications in economics, social sciences, and in general science education. This

language facilitates explanations of strategies by visually representing the interaction

of players’ strategies with game execution. We have utilized the cognitive dimensions

framework in the design phase and recognized the need for a new cognitive dimension

of “traceability” that considers how well a language can represent the execution of a

program. We consider how traceability interacts with other cognitive dimensions and

demonstrate its use in analyzing existing languages. We conclude that the design of

a visual representation for execution traces should be an integral part of the design

of visual languages because understanding a program is often tightly coupled to its

execution.

Published as:

Martin Erwig and Eric Walkingshaw.

A Visual Language for Representing and Explaining Strategies in Game Theory.

IEEE Int. Symp. on Visual Languages and Human-Centric Computing, pages 101–108, 2008.
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4.1 Introduction

Game theory has had a broad impact on the scientific world, with applications in economics,

computer science, and many social sciences. From this breadth arises a need for representing and

explaining concepts in game theory to an equally broad audience.

But in addition to scientists and other experts that apply game theory in one way or another

as part of their job, the general public needs to be educated as well. In general, it is becoming

more and more important to educate the general public about scientific findings and to increase

scientific literacy. Broad public support for science and research, which is needed to justify the

research (and its funding), can be achieved only by establishing a basic understanding of the

scientific principles. How the lack of scientific literacy can negatively impact scientific research

and education can be observed today in the United States in sometimes bizarre discussions about

issues like the teaching of evolution or funding for stem cell research.

Why does game theory deserve public attention? In addition to offering a mathematically

grounded way to strategize in particular situations, game theory has had a huge impact providing

descriptive explanations of naturally occurring phenomena. One of the best examples is insight

into why humans and animals cooperate and how such cooperation has evolved, described in

Robert Axelrod’s seminal book The Evolution of Cooperation [1]. The book focuses on one of

the most important and well-known games in game theory: the Prisoner’s Dilemma. In addition

to cooperation, the iterated form of this simple game has been used to describe situations from

the use of performance enhancing drugs in sports [30] to the nuclear arms race of the Cold War

era [34].

Therefore, a notation that can help experts and lay people alike with describing and under-

standing games and strategies should not only be regarded as the basis for potential programming

and simulation tools, but also as a language/medium to communicate and explain scientific re-

sults to a broad audience.

Although several visual notations already exist for concisely and clearly defining different

types of games, the existing representations of strategies for iterated games are pseudo-code,

inflexible and unscalable tables, and unstructured text, which leaves open the question of a

visually appealing notation that can be used to explain game strategies and how they work.

In game theory, a game is a formal representation of a situation in which players interact and

attempt to maximize their own return. Players interact by making discrete moves and a player’s

return is quantified by a payoff value. Players are only concerned with maximizing their own

payoff. An iterated game simply has the same set of players play the same game repeatedly with

the payoffs of each iteration accumulating.

The Prisoner’s Dilemma is a game in which each player must choose to either “cooperate”

or “defect”. Defection yields the higher payoff regardless of the other player’s choice, but what
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Figure 4.1: Prisoner’s Dilemma in normal form

makes the game interesting is that if both players cooperate they will do better than if they both

defect. In 1980 Axelrod held an Iterated Prisoner’s Dilemma tournament. Game theorists from

around the world submitted strategies to the competition. The winning strategy was “Tit for

Tat”, submitted by Anatol Rapaport. Tit for Tat was much simpler than many of its opponents,

it cooperates on the first move and thereafter plays the last move played by its opponent. Thus,

if an opponent always cooperates, Tit for Tat will always cooperate, but if an opponent defects,

Tit for Tat will retaliate by defecting on the next turn. The surprising success of such a simple

strategy turned out to be a breakthrough in the study of cooperative behavior [1].

