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Abstract
Conditional compilation and software product line technologies
make it possible to generate a huge number of different programs
from a single software project. Typing each of these programs in-
dividually is usually impossible due to the sheer number of possi-
ble variants. Our previous work has addressed this problem with
a type system for variational lambda calculus (VLC), an extension
of lambda calculus with basic constructs for introducing and or-
ganizing variation. Although our type inference algorithm is more
efficient than the brute-force strategy of inferring the types of each
variant individually, it is less robust since type inference will fail for
the entire variational expression if any one variant contains a type
error. In this work, we extend our type system to operate on VLC
expressions containing type errors. This extension directly supports
locating ill-typed variants and the incremental development of vari-
ational programs. It also has many subtle implications for the unifi-
cation of variational types. We show that our extended type system
possesses a principal typing property and that the underlying unifi-
cation problem is unitary. Our unification algorithm computes par-
tial unifiers that lead to result types that (1) contain errors in as few
variants as possible and (2) are most general. Finally, we perform
an empirical evaluation to determine the overhead of this extension
compared to our previous work, to demonstrate the improvements
over the brute-force approach, and to explore the effects of various
error distributions on the inference process.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications – applicative (functional) lan-
guages; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs – type structure

Keywords error-tolerant type systems; variational lambda calcu-
lus; variational type inference; variational types

1. Introduction
The source code of many software projects can be used to generate
a huge number of distinct programs that run on different platforms
and provide different sets of features. Current research on software
product lines (SPLs) [20] and feature-oriented software develop-
ment [2] provide processes and tools for the development of mas-
sively configurable software, suggesting that the variability of soft-
ware systems will only continue to grow. Unfortunately, basic pro-
gram verification tools, such as type systems, are not equipped to
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deal with variation on this scale. Notions of type correctness are de-
fined in terms of single programs only, but generating all program
variants and testing each one individually is usually impossible due
to the sheer number of variants that can be generated.

The problem of type checking variational software is an active
area of research [11, 12, 25]. Most of this work comes out of the
SPL community and is therefore highly pragmatic, tool-oriented,
and focused on imperative languages. Our work on this problem,
begun in [5], distinguishes itself in several ways. Most significantly,
while other approaches consider only type checking of programs
in explicitly typed languages, we solve the more general problem
of type inference for implicitly typed languages. Our approach be-
gins by establishing a simple functional language, the variational
lambda calculus (VLC), for studying variational software; it intro-
duces a notion of variational types for typing variational programs;
it develops a formal type system that associates variational types
with VLC expressions; and it presents an algorithm that infers these
types. By addressing the problem from a more theoretical and fun-
damental perspective, we believe our results are more reusable and
extensible than others. Variational types are also a general contri-
bution to type theory that have other potential applications; for ex-
ample, they may be useful for more flexibly typing metaprograms.

A subtle difference between the problems of checking explicitly
typed programs and inferring types in implicitly typed programs is
that, in general, a type error encountered during inference prevents
inference in the rest of the program. This means that while our
solution is more general, it is less robust. A type error in a single
variant will cause the entire inference process to fail. In this work
we extend our type system and inference algorithm to allow for
type errors at arbitrary positions in the inferred variational type.
This extension directly supports the location of ill-typed variants,
and the ability to incrementally develop variational programs by
leaving some variational branches undefined or incomplete while
other variants are extended and fleshed out. While the focus in [5]
is on establishing a broad foundation for formal work on typing
and other static analyses of variational programs, here we focus
on solving a specific problem of practical importance. Solving this
problem is surprisingly challenging and leads to many interesting
theoretical results, summarized in Section 1.2.

1.1 Motivation
In this section we will briefly motivate this work by way of a simple
example. We also motivate and explain our choice of VLC as a
formal foundation for typing variational programs.

In general, there are three competing approaches to managing
variational software, each with their own strengths and weaknesses.
Compositional approaches rely on language features like mixins [4]
or aspects [16] to modularize features that may or may not be in-
cluded in a generated variant. This approach is mostly used in con-
junction with object-oriented programming languages. Metapro-
gramming-based approaches rely on staged computations to gen-
erate program variants through the use of macros; this is especially
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common in functional languages, for example, MetaML [24] and
the Lisp family. Finally, annotative approaches rely on a separate
annotation language to embed static variation directly within the
source code. The C Preprocessor (CPP) is by far the most widely
used annotative variation tool. One of the advantages of the annota-
tive approach is that it is mostly independent of the object language
and so can be applied across paradigms (and even in documentation
and other non-source code). CPP annotations are frequently seen in
large-scale Haskell programs, for example, GHC [9].

Although all three approaches are worthy of study, we choose
the annotative approach here because it makes the variation in
a program explicit, allowing us to directly traverse and manipu-
late the variation structure. This is not the case, for example, in
metaprogramming approaches, where variability is captured only
implicitly in the definition and use of macros. While our annotation
language is much less powerful than metaprogramming systems, it
allows us to support a much more general form of type-safe varia-
tion than is possible in, for example, MetaML.

Consider two different ways to implement a function in Haskell
to find values in a lookup list of type [(a,b)]. In the first, we return
a value of type Maybe b, possibly containing the first value in the
lookup list associated with a given key of type a.

find x ((k,v):t) | x == k = Just v
| otherwise = find x t

find _ [] = Nothing

In the second, we return a list of type [b], containing all of the
values in the lookup list associated with the key.

find x ((k,v):t) | x == k = v : find x t
| otherwise = find x t

find _ [] = []

Based on a notation developed in [8], we can represent the varia-
tion between these two function implementations by annotating the
program in-place. First, we declare a new dimension of variation,
Res, representing variation in the function’s result. Then we indi-
cate the specific variation points in the code using choices that are
bound to the Res dimension.

dim Res〈fst,all〉 in
find x ((k,v):t) | x == k = Res〈Just v,v:find x t〉

| otherwise = find x t
find _ [] = Res〈Nothing,[]〉

The Res dimension declaration above states that we can select one
of two tags in the dimension: fst, to return the first found value,
or all, to return all found values. The two choices in the body of
the function are synchronized with these tags. For example, if we
select the fst tag in the Res dimension (written Res.fst), the first
alternative in each of the two choices in the Res dimension will
also be selected, producing the first function definition above.

The types inferred in a variational program are also variational.
For our find function, we infer the following variational type
which also contains a choice in the Res dimension.1

find :: a -> [(a,b)] -> Res〈Maybe b,[b]〉

Using the variational type inference algorithm we have developed
in [5] we can infer types like the above. A successfully inferred
variational type indicates that all variants of the program are type
correct. Since the typing information of shared code is reused (and
for other reasons), a type-correctness result can be obtained much
more efficiently in the expected case than the brute-force strategy
of generating all variants and type checking them separately. For

1 To keep the following discussion simpler, we omit the Eq type class
constraint on a.

large variational programs with many dimensions of variation, the
efficiency gains can make type checking all variants tractable, when
otherwise it would not be.

However, variational type inference has a hidden cost relative to
the brute-force strategy. While variational type inference is more
efficient at detecting errors, it is less useful for locating errors.
To demonstrate, suppose we add a new dimension of variation to
our find function, Arg, that captures variation between looking up
values based on an example key (as above) or looking up values
based on a predicate on keys. We name the tags corresponding to
these possibilities val and pred, respectively.

dim Arg〈val,pred〉 in
dim Res〈fst,all〉 in
find Arg〈x,p〉 ((k,v):t)

| Arg〈x == k,p k〉 = Res〈Just v,v:find x t〉
| otherwise = find Arg〈x,p〉 t

find _ [] = Res〈Nothing,[]〉

Since we can make our selections in the Res and Arg dimensions
independently, this new expression represents four total program
variants. We expect variational type inference to infer the following
variational type for our new implementation of find.

find :: Arg〈a,(a -> Bool)〉 -> [(a,b)] -> Res〈Maybe b,[b]〉

But there is an error in the above definition that causes variational
type inference to fail. The error is that the variable x is unbound in
find x t if we select Arg.pred and Res.all.

This can be easily fixed by replacing x with the choice Arg〈x,p〉.
The problem is that the type inference algorithm presented in [5]
provides no hint at the location of this error—it just fails, indicating
that there is an error. The brute-force strategy is more robust. By
type checking each variant individually, we can determine exactly
which variant(s) contain type errors and infer types for those that
are type correct. Of course, the brute-force strategy scales just as
poorly for error location as it does for type checking (although it
might be able to be used strategically, if one can correctly guess the
variants that contain errors).

In this paper we extend variational type inference to return par-
tially correct variational types—that is, variational types contain-
ing errors. For example, the errorful variational type of our find

function can be written as follows, where ⊥ is a special type that
indicates a type error at that location in the type.

find :: Arg〈a,(a -> Bool)〉 -> [(a,b)]
-> Res〈Maybe b,Arg〈[b],⊥〉〉

This type indicates that there is a type error in the result type of the
function if the second tag is chosen from each dimension (Arg.pred
and Res.all). This extension therefore directly supports the location
of type errors in variational programs without resorting to the brute-
force strategy of typing variants individually. Similarly, it supports
type inference on incomplete variational programs—programs in
which only some variants are in a complete and type-correct state—
a quality which is needed for incremental development.

The addition of error types is a non-trivial extension to the type
system and inference algorithm presented in [5]. In particular, there
are many subtle implications for the unification of variational types.
In the case of an unbound variable, as above, the location of the
error is obvious. However, often there are many possible candidates
for the type error, depending on how we infer the surrounding
types. The goal is to assign errors such that as few variants as
possible are considered ill-typed, that is, to find a type that is most-
defined. This goal is in addition to the usual goal of inferring the
most general type possible. It is not obvious whether these two
qualities of types are orthogonal. In this paper we will show that
they are, and we present an inference algorithm that identifies most-
defined, most-general types.
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1.2 Contributions and Rest of Paper
In the next section we briefly introduce the syntax and semantics
of VLC, developed in [5], which is the formal foundation of this
work. The structure of the rest of the paper is described relative to
the major contributions of this work, which are:

1. The extension of our variational type system to support the
typing of programs in which not all variants are well typed. The
extension of the types themselves is discussed in Section 3, and the
extension of the typing rules in Section 5. A type preservation theo-
rem (Theorem 1) in Section 5 formally establishes the relationship
between a variational type identified by our type system and the set
of types or type errors produced by the brute-force force approach.

2. The concept of typing patterns, defined in Section 4, that in-
dicate which variants of a variational program are well-typed, and
an associated more-defined relation for comparing them. We use
these in Section 6 to prove several results about the problem of uni-
fying variational types containing type errors. Most significantly,
we show that for any unification problem, there is a mapping that
produces the most-defined result type (Theorem 2), and that among
such mappings, there is a unique mapping that produces the most-
general result type (Theorem 3).

3. A unification algorithm on variational types with type er-
rors, given in Section 7, that produces unifiers that result in most-
defined, most-general types. This is the core component of a type
inference algorithm that implements the type system presented in
this paper, given in Section 8. We show that both algorithms are
sound (Theorems 4 and 6) and complete (Theorem 5 and 7).

4. A theoretical and experimental evaluation of these algo-
rithms. In Section 7, we show that unification of variational types
with errors does not increase the complexity of unifying variational
types. In Section 9, we conduct experiments that demonstrate that
the overhead to support error-tolerant type inference is minor and
that our algorithm offers significant performance improvements
over the brute-force approach. The evaluation results also reveal an
interesting relationship between the distribution of type errors in an
expression and the time it takes to infer a type for that expression.

Finally, in Section 10 we discuss related work and offer conclu-
sions and directions for future work in Section 11.

The following table provides a short overview of the notation
used throughout the paper. It is meant as an aid to find definitions
faster (§ indicates the section(s) containing the definition).

Syntactic Categories § Operations §
Expressions (e) 2.1 Selection becD.t , bTcD.i 2.2, 3
Types (T ) 3 Semantics [[·]] 2.2
Typing patterns (P) 4 Masking PCT 4
Environments (Γ, ∆) 5 Pattern union P1⊕P2 4
Mappings (θ) 6.2 Type matching T1 ./ T2 4
Partial unifiers (η) 6.2 Arrow lifting ↑(T ) 5
Qual. type vars (aAB̃) 7.1 Decision to selectors ϕe(q) 5
Relationships § Results §
Equivalence T1 ≡ T2 3 Type preservation 5
Definedness P1 t P2 4 Principal patterns 6.2
More general θ1 v θ2 6.1 unify sound & complete 7.2

infer sound & complete 8

2. Variational Lambda Calculus
While the example from the previous section was presented in
Haskell, here and in our previous work on typing variational func-
tional programs we consider a simpler language, the variational
lambda calculus (VLC). VLC is a conservative extension of lambda
calculus with constructs for introducing and organizing static vari-
ation. Constraining the problem to VLC allows us to focus on the
fundamental problem of typing variational programs and to present
our solution as clearly and simply as possible. In [5] we describe

how the variational type system can be extended to incorporate
other, more advanced language features. In this section we briefly
describe the syntax and semantics of VLC.

2.1 Syntax
VLC is based on our previous work on the choice calculus [8].
The choice calculus is a fundamental representation of variation in
arbitrary tree structures (such as a program’s abstract syntax tree),
designed to serve as a general foundation for theoretical research in
the field of variation management. The key features of the choice
calculus were already introduced in the previous section, namely,
choices and dimensions.2 Choices specify a point of variation in a
tree, while dimensions are used to synchronize and scope related
choices.

The syntax of VLC is given below. The first four constructs
in the syntax definition correspond to lambda calculus extended
with constant values, while the dimension and choice constructs
are from the choice calculus. If a VLC expression contains no
dimension or choice constructs, we call the expression plain.

e ::= c Constant
| x Variable
| λx.e Abstraction
| e e Application
| dim D〈t, t〉 in e Dimension
| D〈e,e〉 Choice

Note that every dimension must contain exactly two tags and all
choices must contain exactly two alternatives. This is a constraint
made for presentation purposes only. Variation in dimensions with
n tags can be easily simulated by n− 1 binary dimensions. More
fundamental syntactic constraints are that the tags associated with
one dimension must be different (so that they can be uniquely
referred to for selection), and that every choice must occur within
scope of a corresponding dimension declaration.

2.2 Semantics
A VLC expression defines a set of named variants—a set of plain
lambda calculus expressions identified by the selections that must
be performed to produce them. These variants are computed stat-
ically. That is, the full semantics of a VLC expression consists
of two distinct stages: a selection stage that eliminates all dimen-
sions and choices through tag selection, and an evaluation stage
that evaluates the resulting plain lambda calculus expression. When
we speak of the semantics of a VLC expression in this paper, we
refer only to the selection stage, which is briefly described below
(a more thorough treatment can be found in [8]).

To select a particular plain expression from a VLC expression,
we must repeatedly select tags from dimensions until we are left
with an expression with no dimensions or choices. We write becD.t
for the selection of tag t from dimension D in expression e. Tag
selection is performed by replacing in e the topmost-leftmost di-
mension declaration dim D〈t1, t2〉 in e′ with a version of e′ that is
obtained by substituting choices bound by D with either their first
or second alternatives (depending on whether t = t1 or t = t2). If e
does not contain a dimension D, it remains unchanged.

A decision is a sequence of dimension-qualified tags. A decision
that produces a plain expression is called a complete decision. The
(selection) semantics [[e]] of an expression e is then a mapping from
complete decisions to plain lambda calculus expressions.

[[dim A〈t1, t2〉 in A〈λx.x,λy.dim B〈t3, t4〉 in B〈2,3〉〉]] =
{([A.t1],λx.x),([A.t2,B.t3],λy.2),([A.t2,B.t4],λy.3)}

2 We omit here for simplicity two constructs for sharing since they do not
affect the type system in any way.
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Note that tags in dimension A always occur before tags in dimen-
sion B in the domain of the mapping. Also, note that dimension B
does not appear at all in the first decision since it is eliminated by
the selection of the tag A.t1.

3. Partial Variational Types
In Section 1 we motivated the use of variational types for typing
variational programs. In this section we extend this representation
to support partial variational types, that is, variational types that
contain type errors. The extended representation is given below.

T ::= τ Constant Type
| a Type Variable
| T → T Function Type
| D〈T,T 〉 Choice Type
| ⊥ Error Type
| > OK Type

Constant types, type variables, and function types are as in other
type systems—plain types contain only these three constructs.