A formal definition of the Prisoner’s Dilemma is is given in Figure 4.1 in a notation known

as “normal form”. While normal form can technically be used to represent any game in game

theory [34], its use is usually restricted to games with two players, each of whom must select one

move from a finite list of moves without knowledge of the other player’s move. The payoffs for

each player are given by a pair of numbers in the cell indexed by each player’s move. In this

game, for example, if “Me” chooses to cooperate (indicated by the “C”) and “Opponent” chooses

to defect (“D”), the relevant cell contains the pair 0, 3 indicating a payoff of 0 for “Me” and a

payoff of 3 for “Opponent”.

In this paper we introduce an integrated notation for defining game strategies and game

execution traces that is based on this well-known representation. The emphasis is not just on the

visual language for describing strategies, but rather on the design of a notation that allows the

combined representation of strategies and game execution traces. The ultimate design goal is to

obtain a representation that supports explanations of how strategies work. We have utilized the

cognitive dimensions framework in the design phase of our notation. Having realized that the

motivation for the integrated notation and the explanatory component was only partially covered

by existing cognitive dimensions, we have identified a new cognitive dimension of “traceability”,

which measures the ability of a notation to represent execution and the relationship between a

program and its execution.

The remainder of this paper is structured as follows. In Section 4.2 we introduce the notation

for strategies, traces, and their composition. In Section 4.3 we describe the design process based

on cognitive dimensions. This section also shows how some crucial design decisions could not be
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supported by existing cognitive dimensions and thus provides the motivation for the new cognitive

dimension of traceability that is defined and illustrated with further examples in Section 4.4. We

discuss related work in Section 4.5 and present some conclusions in Section 4.6.

4.2 A Notation for Game Theory

The notation we have designed is composed of three distinct but related components. The first

is the notation for defining strategies, defined in Section 4.2.1; the second is the representation of

game traces, defined in Section 4.2.2; and the third is a view which demonstrates how any given

game instance within a game trace occurred, given the players’ strategies and the game trace,

defined in Section 4.2.3.

4.2.1 Strategy Notation

Our notation is based on the well-known normal-form game representation that we have briefly

shown in the previous section. This representation views a game as a matrix indexed by moves

that contains the payoff result for each possible combination of moves in its cells. More formally,

if the set Mi represents the set of moves available to player i, the domain of an n-player game

is given by D = M1 × . . .×Mn, and a game is a mapping G : D → Rn so that the number rj in

the tuple (r1, . . . , rn) = G(m1, . . . ,mn) represents the payoff for player j in the game that results

when player i plays move mi. Since we consider only 2-player games, our domain will always be

D = M1 ×M2, and games are given by mappings G : D → R2.

A strategy is defined by a list of rules (given below the dotted line) and a possibly empty

horizontal list of initial move patterns (given above the dotted line). A rule L→ R is given by a

matching pattern (L) and a move pattern (R). Figure 4.2 demonstrates our visual notation for

strategies with a definition of Tit for Tat.

A move pattern is a special case of a simple pattern, which is obtained from the normal-form

matrix notation by marking a subset of cells in the matrix. Formally, a simple pattern can be

represented by a binary partition of the matrix domain D into marked and unmarked cells, and

this partition is uniquely determined by the set of marked cells. A move pattern for player 1 is a

simple pattern such that the marked set equals {m} ×M2 where m ∈ M1. So, for example, the

initial move of Tit for Tat is defined by C × {C,D} = {(C,C), (C,D)}.
If present, a list of k initial move patterns defines the first k moves of the player that uses

this strategy. In the case of Tit for Tat, the first move is always C. Note that the moves (and

patterns) in the strategy are defined from the perspective of the player “Me”. A strategy for the

player “Opponent” can be obtained from a “Me” strategy (and vice versa) by flipping rows and

column markings in all matching and move patterns, as defined by the function flip.
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Figure 4.2: Definition of Tit for Tat

flip({m} ×M) = M × {m}
flip(M × {m}) = {m} ×M

flip(L→ R) = flip(L)→ flip(R)

A game play is given by a pair of moves, one for each player. That is, p ∈ D = M1 ×M2, and a

game trace is defined as a sequence of game plays, p1 . . . pn.