Non-plain types may also contain choice types. Choice types
encode variation in types in the same way that choices encode
variation in expressions, with the exception that dimension names
in types are globally scoped (see [5] for the rationale). Choice types
often correspond directly to choice expressions; for example, the
subexpression A〈λx.true,3〉 might have the corresponding choice
type A〈a→ Bool,Int〉. Since there are no tags at the type level,
we extend selection to types by writing bTcD.i, where i ∈ {1,2},
to represent selecting the ith alternative in all choices in dimension
D. If T contains no such choices, then bTcD.i = T . We call D.i a
selector and allow selections on types to be made in any order.

The error type, ⊥, represents a type error and can appear any-
where in a variational type. We say that a variational type is partial
if it contains one or more error types and complete otherwise.

Finally, the symbol > is used to represent an arbitrary complete
type that also contains no type variables, that is, a type that is
monomorphic and error-free. This abstraction is only used in typing
patterns, which are described in the next section.

Many syntactically different types can be considered equiva-
lent in that they represent essentially the same mapping from de-
cisions to plain types. Type equivalency is an important concept
in typing variational programs. For example, usually when apply-
ing a function of type T → T ′ to an argument of type T ′′, we re-
quire that T = T ′′, but this requirement is too strict in the vari-
ational setting. Consider the expression succ A〈1,2〉. The type of
succ is Int→ Int while the type of the argument is A〈Int,Int〉.
Even though Int 6= A〈Int,Int〉, the expression should be con-
sidered well-typed because both variants (succ 1 and succ 2) are
well-typed. Thus, we say that the two types are equivalent, written
Int ≡ A〈Int,Int〉, and require only equivalency rather equality in
well-typed function applications.

Figure 1 gives the type equivalence relation in full. Most of the
equivalence rules are straightforward. The FUN and CHOICE rules
propagate equivalency across function types and choice types, the
F-C rule commutes function types and choice types, and the two
SWAP rules commute choice types in different dimensions. The
three rules at the bottom of the figure make the relation reflexive,
symmetric, and transitive. The two interesting cases are C-IDEMP

and the MERGE rules. The C-IDEMP rule captures the property
of choice idempotency, demonstrated in the example above. The
MERGE rules capture the property of choice domination. For ex-
ample, given the choice type D〈D〈T1,T2〉,T3〉, we say that the outer
choice dominates the inner since there is no way to select type T2—
the selection of the first alternative in the outer choice implies the
selection of the first alternative in the inner choice. Note that choice
domination only applies to nested choices in the same dimension.

FUN
T ′l ≡ T ′r Tl ≡ Tr

T ′l → Tl ≡ T ′r → Tr

F-C
D〈T1,T2〉 → D〈T ′1,T ′2〉 ≡ D〈T1→ T ′1,T2→ T ′2〉

C-C-SWAP1
D′〈D〈T1,T2〉,T3〉 ≡ D〈D′〈T1,T3〉,D′〈T2,T3〉〉

C-C-SWAP2
D′〈T1,D〈T2,T3〉〉 ≡ D〈D′〈T1,T2〉,D′〈T1,T3〉〉

C-C-MERGE1
D〈D〈T1,T2〉,T3〉 ≡ D〈T1,T3〉

C-C-MERGE2
D〈T1,D〈T2,T3〉〉 ≡ D〈T1,T3〉

CHOICE
T1 ≡ T ′1 T2 ≡ T ′2

D〈T1,T2〉 ≡ D〈T ′1,T ′2〉

C-IDEMP
T1 ≡ T T2 ≡ T

D〈T1,T2〉 ≡ T

REFL

T ≡ T

SYMM
T ≡ T ′

T ′ ≡ T

TRANS
T ≡ T ′ T ′ ≡ T ′′

T ≡ T ′′

Figure 1: Variational type equivalence.

In [5] we define a normalization process that can be used to
check if two types are equivalent; this can be trivially extended to
variational types containing error types. A type is in normal form if
(1) all function types are maximally distributed into choice types,
(2) choice types are nested according to a fixed ordering on dimen-
sion names, (3) the alternatives of each choice type are different,
and (4) no choice type contains another choice type of the same
name. For example, the types B〈Int,Int〉→ A〈Bool,⊥〉 and Int→
A〈Bool,⊥〉 are not in normal form, but A〈Int→ Bool,Int→⊥〉 is.

4. Typing Patterns
A typing pattern is a variation type consisting only of ⊥, >, and
choice types and is used to describe which variants of an expres-
sion are well-typed and which contain type errors. For example, the
typing pattern P = A〈>,B〈>,⊥〉〉 indicates a type error in the vari-
ant corresponding to the decision [A.2,B.2], and not in any other
variants. A single typing pattern corresponds to an infinite num-
ber of partial variational types. Some types corresponding to P
include: A〈Int,B〈Bool,⊥〉〉, A〈Int,Bool〉 → B〈Int,A〈Bool,⊥〉〉,
and A〈Int,B〈Bool,⊥〉 → B〈Int,⊥〉〉. In these examples, the con-
stant and function types are irrelevant—all that matters is that se-
lecting [A.2,B.2] produces a type containing errors, and that all
other type variants are complete.

Typing patterns are not really types in the traditional sense,
but rather an abstraction of variation types that indicate where the
errors are in the variation space. They are useful for determining
which types are more defined than others (that is, which contain
errors in fewer variants) and play a crucial role in the unification
of partial types (see Section 7). We conflate the representation of
variational types and typing patterns because they behave similarly
and doing so allows us to reuse a lot of machinery. In the rest of
this section, we employ typing patterns to define a few operations
that will be used throughout the paper.

We begin by defining a reflexive, transitive relation for deter-
mining which typing patterns are more defined than others, given
in Figure 2. All typing patterns are more defined than ⊥ and less
defined than >. Note that one typing pattern is not more defined
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P t P P t⊥ > t P
P t P1 P t P2

P t D〈P1,P2〉

P1 t P P2 t P
D〈P1,P2〉 t P

P1 t P′1 P2 t P′2
D〈P1,P2〉 t D〈P′1,P′2〉

Figure 2: The more-defined relation on typing patterns.

than another by simply having fewer occurrences of error types.
For example, the pattern A〈B〈⊥,>〉,B〈>,⊥〉〉 is trivially more de-
fined than ⊥.

Next, we consider the masking of types with patterns. Given a
pattern P and a type T , masking PCT potentially adds error types
to T according to the position of error types in P.

>CT = T ⊥CT =⊥

D〈P1,P2〉CT = D〈P1C bTcD.1,P2C bTcD.2〉
For example, masking type Int → A〈Bool,Int〉 with the typing
pattern A〈>,⊥〉 yields the type A〈Int→ Bool,⊥〉.

The intersection of two typing patterns P and P′, written P⊗P′,
is a pattern that is well-typed in exactly those variants that are well-
typed in both P and P′. For example, given patterns A〈>,⊥〉 and
B〈⊥,>〉, their intersection is A〈B〈⊥,>〉,⊥〉, which indicates that
the only well-typed variant corresponds to the decision [A.1,B.2].
Intersection is just a special case of masking, where the masked
type is a typing pattern: P⊗P′ = PCP′.

The dual of intersection is pattern union. The union of two
typing patterns P and P′, written P⊕ P′, is well-typed in those
variants that are well-typed in either P or P′, or both.

>⊕P => ⊥⊕P = P

D〈P1,P2〉⊕P = D〈P1⊕bPcD.1,P2⊕bPcD.2〉
For example, the union of A〈>,⊥〉 and B〈⊥,>〉 is A〈>,B〈⊥,>〉〉.

Note that the above definitions are all left-biased with regard
to the nesting order of choices and the structure of the resulting
type. This bias can be eliminated through the normalization process
described in [5], which can be applied unaltered to typing patterns.

In the typing process, we often need to check whether two types
match, for example, to check that the argument type of a function
matches the type of the argument it is applied to. Rather than a
simple boolean response, we can use typing patterns to provide a
more precise account, indicating in which variants the types match
(>) and in which they do not (⊥). In the following definition of the
variational type matching operation ./ : T×T → P we assume both
arguments are in normal form.3

T ./ T =>
T1→ T ′1 ./ T2→ T ′2 = T1 ./ T2⊗T ′1 ./ T ′2

D〈T1,T2〉 ./ D〈T ′1,T ′2〉= D〈T1 ./ T ′1,T2 ./ T ′2〉
D〈T1,T2〉 ./ T = D〈T1 ./ T,T2 ./ T 〉
T ./ D〈T1,T2〉= D〈T1,T2〉 ./ T

⊥ ./ T = T ./⊥=⊥
T ./ T ′ =⊥ (otherwise)

For example, matching Int → A〈Bool,⊥〉 ./ B〈Int,⊥〉 → Bool

produces the typing pattern A〈B〈>,⊥〉,⊥〉. This operation is used
in the typing of applications, as we’ll see in the next section.