The meaning of a set of rules is defined relative to an existing game trace, and the meaning

of a single rule is given by the move pattern on the right. The first rule whose matching pattern

matches the current game trace is selected, and its move pattern defines the next move.

Matching patterns, as found on the left side of rules, take one of the following five forms

where Pi is the set of cells representing a simple pattern. The conditions under which each

pattern matches a game trace p1 . . . pn are shown on the right.

Recent •••Pn−k . . . Pn if ∀i ∈ {n− k, . . . , n}, pi ∈ Pi

Initial P1 . . . Pk
••• if ∀i ∈ {1, . . . , k}, pi ∈ Pi

Always P •••P if ∀i ∈ {1, . . . , n}, pi ∈ P

Sometimes •••P ••• if ∃i ∈ {1, . . . , n}, pi ∈ P

Default (nothing) always matches

Both rules in the definition of Tit for Tat utilize the recent matching pattern—they both consider

only the most recent entry in the trace. The definition of Grim Trigger given in Figure 4.3 is an

example of a strategy that utilizes both the sometimes pattern and the default form.
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Figure 4.3: Definition of Grim Trigger
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Figure 4.4: Example mixed strategy

Grim Trigger is like Tit for Tat in that it will continue to cooperate as long as the opponent

cooperates, but unlike Tit for Tat, Grim Trigger never forgives. Once an opponent defects,

Grim Trigger will defect forever thereafter. Colloquially, the visual definition would read “if the

opponent has defected any time in the past, then defect; otherwise, cooperate”. Also note that

the inclusion of a default matching pattern obviates the need for initial moves.

Strategies also often make use of “mixed strategies”, which are strategies in which a move

is selected randomly based on some probability distribution. Thus a mixed pattern can be used

in place of a move pattern anywhere a move pattern would otherwise appear. A mixed pattern

is represented by multiple selected moves, where the shading of each selection is altered to

correspond to its likelihood of selection. Annotations describe the distribution more exactly.

The example in Figure 4.4 shows a mixed pattern that will cooperate with 80% probability and

defect with 20% probability.

Two more strategies to be used in the following discussion are Tit for Two Tats, which is

shown in Figure 4.5 and defects only after two consecutive defects of the opponent, and Opponent

Alternator, shown in Figure 4.6.

The yellow color used in the matching pattern of the Opponent Alternator not only helps to

distinguish an “Opponent” from a “Me” strategy, it also supports the integrated display of rules
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Figure 4.5: Tit for Two Tats strategy
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Figure 4.6: Opponent Alternator strategy

and traces as shown in Section 4.2.3. Note that since the Opponent Alternator wants to do the

opposite of its own last move, it is the column that must be colored.

4.2.2 Representing Traces

As defined earlier, a game play is given by a pair of moves. Visually, a game play is represented

by the intersection of two move patterns, as shown on the right. The resulting game outcome is

not only indicated by the intersecting frames of the move patterns, but also by the darker cell

shading that result from the overlay of the pattern coloring. In the example in Figure 4.7, both

players chose to cooperate, resulting in a payoff of 2 for each player.

For representing game traces, we introduce a more abstracted view of a game play. The

normal form representation of the game is stripped of headers and labels and represented as a
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Figure 4.8: Example game trace

simple grid of potential outcomes. The outcome that was achieved in a particular game play is

indicated by filling in the corresponding box in the grid.

Figure 4.8 shows a trace of iterated Prisoner’s Dilemma played Tit for Two Tats against

Opponent Alternator. Here we can clearly see the pattern of outcomes that results when these

two strategies face each other.

A second view of a game trace utilizes colors on a green-red gradient for outcome shading to

represent the quality of the payoff from the perspective of either one of the players or for both

players combined. The shading color is scaled linearly based on the rank of the outcome so that

the best possible outcome from the given perspective will be bright green, the worst possible

bright red and intermediate outcomes will be hues of yellow-green, yellow, and orange.

Figure 4.9 shows the same trace as above, first from the perspective of “Me”, playing the

Tit for Two Tats strategy and then from the perspective of “Opponent” playing the Alternator

strategy. At a glance, it is clear that Alternator is winning.

A trace representation can be useful for analyzing the output of two strategies, but for un-

derstanding how a trace was generated, we also provide a notation for explaining how a pair of

strategies produce a given game play.

Figure 4.9: Traces showing individual payoffs
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Figure 4.10: Game play explanation

4.2.3 Relating Strategies to Traces

By selecting a specific game play from a high-level view of a trace, we can zoom in to a detailed

visual explanation as shown in Figure 4.10, which shows an explanation of the fourth game play

in a trace of Grim Trigger vs. Opponent Alternator. The selected game play is enclosed in a red

box with earlier game plays in the trace shown on the same row to the left. The matching rule

from the Me strategy is shown above the game trace, and the matching rule from the Opponent

strategy is shown below the game trace. Game patterns from the matching rules are shown

centered above the matched game plays, and their patterns are mapped onto the trace. The

different colors highlight the different places in the trace where the patterns matched.1

In this way a user can see exactly how a specific outcome occurred given the trace that

preceded it. For any previous game play that is relevant to the selection, a matching pattern will

appear, and the outcome of that play will fall within the pattern.

A further expanded view (omitted here for lack of space) can be given in which the strategies

are given in full, with matching strategies indicated by an asterisk, to allow the user to view the

entire strategies of each player in conjunction with the trace.

Also, due to space limitations, we had to focus in this paper on only one game, the Prisoner’s

Dilemma. Other games can be dealt with similarly. For example, the well-known game of Rock-

Paper-Scissors can be inspected at: http://eecs.oregonstate.edu/~erwig/rps.pdf.

1When a Me and an Opponent pattern match and overlap in one game play, the overlapping cells are colored
in green.
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4.3 Discussion of Language Design

Throughout the design process we utilized the cognitive dimensions framework supplemented

with our new cognitive dimension of traceability (discussed in depth in Section 4.4). In this

section we discuss some of the decisions that were made using these intellectual tools.

Individual cognitive dimensions often conflict with each other. To use them effectively requires

identifying the dimensions that are most relevant considering the goals of the language, then

weighting these more heavily when making decisions involving tradeoffs. Since we believe that

traceability greatly impacts understandability, and facilitating strategy explanations was one of

our primary goals, traceability emerged as our most heavily weighted dimension.

A central element of both strategy notation and game traces is the normal-form game rep-

resentation. By basing our language on this ubiquitous and concise notation, we attain a high

closeness of mapping with the target domain. Our decision to utilize this notation was made very

early on, and many subsequent decisions were centered on conveying various meanings within

this framework.

That a game play should be represented by marking the corresponding outcome in a game

instance, and that a game trace should be composed of a sequence of such game plays seemed

intuitive, and is justified by a high level of role-expressiveness for these aspects of the language.

How to represent player moves and matching patterns was less obvious. Since traceability was of

such high importance, we knew that we wanted these aspects of our language to integrate well

with game traces.

4.3.1 Design of Move Patterns

Our initial design for player moves is shown in Figure 4.11–a vertical rectangle with a horizontal

slider dividing it into two areas. The primary strength of this design is that it concisely represents

mixed strategies. Patterns with pure right hand sides would simply have the slider dragged all

the way to one side or the other, representing a 100% probability of choosing the given strategy.

This syntax could be extended to games with more than two moves by adding more parallel

sliders, partitioning the rectangle into the desired number of areas.



62

We struggled to integrate this notation with program traces, however. We decided that move

patterns, like matching patterns, should be represented on a normal form representation of the

game itself. This would increase closeness of mapping and consistency, and we hoped it would

lead to better traceability.

Our final design, as described in Section 4.2.1 portrays a move by outlining the corresponding

row or column on a normal form game representation. In the definition, we describe a move

pattern as a special case of a simple pattern where the marked cells are all in one row or column

(depending on the player). We extend the outline to include the corresponding row or column

label to make this otherwise hidden dependency more explicit.