3 Assumed for this presentation only. Type matching is actually part of the
unification algorithm, whose arguments need not be in normal form.

T-CON
c is a constant of type τ

∆,Γ ` c : τ

T-ABS
∆,Γ;(x,T ′) ` e : T

∆,Γ ` λx.e : T ′→ T

T-VAR
Γ(x) = T

∆,Γ ` x : T

T-APP
∆,Γ ` e1 : T1 ∆,Γ ` e2 : T2

T ′2 → T ′ = ↑(T1) P = T ′2 ./ T2 T = PCT ′

∆,Γ ` e1 e2 : T

T-DIM
∆;(D,D′),Γ ` e : T D′ is fresh

∆,Γ ` dim D〈t1, t2〉 in e : T

T-CHOICE
∆,Γ ` e1 : T1 ∆,Γ ` e2 : T2 ∆(D) = D′

∆,Γ ` D〈e1,e2〉 : D′〈T1,T2〉

Figure 3: Typing rules mapping VLC expressions to partial types.

5. An Error-Tolerant Type System
The association of variational types with VLC expressions is deter-
mined by a set of typing rules, given in Figure 3. A VLC typing
judgment has the form ∆,Γ ` e : T , which states that expression
e has type T in the context of environments ∆ and Γ. Environ-
ments are implemented as stacks, where E;(k,v) means to push the
mapping (k,v) onto environment E, and E(k) = v means that the
topmost occurrence of k is mapped to v in E. The Γ environment
maps variables to types and is the standard typing environment for
lambda calculus. It is used as expected in the typing rules for vari-
ables and abstractions. The ∆ environment maps expression-level
dimension names to globally unique type-level dimension names.
These mappings are added by the T-DIM rule and referenced by the
T-CHOICE rule. The use of this environment also ensures that every
choice is in scope of a corresponding dimension.

The focus here is on the T-APP rule for typing applications, ex-
tending it to support partial types. Previously this rule required that
the left argument be equivalent to a function type whose argument
type is unifiable with the type of the parameter value. In the pres-
ence of partial types, we can relax these requirements, introducing
error types (rather than failing) when they are not satisfied.

There are essentially two ways that error types can be intro-
duced: (1) if we cannot convert the type of the left argument T1 into
a function type T ′2 → T ′, and (2) if T ′2 does not match the type of
the parameter T2. The introduction of errors in the second case is
handled by matching the two types using the ./ operation to pro-
duce a typing pattern P, then masking the result type T with P. In
the first case, we employ a helper function ↑, which lifts a function
type to the top level, introducing error types as needed.

↑(T1→ T2) = T1→ T2

↑(D〈T1→ T ′1,T2→ T ′2〉) = D〈T1,T2〉 → D〈T ′1,T ′2〉
↑(D〈T1,T2〉) = ↑(D〈↑(T1),↑(T2)〉)

↑(T ) =⊥→⊥ (otherwise)

For example, ↑(A〈Int → Bool,Bool → Int〉) = A〈Int,Bool〉 →
A〈Bool,Int〉, while ↑(A〈Int→ Bool,Int〉) must introduce error
types to lift the function type to the top: A〈Int,⊥〉→ A〈Bool,⊥〉.

To illustrate the typing of an application, consider the expres-
sion e1 e2, where e1 : A〈Int→ Bool,Bool→ Bool〉 and e2 : Int.
Applying ↑ to the type of e1 and simplifying the result type yields
the type A〈Int,Bool〉 → Bool. Matching A〈Int,Bool〉 ./ Int pro-
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duces the typing pattern A〈>,⊥〉, which we use to mask the result,
A〈>,⊥〉CBool, producing the type of the application: A〈Bool,⊥〉.

The previous T-APP rule emerges as a special case of the gen-
eralized one. When e1 is a function type whose argument type
matches the type of e2, then matching returns > and masking
doesn’t alter the return type.

The correspondence between variational types and VLC expres-
sions is established inductively through the process of selection.
Given that e : T , if e is plain, then T is a plain type or ⊥. If e is
not plain, then we can select a tag from e to produce e′ : T ′, and T ′
can be obtained by a corresponding selection from T . The induc-
tive step is captured in the following lemma, which can be proved
by induction over typing derivations.

LEMMA 1 (Variation elimination).
∆,Γ ` e : T =⇒ ∀ D, t : ∆,Γ ` becD.t : bTcϕe([D.t])

Since tags are not present at the type level, and since expression-
level dimension names may differ from type-level ones, the func-
tion ϕe is a function derived from e that maps tag sequences to the
set of corresponding type-level selectors.

By induction it follows that a sequence of selections that pro-
duces a plain expression can be used to select a corresponding plain
or error type. This results in the following theorem, where q is a list
of dimension-qualified tags and s is a list of type-level selectors.

THEOREM 1 (Type preservation). If ∅,Γ ` e : T and (q,e′) ∈ [[e]],
then ∅,Γ ` e′ : T ′ where ϕe(q) = s and (s,T ′) ∈ [[T ]].

This theorem demonstrates the soundness of the type systems since
it establishes that from the type of a variational program we can
obtain the type of each program variant it contains. We had similar
type preservation results in [5], but they applied to only well-typed
variational programs. The results here are stronger since they apply
to any variational programs.

6. The Unification of Partial Types
Having extended the type system to work with and produce partial
types, we now turn to the more challenging problem of inferring
variational types containing type errors. By far the most difficult
piece is partial type unification. In Section 6.1 we will describe the
specific challenges posed. In particular, the unification algorithm
must yield unifiers that produce types that are both most-general
and most-defined, two qualities that are not obviously orthogonal.
In Section 6.2 we show that such unifiers exist, and in Section 7 we
present an algorithm for computing unifiers.

6.1 Reconciling Type Partiality and Generality
To support partial type inference, we must extend variational type
unification to produce and extend mappings containing error types,
and to identify mappings that are somehow best.

As a running example, consider the application e e′ where e :
T = A〈Int,Bool〉 → a and e′ : T ′ = B〈Int,a〉. Usually we would
find the most general unifier (mgu) for the problem A〈Int,Bool〉≡?

B〈Int,a〉, but in this case the two types are not unifiable since there
is a type error in the [A.2,B.1] variant. So what should we map a to?
The mapping we choose should be most-general in the usual sense,
but it should also be most-defined, yielding types with type errors
in as few variants as possible. In this subsection we will explore the
interaction of these two properties.

In Figure 4 we list several mappings we might choose to par-
tially unify T and T ′ in our example. In the table, the type constants
Bool, Char, and Int are shortened for space reasons. Each mapping
is identified by a θi, for example, θ2 = {a 7→ Int}. We also give the
result of applying each mapping to each of the two types as Ti and
T ′i , the typing pattern Pi that results from matching the argument

a. θi by v b. Pi by t c. θi by t,v

Figure 5: Orderings among patterns, result types, and mappings.

type of Ti to T ′i , and the result type generated by masking the result
type of Ti with Pi. Note that we apply mappings by adjacency and
use the functions arg and res to access, respectively, the argument
and result types of a function type.

Figure 5 visualizes the more-general and more-defined relation-
ships among mappings and typing patterns. The relations are de-
fined for elements connected by lines, and the element higher in
the graph is considered more general or more defined.

The first thing to note is that the standard more-general relation,
v, is not very helpful in selecting a mapping. A mapping θ is more
general than θ′, written θ v θ′ if ∃θ′′ such that θ′ = θ′′ ◦ θ. But
this relationship is only defined on one pair of our five mappings:
θ5 v θ4 (since {b 7→ A〈Int,Bool〉} ◦ θ5 = θ4). Since we are not
restricted to mappings that are valid unifiers, there are many more
possibilities, and many will not be ordered by the more-general
relation.