When move patterns from each player are combined, we get a game play, and the outcome

is defined by the intersection of the two moves. Marking the relevant cells by outlining them

(rather than coloring) enables game plays, in turn, to be combined with pattern matches, which

are indicated by color. Making sure all of these elements combined well together was critical to

attaining a high level of traceability.

We found, however, that just using outlines to indicate moves made the outcomes difficult

to detect at a glance, indicating poor perceptual mapping. To counter this impression, we

added a light shading to move outlines such that when they are overlaid they produce a darker

shading (which we actually exaggerate) to clearly indicate the outcome of the game. Although

the shading causes some conflict with pattern matching, the use of a gray shading vs. colorful

patterns mitigates this issue, and we considered the tradeoff to be worth the change.

Fortunately, this change also facilitated a solution to the problem of representing mixed

strategies, which we had set aside. As described above, mixed strategies are represented by

adding additional outlines and adjusting the amount of each that is shaded. When a mixed

move pattern is resolved into an actual move (that is, a move is selected from the distribution),

the mixed pattern is replaced with a regular move pattern in the trace. This decision violates

consistency, which is unfortunate, but not doing so would make game traces much more confusing

and cause a huge sacrifice in traceability, which made us accept this deficiency. We also considered

using different degrees of shading to represent mixed strategies, but it turned out that differences

in shading were too subtle. Moreover, with shading the aspect of choice between moves is largely

lost.

Finally, we decided to gray out the game representation that move patterns are defined on.

The game beneath a move pattern represents a game that is only a future possibility which

has not happened yet and is fundamentally different from realized games in a game trace or in

matching patterns (which correspond directly to games in the trace). This decision was also made

for consistency reasons—the notation reflects the fact that future games and realized games are

semantically different objects.
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4.3.2 Design of Game Traces

Game traces can be viewed at two abstraction levels. The first is at the level that strategies are

defined. Here we can view an explanation of the trace relative to the strategies that produced

it as described in Section 4.2.3. Many of the design decisions that were involved in making

this level of abstraction work are described in the previous section, but a few others warrant

mentioning. First, aligning the matching pattern of the applicable rule with the corresponding

game plays in the trace was an easy decision made to maximize role-expressiveness and minimize

hidden dependencies. Second, we had to consider a tradeoff between low diffuseness and hidden

dependencies in determining whether or not to only show the matching rule of each strategy, or

to show the strategy in its entirety with the matching rule indicated separately. Ultimately, we

decided that each had a role in the language and decided on the dual explanation and expanded

explanation views.

The second trace abstraction level is the high-level view described in Section 4.2.2. Our

goal here was to simplify the notation as much as possible to allow users to focus solely on the

game trace. We believe that the simplified game representations used in this view maximize

traceability, terseness, and visibility while maintaining reasonable levels of consistency and role

expressiveness.

By examining the game trace with minimal distractions, our hope is that users can clearly

see how strategies interact with each other by the pattern (or lack thereof) represented in their

game trace. The high-level view also includes a way to visualize the success of a strategy or

combination of strategies by color-coding the outcome based on the quality of the payoff. We

believe that this representation provides excellent perceptual mapping as it makes the relative

success indicated by a trace recognizable at a glance.

4.4 Traceability as a Cognitive Dimension

Traceability measures a notation’s ability to represent and to relate to its semantics. A more

general name for this aspect would be something like “semantic accountability”, but since in

many cases the semantics is represented by a trace, we have chosen the more concrete name.

The rationale for investigating the traceability of a notation is to get a sense of the overall

understandability of the notation and, in particular, of how much program understanding can be

supported by the trace notation.

The investigation of traceability requires a definition of the trace notation, which depends

on the program notation. This also means that traceability can be investigated only for those

notations for which the notion of a trace makes sense, which will be most program notations.

In our domain of iterated games in game theory, a trace is given by a sequence of individual
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game instances. When considering imperative languages, a trace may be a series of memory

fragments. A trace for lambda calculus is given by a sequence of lambda expressions. In each

case the sequence of elements in a trace is not arbitrary, but rather the result of an effect caused by

part of the program (a pair of rules, a statement from the imperative program, or an application

of a lambda abstraction to an expression).

Traceability involves two distinct, but closely related aspects. First, it expresses how well

traces can explain the meaning of a program. Second, it reflects how integrated the notations

for traces and programs are, and in particular, how well a specific program part can be related

to the part(s) of the trace it is affecting.

In this context, we should also mention the distinction between “static” and “dynamic”

traces. A static trace represents the time component explicitly, that is, spatially. For example,

our notation features static traces, representing the passage of time by moving left to right along

the horizontal axis. On the other hand, typical debuggers for imperative languages produce a

dynamic trace, where the passage of time is represented by replacing one state with another.

It seems that static traces are prefereable in principle since they reduce the need for mem-

orizing trace elements and can thus reduce the cognitive load on the viewer whereas complex

dynamic traces often prompt users to rerun the program because old state can be “forgotten”.

On the other hand, when the trace notation becomes too complex or too large, a dynamic trace

might be required as a modularization device to make the communication of the huge amount of

information possible at all.

4.4.1 Interaction with Existing Cognitive Dimensions

The existing cognitive dimension of closeness of mapping measures how well a program relates

to its abstract semantic domain. In contrast, traceability measures how well a program relates

to a concrete representation of its semantic effects. Therefore, traceability is similar in nature to

closeness of mapping, but uses a trace as a different, more concrete target. Traceability may be

considered something of a second-order cognitive dimension since it reflects closeness of mapping

between program and execution notation rather than program notation and abstract domain.

The ultimate goal of traceability is to make programs easier to understand. We believe that

by visually relating a program to its effects, relationships between a program and its output can

be made clearer and easier to understand by people. Other cognitive dimensions have this same

motivation. One is visibility, which considers how easily elements of a program’s representation

can be viewed. Traceability considers how easily a program’s relationship to its execution can

be viewed. In some sense, traceability is an extension of visibility from static representation to

a program’s execution.

Traceability is also related to the existing cognitive dimension of progressive evaluation. Pro-
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gressive evaluation considers whether or not a program can be executed before it is completely

written. The intention is to help a user check their program’s correctness as they are writing it.

Although traceability is primarily concerned with viewing the execution of completed programs,

by increasing the visibility of program execution, it may also help increase a user’s confidence in

program correctness.

In designing our notation for strategies we recognized a tradeoff between traceability and

abstraction. We considered adding an abstraction mechanism to our language that would have

allowed other strategies, referenced by name, on the right-hand side of a strategy definition.

Besides the usual well-known benefits of abstraction, this change would have also made our

language fundamentally more expressive, allowing us to create strategies with more complex

matching patterns (for example, multiple existential patterns).

This abstraction mechanism, however, made it much more difficult to illustrate how strate-

gies interact with a game trace. In other words, it negatively affected traceability. Since high

traceability was one of our primary design goals, we decided not to adopt this language feature

despite its benefits elsewhere.

4.4.2 Independence of Trace Role and Integration

Traceability as a measure for program understandability depends on how much the trace plays

a part in understanding the program and how well the trace can be related to the program. By

examining traceability for several existing languages we would like to demonstrate that these two

aspect are orthogonal.

In some languages, such as Logo [19] or Alice [6], the trace is the program output, that is, it

does not need motivation or additional definitions and thus is an integral part of understanding

programs. On the other hand, in traditional imperative languages or lambda calculus [2] a trace

is only employed to show intermediate results, which means that looking at a trace requires a

mode of executing a program that is different from running the program just for its result and

that is typically employed only if the result asks for an explanation.

The prominent role of traces in Logo or Alice does not imply a tight integration of traces and

program notation, which is obvious since in both cases the program notation is textual, but the

traces are pictures or animations. Explicit mechanisms to annotate the program notation and

synchronize it with the visual program output are required to enable tracing. In this respect,

the situation for Logo and Alice is very similar to that of debugging interfaces of traditional

imperative languages.