More useful is the more-defined relation (see Section 4) on the
match-produced typing patterns, for which many relationships are
defined, as seen in Figure 5b. Using this metric, we can rule out
mappings θ1, θ2, and θ3 because they will produce types with
errors in more variants than the mappings θ4 and θ5. The problem
is that θ4 and θ5 produce the same pattern.

The solution, of course, is to use both metrics together, as
demonstrated in Figure 5c. The solid lines between mappings cor-
respond to more-defined relations between the generated typing
patterns, and the dotted line corresponds to the more-general re-
lation between the mappings directly. This reveals θ5 as the most-
defined, most-general mapping.

At this point it is not clear whether this convergence was a quirk
of our example, or whether these properties will always converge
in this way. In the next section we will tackle the general case, and
show that a most-defined, most-general mapping always exists.

6.2 Most-General Partial Unifiers
In Section 6.1, we have illustrated how unification with partial
types requires the integration of two partial orderings of types,
t and v. In this section, we introduce the necessary machinery
that enables unification to deal with this situation in general and
produce most general partial unifiers.

In the following we consider a general unification problem of
the form U = TL ≡? TR. For a given mapping θ, we write U :: θ

for the typing pattern TLθ ./ TRθ that results from θ and U . When
we say that P is a typing pattern for U , we mean that there is
some θ such that P = U :: θ. With vars(U) we refer to all type
variables in U , and we use dom(θ) to denote the domain of θ. We
use ‖θ‖U to normalize θ with respect to the variables in U , that
is, ‖θ‖U is obtained from θ by renaming type variables such that
dom(‖θ‖U ) = vars(U).

Finally, we extend selection to apply to unification problems
and mappings, that is, bUcD.i = bTLcD.i ≡? bTRcD.i and bθcD.i =
{(a,bTcD.i) | (a,T ) ∈ θ}. We write θ|V for the restriction of θ by a
set of variables V , which is defined as θ|V = {(a,aθ) | a ∈V}.

The first three lemmas state that selection extends in a homo-
morphic way across several operations.
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i θi Ti = T θi T ′i = T ′θi Pi = arg(Ti) ./ T ′i Ri = PiC res(Ti)
1 {a 7→ Ch} A〈In,Bo〉 → Ch B〈In,Ch〉 A〈B〈>,⊥〉,⊥〉 A〈B〈Ch,⊥〉,⊥〉
2 {a 7→ In} A〈In,Bo〉 → In B〈In,In〉 A〈>,⊥〉 A〈In,⊥〉
3 {a 7→ Bo} A〈In,Bo〉 → Bo B〈In,Bo〉 A〈B〈>,⊥〉,B〈⊥,>〉〉 A〈B〈Bo,⊥〉,B〈⊥,Bo〉〉
4 {a 7→ A〈In,Bo〉} A〈In,Bo〉 → A〈In,Bo〉 B〈In,A〈In,Bo〉〉 A〈>,B〈⊥,>〉〉 A〈In,B〈⊥,Bo〉〉
5 {a 7→ B〈b,A〈In,Bo〉〉} A〈In,Bo〉 → B〈b,A〈In,Bo〉〉 B〈In,A〈In,Bo〉〉 A〈>,B〈⊥,>〉〉 A〈B〈b,In〉,B〈⊥,Bo〉〉

Figure 4: Some mappings for T = A〈Int,Bool〉 → a and T ′ = B〈Int,a〉, with the typing pattern and result types they produce.

LEMMA 2. bTL ./ TRcD.i = bTLcD.i ./ bTRcD.i

The proofs for this and the following lemmas, left out for brevity,
proceed by applying the definition of the operation under consider-
ation and then performing structural induction on types.

LEMMA 3. bTL⊕TRcD.i = bTLcD.i⊕bTRcD.i
bTL⊗TRcD.i = bTLcD.i⊗bTRcD.i
bPCTcD.i = bPcD.iC bTcD.i
bTL→ TRcD.i = bTLcD.i→ bTRcD.i

We also have a similar result for type substitution.

LEMMA 4. bT θcD.i = bTcD.ibθcD.i

The next lemma says that the computation of typing patterns can
be decomposed by using selection.

LEMMA 5. bU :: θcD.i = bU :: bθcD.icD.i = bUcD.i :: bθcD.i

PROOF. The proof for the first part is as follows. Let P =U :: θ and
P′ =U :: bθcD.i, then

bPcD.i = bTLθ ./ TRθcD.i

= bTLθcD.i ./ bTRθcD.i by Lemma 2
= bTLcD.ibθcD.i ./ bTRcD.ibθcD.i by Lemma 4

bP′cD.i = bTLbθcD.i ./ TRbθcD.icD.i

= bTLbθcD.icD.i ./ bTRbθcD.icD.i by Lemma 2
= bTLcD.ibbθcD.icD.i ./ bTRcD.ibbθcD.icD.i by Lemma 4
= bTLcD.ibθcD.i ./ bTRcD.ibθcD.i

The proof for the second part is analogous. �

LEMMA 6 (Typing patterns have a join). If P1 and P2 are typing
patterns for U, then so is P1⊕P2.

PROOF. Assume θ1 and θ2 are the mappings such that P1 =U :: θ1
and P2 = U :: θ2. The proof consists of several cases. For each
case, we construct a mapping θ3 such that U :: θ3 = P1 ⊕ P2,
which we denote as P3. We show the proof for the case where
P1 = D〈P11,P12〉 and P2 = D〈P21,P22〉 and there is no t relation
between P1 and P2. The proofs for other cases are simpler or can be
transformed into this case. We assume that θ1 and θ2 are already
normalized with respect to U . We can consider several cases.

First, if we assume P21 t P11 and P12 t P22, we let θ3 =
{(a,D〈baθ2cD.1,baθ1cD.2〉) | a ∈ vars(U)}, for which we observe
the following.

U :: θ3 = D〈bU :: θ3cD.1,bU :: θ3cD.2〉
= D〈bUcD.1 :: bθ3cD.1,bUcD.2 :: bθ3cD.2〉 Lemma 5
= D〈bUcD.1 :: bθ1cD.1,bUcD.2 :: bθ2cD.2〉 construction
= D〈bU :: θ1cD.1,bU :: θ2cD.2〉 Lemma 5
= D〈P21,P12〉
= P1⊕P2 def. of ⊕

Second, the case for P11 t P21 and P22 t P12 is analogous.

Third, if there is no t relation between P21 and P11 or P12 and
P22, we let U1 = bUcD.1, U2 = bUcD.2, θ11 = θ1|vars(U1), θ12 =
θ1|vars(U2), θ21 = θ2|vars(U1) and θ22 = θ2|vars(U2). By induction,
we can construct a mapping θ31 from θ11 and θ21 for U1 such that
U1 :: θ31 = P11⊕P21. Likewise, we can construct a mapping θ32
from θ12 and θ22 for U2 such that U2 :: θ32 =P12⊕P22. We can now
build θ3 based on θ31 and θ32 as follows. For each type variable
a ∈ vars(U) we define θ3 as follows.

θ3(a) =


D〈aθ31,aθ32〉 if a ∈ vars(U1)∧a ∈ vars(U2)

aθ31 if a ∈ vars(U1)

aθ32 if a ∈ vars(U2)

Proving that U :: θ3 = D〈P31,P32〉 = D〈P11,P12〉⊕D〈P21,P22〉 is
similar to the proof for the previous case. �

Combining this lemma with the rule> t P we can conclude that
for any unification problem, there is an upper-bound typing pattern,
which we call the principal typing pattern.

THEOREM 2 (Existence of principal typing patterns). For every
unification problem U there is a mapping θ with P = U :: θ, such
that P t P′ for any other mapping θ′ with P′ =U :: θ′.

We call a mapping that leads to the principal typing pattern a partial
unifier and use η to denote partial unifiers. We call mappings that
are not partial unifiers “non-unifiers” for short. Based on these
definitions, the first example in Section 6.1 has the principal typing
pattern P4 and partial unifiers θ4 and θ5.

Theorem 2 only shows the existence of partial unifiers, but does
not say anything about how many partial unifiers exist and how
they are possibly related. It turns out that partial unifiers can be
compared with respect to their generality and for each unification
problem there is a most general partial unifier (mgpu) of which all
other partial unifiers are instances.

THEOREM 3 (Partial unification is unitary). For every unification
problem U there is one partial unifier η of such that any other
partial unifier η′ for U is an instance of it, that is, ηv η′.