On the other hand, traces explaining the evaluation of lambda calculus expressions are highly

integrated with the program notation since each part of the trace is a (partially evaluated)

program (that is, a lambda expression). All that is needed as additional notation is typically the
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underlining of the subexpression being reduced in the next step.

4.4.3 Traceability as a Notation Design Tool

To elevate the notion of traceability to a cognitive dimension we should give advice as to what

kind of changes in notation could increase traceability [3]. Such guidelines are important if we

want to have traceability not only as an evaluative tool, but also as a design tool.

One strategy to improve traceability is to share notation between traces and programs to

support the identification of program parts with relevant parts of the trace. Also, aiming for

modular program notation allows the isolation of program parts to facilitate the combination

with traces.

Moreover, based on the observations in Section 4.4.2, we believe that observing and making

explicit the two aspects of role and integration for a particular language, helps to find ways

to improve the language. For example, to increase traceability of Alice we could try to define a

notation that lets program (parts) be associated with the animated objects, which would increase

the integration aspect tremendously.

4.5 Related Work

Our notation builds on the normal-form representation of games—a matrix of payoffs indexed

by each players’ move. While very common, it is not the only well-used game representation.

Games in extensive form are represented as trees. Decisions and variables are represented as

non-leaf nodes and payoffs as leaves. Moves are represented as edges from a decision node to

its children. This representation can more easily represent games in which a single player must

make more than one decision, games involving random variables, and games with more than two

players. This increased flexibility, however, comes at the expense of terseness.

Multi-agent influence diagrams are high-level graphs showing the relationships between vari-

ables and the decisions made by agents in a game [22]. This representation excels at showing

relevance in real-world games with many external variables, but usually omits the move and

payoff information required to define a game precisely.

Some aspects of our design could be extended to these other representations. Matching

patterns of previous payoffs, for example, could work with extensive form games by simply

replacing matrices with trees and marking the outcomes by highlighting the corresponding leaves.

Move patterns could be represented by highlighting edges from decision nodes; these could be

combined to form a game play, represented by a complete path from the root to a leaf node.

There are many obstacles that would have to be addressed for such an approach, however.

Inheriting from the normal-form representation, our notation assumes imperfect information,
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which means that a player makes his move without knowledge of the other player’s move for this

game. Extensive form games often lack this assumption, however. Extensive form games also

easily accommodate situations in which a player must make more than one decision in a single

game, which is not something our current design considers.

Representing strategies is a surprisingly unexplored field. Strategies are typically defined

textually or with psuedo-code. One attempt at providing a more user-friendly means to specify

strategies for the Iterated Prisoner’s Dilemma competition provided tables enumerating every

possible combination of moves for the past one to three rounds of play, allowing the user to

specify an action for every case [21]. Besides not scaling past a few games of recent history, there

are a many common strategies that are simply not expressible in this notation.

The cognitive dimensions framework provides a terminology relating programming language

design to cognitive issues in programming [16]. The framework has been built upon and extended

many times, for example, [8, 32, 37]. Actively encouraging extensions, Alan Blackwell outlines

some guidelines for proposing new dimensions in [3]. We have tried to take these guidelines into

account in our definition of traceability in Section 4.4.

Our visual notation for strategies employs the idea of visual rewrite rules that is part of many

visual languages. Two well-known examples are AgentSheets [29] and StageCast creator [31].

In the AgentSheets approach, for instance, a program is given by a set of visual rewrite rules

that map one graphic state, represented as a 2D tile, to the next. When a program is run, these

rules are applied repeatedly producing an animation. These animations can be considered a form

of dynamic trace which helps to visualize and understand the effects of the rules. AgentSheets

lacks a mechanism, present in our language, to explicitly relate an element of the current state

to the corresponding rules that generated that state, which would be difficult since the state

manipulated is more complex than that of game instances. Moreover, AgentSheet rules can refer

only to the previous state, which means that actions described by rules cannot be predicated

on the history of the state, and existential or forall quantifications cannot be expressed. Since

AgentSheets offers many more general-purpose programming elements than our game theory

notation, it is not surprising that it is more difficult to achieve the same degree of traceability,

an observation that reflects the tradeoff between traceability and abstraction.