The proof strategy is similar to that for Theorem 2, although more
complex. Given any two partial unifiers, we can construct a new
partial unifier that is more general than the old ones.

7. A Unification Algorithm
In this section we present a partial type unification algorithm that
identifies partial unifiers that produce most-general, most-defined
types. This algorithm is a conservative extension of our algorithm
for unifying complete variational types, presented in [5]. That is,
when the types are complete and fully unifiable, we produce the
same results as before. When the types to be unified are partial
and/or not unifiable, we produce partial unifiers as described in the
previous section. In Section 7.1 we give a high-level overview of
the process of unifying variational types, and in Section 7.2 we
define the algorithm that makes up the core of this process.
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7.1 Unification of Variational Types
The fundamental difference between traditional type unification [3]
and variational unification is the treatment of type variables. Con-
sider the unification problem A〈Int,a〉 ≡? A〈a,Bool〉. At first it
may seem that these types are not unifiable—blithe decomposition
by alternatives yields the subproblems Int≡? a and a≡? Bool, but
a cannot map to both Int and Bool. However, there is a unifier to the
original problem: if we map a to A〈Int,Bool〉, then both types are
equivalent to A〈Int,Bool〉 by choice domination (see Section 3).
Decomposition is essential to the unification process, but decom-
posing by alternatives discards important context provided by the
choice type. In our example, this context tells us that only one of
the two a type variables will be selected in any particular variant.

As a solution, we encode the contextual information in the type
variables themselves. A qualified type variable is a type variable
marked by the choice type alternatives in which it is nested. We
write aAB̃ to indicate that type variable a is located in the first alter-
native of a choice type in dimension A and the second alternative of
a choice type in B. Throughout most of the unification process, type
variables with different qualifications are simply considered to be
different type variables, but we can use the contextual information
to construct the final mappings (from unqualified type variables to
variational types) through a process called completion. In the ex-
ample above, after qualification and decomposition we identify the
mappings {aA 7→ Int,aÃ 7→ Bool} which completes to the final re-
sult {a 7→ A〈Int,Bool〉}.

Unification thus consists of three main phases: (1) the unifica-
tion problem U is translated into a corresponding qualified unifica-
tion problem Q, (2) Q is solved, and (3) the solution to Q is com-
pleted to produce a solution to U . The first step of this process is
trivial. We simply traverse both types and qualify all of the type
variables. Completion is also straightforward: given a list of map-
pings from qualified type variables, each aqi 7→ Ti describes a leaf
in a tree of nested choice types that makes up the type T in the com-
pleted mapping a 7→ T . We just iterate over the qualified mappings,
lazily constructing and populating the resulting tree.

The difficult part is of course solving the qualified unifica-
tion problem. In addition to the traditional operations of match-
ing and decomposition, qualified unification relies on two addi-
tional operations. First, a choice type can be hoisted over another
choice type. For example, hoisting transforms A〈T1,B〈T2,T3〉〉 into
B〈A〈T1,T2〉,A〈T1,T3〉〉. Second, a type variable can be split into a
choice type between two qualified versions of that variable. For
example, splitting transforms a into A〈aA,aÃ〉). These operations
manipulate the types being unified so they can be further matched
or decomposed. For example, the problem A〈Int,aÃ〉 ≡? B〈bB,cB̃〉
cannot be directly decomposed. However, if we split the variable
aÃ into B〈aÃB,aÃB̃〉 and hoist this choice type to the top, we get the
new problem B〈A〈Int,aÃB〉,A〈Int,aÃB̃〉〉 ≡? B〈bB,cB̃〉, which can
be decomposed into two trivial subproblems.

The full technical exposition of the unification of complete
variational types is provided in [5]. Significantly, we also show that
the unification problem is decidable and unitary. In the rest of this
section we will develop the unification of partial variational types.

7.2 Computing the Most General Partial Unifier
In Section 6.2 we showed that for each partial unification problem,
there is a unique mgpu that produces the corresponding principal
typing pattern. In this section, we show how to compute each of
these by extending the process described in Section 7.1. We do this
first by example, then give the algorithm directly.

Consider the unification problem A〈Int,a〉 ≡? B〈Bool,b〉. We
begin, as described in Section 7.1, by transforming this into the
corresponding qualified unification problem shown at the top of

A〈Int,aÃ〉 ≡? B〈Bool,bB̃〉
↓split

A〈Int,aÃ〉 ≡? B〈Bool,A〈bAB̃,bÃB̃〉〉
↓hoist

A〈Int,aÃ〉 ≡? A〈B〈Bool,bAB̃〉,B〈Bool,bÃB̃〉〉

Int≡? B〈Bool,bAB̃〉

∗Int≡? Bool∗ Int≡? bAB̃

aÃ≡?B〈Bool,bÃB̃〉

Figure 6: Qualified unification resulting in a type error.

Figure 6. Since the top-level choice names don’t match, we choose
a type variable and apply the split-hoist strategy (first two steps)
in order to decompose by alternatives (third step). This gives us
the two subproblems at the fourth level from the top. When a plain
type is unified with a choice type, we can decompose it by unifying
the plain type with each alternative. This is demonstrated in the
left branch, which yields two smaller subproblems, one of which,
Int≡? Bool, reveals a type error.

This decomposition contains all of the information needed to
construct both the mgpu and the principal typing pattern. We con-
struct the mgpu by composing the mappings generated at the end
of every successful branch of the unification process. In this case,
there were two successful branches, giving the following mgpu.

{aÃ 7→ B〈Bool,bÃB̃〉,bAB̃ 7→ Int}
We construct the principal typing pattern by observing which
branches of the decomposition fail and succeed. In this case, the
branch corresponding to the first alternative in both A and B failed,
yielding the principal error pattern A〈B〈⊥,>〉,>〉.

As the final step, we use completion to produce the solution to
the original (unqualified) unification problem.

{a 7→ A〈c,B〈Bool,d〉〉,b 7→ B〈 f ,A〈Int,d〉〉}
Figure 7 gives the partial unification algorithm. It accepts a qual-

ified unification problem TL ≡? TR and returns a principal typing
pattern P and a mgpu η. We show only the cases that differ signifi-
cantly from the qualified unification algorithm presented in [5].

The algorithm relies on several helper functions. The function
choices(T ) returns the dimension names of all choice types that
occur in T . The function splittable returns the set of type variables
that can be split into a choice type. A variable is splittable if
the path from itself to the root consists only of choice types (no
function types). The function vars(T ) returns the set of qualified
variables in a type. Finally, the function sdims(vq,T ) returns the set
of dimension names not present in q but present in the qualifications
of type variables that are more specific than vq. We say that up is
more specific than vq if u = v and p can be written as qp′ for some
nonempty p′. For example, sdims(aA,aAB̃→ Int) = {B}.

We will work through the cases of the unify algorithm, from top
to bottom. In the body of the algorithm and in these descriptions, TL
and TR are used to refer to the first and second arguments to unify,
respectively. We first consider a couple of base cases. Attempting to
unify any type and an error type yields an empty mapping and the
fully undefined typing pattern ⊥. This defines the propagation of
errors. When unifying two plain types, we defer to the traditional
robinson unification algorithm [21]. If it succeeds, we return the
unifier and the fully defined typing pattern >. If it fails, we return
the empty mapping and ⊥.

When unifying a ground plain type g (a type that does not con-
tain choice types or type variables) with a choice type, we just unify
g with both alternatives. This is seen in the second decomposition
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unify : T ×T → P×η

unify(⊥,T ) = (⊥,∅)

unify(p, p′)
| robinson(p, p′) =⊥ = (⊥,∅)
| otherwise = (>,robinson(p, p′))

unify(g,D〈T1,T2〉) = unify(D〈g,g〉,D〈T1,T2〉)
unify(D〈T1,T2〉,D〈T ′1,T ′2〉) =
(P1,η1)← unify(T1,T ′1)
(P2,η2)← unify(T2,T ′2)
return (D〈P1,P2〉,η1 ◦η2)

unify(D1〈T1,T2〉,D2〈T ′1,T ′2〉)
| D2 /∈ choices(TL)∧ splittable(TL) =∅∧

D1 /∈ choices(TR)∧ splittable(TR) =∅
= unify(TL,D1〈TR,TR〉)

unify(vq,T ′1 → T ′2)
| vq ∈ vars(TR) = (⊥,∅)
| D ∈ sdims(vq,TR) = unify(D〈vDq,vD̃q〉,TR)

| otherwise = (>,{vq 7→ TR})
unify(T1→ T2,T ′1 → T ′2) =
(P1,η1)← unify(T1,T ′1)
(P2,η2)← unify(T2η1,T ′2η1)
P← P1⊗P2
return (P,η1 ◦η2)

Figure 7: Partial unification algorithm.

in Figure 6. The first decomposition is by alternatives, which is per-
formed when unifying two choices in the same dimension; this is
captured in the fourth case of unify. Note that we do not need to
apply the mapping η1 to T2 and T ′2 , as we might expect, because
(vars(T1)∪vars(T ′1))∩(vars(T2)∪vars(T ′2)) =∅ due to type vari-
able qualification. We then compose the corresponding unifiers and
combine the error patterns with a choice type.

The fifth case considers the unification of two choice types in
different dimensions with no splittable type variables. This is not
fully unifiable and so would usually represent failure. However,
with partial unification we can proceed by attempting to unify all
combinations of alternatives in order to locate the variants that con-
tain errors. For example, A〈Int,Bool〉 ≡? B〈Int,Bool〉 produces
the typing pattern A〈B〈>,⊥〉,B〈⊥,>〉〉. We reuse our existing ma-
chinery by duplicating TR and putting it in a choice type that will
be decomposed by alternatives in the recursive execution of unify.

Although we do not show all of the cases of unifying a qualified
type variable against other types, we do show the trickiest case of
unifying a type variable with a function type in the sixth case in
Figure 7. There are there sub-cases to consider: (1) If vq occurs
in TR, the unification fails. (2) If vq does not occur in TR but a
more specific type variable vqr does, then some variants may still
be well-typed. So, we create a new unification problem by adding a
dimension D from r to the qualification of vq, then splitting the new
variable vDq in the D dimension. (3) Finally, if v does not appear
in any form in TR, then we simply map vq to TR. Note that the
decomposition of the unification problem is such that if there is
any vp in TR, then either vp = vq or vp is more specific than vq.

Finally, we consider the unification of two function types. We
unify the corresponding argument types and result types and com-
pose the mappings. The resulting typing pattern is the intersection
of the patterns of the two subproblems since the result will be well-
typed only if both the argument and result types agree.

We conclude by presenting some important properties of the
unification algorithm. The first result is that the partial unification
algorithm is terminating through decomposition that eventually re-
sults in either the propagation of type errors, or calls to the robin-
son algorithm, which is terminating. There are two cases that do
not decompose, but rather grow the size of the types being uni-
fied, and so pose a threat to termination. The first is the splitting
of type variables. The second is the fifth case shown in Figure 7.
Both of these cases introduce a new choice type and duplicate one
of their arguments. These cases do not prevent termination, how-
ever, for two reasons. First, both cases are followed immediately
by a decomposition that produces two subproblems smaller than
the original problem. Second, the number of new choice types that
can be introduced is bounded by the overall number of dimensions
in the unification problem. This follows from the property of choice
domination and the fact that we eliminate a dimension from con-
sideration with each decomposition by alternatives.

In [5], we did an in-depth time complexity analysis of the
variational unification algorithm. We showed that if the size of
TL and TR are l and r respectively, then the time complexity of
variational unification is O(lr(l + r)). Since the computation of
typing patterns in the unification algorithm does not exceed the
time for computing partial unifiers, the run-time complexity is still
O(lr(l + r)) for the partial unification algorithm.

The partial unification algorithm is also sound and complete.
These facts are expressed in the following theorems. We use unify′

to refer to the entire three-part unification process described in
Section 7.1 (qualification, qualified unification, completion).

THEOREM 4 (Partial unification is sound). Given the unification
problem T1 ≡? T2, if unify′(T1,T2) = (P,η), then T1η ./ T2η = P.

THEOREM 5 (Partial unification is complete, most defined, and
most general). Given the unification problem T1 ≡? T2, if T1θ ./
T2θ= P, then unify′(T1,T2) = (P′,η) such that P′ t P and if P′ ≡ P
then there exists some θ′ such that θ = θ′ ◦η.

8. Partial Type Inference Algorithm
Although the partial unification algorithm is quite complicated, the
inference algorithm itself is simple. We define it as an extension of
algorithm W [6] and show the most interesting case below.

infer : ∆×Γ× e→ η×T
infer(∆,Γ,e1 e2) =
(η1,T1)← infer(∆,Γ,e1)
(η2,T2)← infer(∆,Γη1,e2)
(P,η)← unify′(T1η2,T2η2→ a) {- a is a fresh variable -}
R← PCaη

return (η◦η2 ◦η1,R)

The algorithm takes three arguments: a dimension environment, a
typing environment, and an expression. It returns a partial unifier
and the inferred partial type. Traditionally, inferring the result of
a function application consists of four steps: (1) infer the type
of the function, (2) infer the type of the argument, (3) unify the
argument type of the function with the type of the argument, and
(4) instantiate the result type of the function with the returned
unifier. Our algorithm adds just one more step: we must mask
the result type according to the typing pattern returned by partial
unification, in order to introduce error types for the cases where
traditional unification would fail.

The remaining cases can be derived from the typing rules in
Section 5. Variables and abstractions are treated as in W . For a
dimension declaration we extend the dimension environment and
recursively infer the type of its scope. For a choice we infer the
type of each alternative and build a corresponding choice type.
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Figure 8: Running time of prototype by error distribution.

The following theorems state that our type inference algorithm
is sound and complete and has the principal typing property. In the
following, the symbol � represents a more-defined, more-general
relation on variational types. That is, T ′ � T means that for every
corresponding pair of (plain) variants V ′ and V from T ′ and T ,
respectively, either V ′ vV or V =⊥.

THEOREM 6 (Type inference is sound).
If infer(∆,Γ,e) = (η,T ), then ∆,Γη ` e : T .

THEOREM 7 (Type inference is complete and principal).
If ∆,Γη ` e : T , then infer(∆,Γ,e) = (η′,T ′) such that η = θ ◦η′

for some θ and T ′ � T .

These results mean that, for any syntactically correct VLC expres-
sion, we can infer the most general type, containing type errors in
as few variants as possible, all without type annotations.

9. Evaluation
Variational type inference offers potentially huge efficiency gains
over the brute-force strategy of typing each variant individually.
The first opportunity is by sharing the typing information of
code common to multiple variants. For example, in the expression
f A〈e1,e2〉 we need only type the function f once relative to e1
and e2. The second, more subtle opportunity is by reducing vari-
ability in types through choice idempotency. This is often possi-
ble because types are an abstraction of expressions. For example,
in the expression A〈 f ,g〉 B〈1,2〉, the argument type reduces to the
plain type Int, reducing the variability in the application at the type
level. While both of these cases are expected to be ubiquitous in
practice, there are worst-case scenarios that fundamentally cannot
be typed faster than brute-force, for example, an expression with
no sharing and in which every variant has a different type, such as
A〈B〈T1,T2〉,B〈T3,T4〉〉 where T1 . . .T4 are all different.

In this section we empirically evaluate the efficiency of partial
type inference in a variety of ways. To do this, we have developed a
prototype in Haskell that implements the contents of this paper. The
prototype consists of three parts: a normalizer for variational types,
the equational partial unification algorithm described in Section 7,
and the type inference algorithm described in Section 8.

In the first experiment, we measure the additional cost of the
extensions described in this paper, relative to [5]. To measure
this overhead effectively, we intentionally induced our worst-case
performance through the cascading choice problem. Cascading
choices are long sequences of applications, where each expression
is a choice in a different dimension. If the types of all alternatives
are different, no solution can perform better than the brute-force

strategy. The overhead of our prototype on such examples (all well-
typed, with between 14 and 21 dimensions) was about 30% of the
running time of the non-error-tolerant prototype described in [5].