Software visualization considers the representation of programs and their execution to facil-

itate reasoning and understanding throughout the software development cycle [33]. Our new

cognitive dimension of traceability extends these considerations to the language design phase.

Petre and de Quincey state, in an overview of the field of software visualization, “Currently, it

is still arguable that what is visualized is what can be visualized, not necessarily what needs to

be visualized” [27]. By addressing traceability in the language design phase, languages can make

their programs more amenable to visualization, which will make it easier to increase visualization

coverage to those areas that most need it.



68

4.6 Conclusions and Future Work

This work is part of our effort to develop a new paradigm of explanation-oriented languages,

which are languages whose objective is not only to describe the computation of values, but also

to create explanations of how and why those values are obtained. By directing the language

designer’s attention to the notation of traces and the integration with the program notation the

cognitive dimension of traceability advocates the design of notations with explanatory value.

As we have demonstrated, the presented notation for game strategies and traces exhibits a

high degree of traceability and can thus serve as an explanatory tool for game theory for a broad

audience.

For future work we intend to apply design explanatory notations in other domains of public

interest (for example, to explain simple probabilistic reasoning) using the traceability criterion as

a design guideline. Moreover, we plan to consider the redesign of existing languages to improve

their traceability.
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Chapter 5 – Conclusion

Since the publication of the papers included in this thesis, both the Hagl language and our ideas

about the explanation-oriented programming paradigm have continued to evolve. This section

will briefly describe some of this more recent work.

The current representation of games in Hagl strikes a balance between the representations

presented in Chapters 2 and 3, and in many ways offers the best of both worlds. Games are

again transformed into a single internal tree representation, offering the generic transformation

and traversal advantages of a simple data type representation. However, this transformation is

delayed and encapsulated in a type class rather than applied immediately in a smart constructor.

This allows essentially all of the benefits described in Chapter 3. Internally, games are trees,

while outwardly they may have a more restricted structure that supports representation-specific

analyses and strategies.

Another significant change is that games in Hagl are no longer inherently sequentially iterative.

Instead, games are defined more simply in terms of a single execution. Everything associated

with iterated games has been modularized and a single-execution game can be made iterative by

applying the type constructor Iterated g. For example, if the type PD represents the prisoner’s

dilemma, Iterated PD represents its iterated form. Besides being conceptually appealing, this

opens up the possibility to explore new ways of organizing game plays within experiments. For

example, instead of a simple linear sequence, we can imagine generating a probabilistic tree of

game plays according to the potential outcomes of Chance events in the game.

Our work on EOP has continued into new domains concerned with explaining different types

of formal reasoning. For example, in [11] and [12] we have developed a Haskell DSEL and a visual

language for explaining probabilistic reasoning problems. The main idea explored in this work

is the use of a story-telling metaphor as a basis for explanation. In this view, a story represents

a sequence of states, where the initial state is some trivial or known state, and the final state is

the explanandum—the thing that is to be explained. The goal of the story is to bring the reader

from the initial state to the explanandum using a sequence of simple and well-understood events

that transform the state. For this particular domain, the state at each point in the story is a

probability distribution, while the events are a small set of distribution-transforming functions.

Although we identified it only later, the story-telling metaphor is also weakly reflected in the

visual strategy explanation language shown in Chapter 4. For example, Figure 4.10 presents an

explanation of a single game play. This explanation has a clearly defined explanandum, circled in

red, and presents a sequential list of the preceding game plays that contributed to its occurrence.



70

The correspondence is not exact since significant contributors to the explanandum, the matching

rules of each strategy, are indicated spatially rather than as steps in the story. However, a feature

of the visual language not presented in Chapter 4 is that it can also be used to produce simple

animations of the development of a game trace. In this case, the story-telling metaphor is more

fully realized, embedded in time rather than space.
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