In the second experiment, we study how the distribution of er-
rors in an expression affects the efficiency of partial type inference.
The graph in Figure 8 shows the running time of the prototype on a
cascading choice problem with 21 dimensions, seeded with errors.
The horizontal axis indicates the percentage of variants that were
seeded with type errors, and the different lines represent different
distributions of these errors. Errors can be spread evenly through-
out the expression, clustered together, distributed randomly, or in-
troduced at the end of the expression. An interesting phenomenon
is that, while the running time at first increases as we introduce er-
rors (due to the costs of maintaining and applying error patterns),
in three of the four curves the running time decreases sharply as
the error density increases. This is because additional errors in-
troduce opportunities for reduction through choice idempotency
(D〈⊥,⊥〉=⊥) that are usually denied in cascading choice expres-
sions. As expected, this feature is most pronounced when errors are
clustered and least pronounced when they are spread evenly. When
errors are introduced at the end of the expression, this opportunity
never arises since all the work has already been done.

Finally, in the third experiment, we demonstrate the efficiency
and effectiveness of partial type inference in finding type errors,
relative to the brute-force approach (implemented as a prototype in
the same way as our own). The results are presented in the table in
Figure 9. Each row represents an artificially constructed expression
that varies in the indicated number of dimensions. The size of each
expression is given by the number of AST nodes. The expressions
are constructed such that not all dimensions are independent (some
dimensions are nested within choices), so the number of variants
each expression represents is also given.

In each expression, we manually seeded the indicated number of
errors according to two different distributions: errors may be spread
evenly throughout the expression or clustered together. Thus, each
row actually represents two expressions with different error distri-
butions that are otherwise identical. Errors are counted relative to
the variational expression, not the variants they occur in. For exam-
ple, if the expression err produces a type error, then A〈err,B〈1,2〉〉
is considered to contain just one type error even though that error
is expressed in two variants ([A.2,B.1] and [A.2,B.2]).

Finally, for each expression we give the percentage of errors
caught and total running time in seconds (run on a 2.8GHz dual
core processor with 3GB RAM) of the brute-force approach and
our inference algorithm, respectively. Often the problem is in-
tractable for the brute-force approach, so we cap the running-time
at one hour and count the number of errors caught to this point.
Because of this cap, and especially when errors are clustered, there
is a potential for bias in which variants the brute-force algorithm
sees before the time limit is reached. To mitigate this, we ran each
brute-force test 10 times, starting from random variants, and aver-
aged the results. Note that for presentation reasons we do not list
the percentage of errors found for our algorithm since this value
is always 100%. Similarly, we do not list the running time of the
brute-force approach since this is the full 3600 seconds in all but a
few cases, which are indicated by footnotes.

From the results in Figure 9 we observe that our algorithm
scales well as the size, variability, and number of errors in an ex-
pression increases. Our algorithm is also more reliable for detecting
errors since the ability to completely type the expressions means
that it is not sensitive (in this regard) to the distribution of errors,
and we do not have to consider issues like which variant the algo-
rithm starts with.

Collectively, these results demonstrate the feasibility of error-
tolerant type inference on large, complex expressions. In practice,
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size dims variants errors spread clustered
brute (%) vlc (s) brute (%) vlc (s)

702 22 216 100 100a 0.62 100c 0.57
3719 22 216 100 14.90 1.09 4.10 1.02

976 24 217 200 100b 0.71 100d 0.68
5327 24 217 200 0.50 2.26 39.85 2.17
8412 24 217 200 0.05 3.79 0.00 3.65
1163 27 221 400 27.05 0.76 4.90 0.71
1745 33 225 500 0.42 1.31 0.00 1.19
2079 37 229 500 0.04 1.44 2.98 1.33
3505 57 240 1000 0.08 1.82 0.21 1.74
9429 215 2165 1000 0.00 4.31 0.01 4.16

61345 1434 2892 2000 0.00 31.45 0.99 29.44
213521 4983 23073 5000 0.02 104.61 0.00 99.37
429586 10002 27455 10000 0.00 183.75 0.10 172.52

a 648 s b 2700 s c 639 s d 2645 s

Figure 9: A comparison of the performance of the brute-force approach and our inference algorithm on large expressions containing seeded
type errors. The errors are either spread evenly or clustered within the expression. Our algorithm caught 100% of the errors in all cases, so we
show only the time taken to do so. The running time of the brute-force approach was capped at one hour (3600 s). For cases that completed
before this cap was reached, we give the running time as a footnote. For cases that did not complete, we ran each test 10 times starting from
a random variant, and averaged the results.

we expect real software to be considerably less complex (from a
variational perspective) than the expressions examined in this sec-
tion, and very unlikely to induce worst-case scenarios. For exam-
ple, some real-world studies have suggested an average choice nest-
ing depth of just 1.5 [13]. However, it is possible that variational
complexity is artificially limited by the inadequacy of current tools,
which this work directly addresses.

10. Related Work
The work presented here builds on our previous work on typing
variational programs [5]. In that work, we focused on establish-
ing VLC as a foundation for work on typing variational programs
(and other static analyses), introducing the notion of variational
types, and developing the fundamentals of variational typing and
variational type inference. In order to be practically useful, how-
ever, variational typing must support many more features. In [5] we
demonstrated how this approach can be extended to support simple
typing features like sum types. The work presented in this paper
represents a much more significant and challenging extension to
make the type system error-tolerant. This feature is critically impor-
tant for typing real-world variational programs because it directly
supports tasks like error location and incremental development.

In general, our approach distinguishes itself from related work
in the field of SPLs by representing variation more generally and at
a finer granularity, and by solving the more general problem of type
inference rather than the type- or definedness-checking of explicitly
typed programs [11, 12, 25].

Choice types are similar to variant types [10], which are used
to uniformly manipulate heterogeneous collection of types. A sig-
nificant difference between the two is that choices (at the expres-
sion level) contain all of the information needed for inferring their
corresponding choice type. Values of variant types, on the other
hand, are associated with just one label, representing one branch
of the larger variant type. This makes type inference very difficult.
A common solution is to use explicit type annotations; whenever
a variant value is used, it must be annotated with a corresponding
variant type. Typing VLC does not require such annotations.

Choice types are also reminiscent of union types [7]. A union
type is an agglomeration of simpler types. For example, a function

f might accept the union of types Int and Bool. Function appli-
cation is then well typed if the argument’s type is an element of
the union type (either Int or Bool). The biggest difference between
union types and choice types is that union types are comparatively
unstructured. In VLC, choices can be synchronized, allowing func-
tions to provide different implementations for different argument
types, or for different sets of functions to be defined in the con-
text of different argument types. With union types, an applied func-
tion must be able to operate on all possible values of an argument
with a union type. A major challenge in type inference with union
types is union elimination, which is not syntax directed and makes
type inference intractable. Therefore, as with variant types, syntac-
tic markers are needed to support type inference.

Although they share a name, our notion of partial types differs
from the work of Thatte [26]. Thatte’s partial types provide a way
to type certain objects that are not typable with simple types in
lambda calculus, such as heterogeneous lists and persistent data.
They are more similar to our typing patterns. Thatte’s “untyped”
type Ω represents an arbitrary well-typed expression, similar to
our > type, while his inclusion relationship on partial types (≤)
is similar to our more-defined relationship on patterns (t). Type
inference with Thatte’s partial types was proved decidable [14, 17],
a property that holds for our type system also.

Top and bottom types in subtyping [19] are also similar to the
types > and ⊥ used in typing patterns. Moreover, the subtyping
relationship plays a similar role to that of t on typing patterns. For
example, all types are subtypes of the top type, which corresponds
to the fact that all typing patterns are less or equally defined as >
(similar for⊥ and the bottom type). However, the role of these type
bounds is quite different. The top and bottom types are introduced
to facilitate the proofs of certain properties and the design of type
systems, for example, in bounded quantification [18], whereas the
> and ⊥ types are used as parts of larger patterns to track which
variants are ill-typed, and to mask result types accordingly.

Our work is also related to the work of Siek et al. on gradual
typing [22, 23]. The goal of that work is to integrate static and
dynamic typing into a single type system. They use the symbol
? to represent a type that is not known statically (that is, it is a
dynamic type). This is similar to our ⊥ type in partial types and
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typing patterns, particularly in the way it is used to determine a
notion of informativeness. A type is less informative if it contains
more ? types (or rather, if more of the type is subsumed by ?
types). This relation is similar to an inverse of our more-defined
relation on typing patterns, where a pattern becomes less defined
as it is subsumed by ⊥ types. The biggest difference between this
work and our own is that ⊥ types represent parts of a variational
program that are statically known to be type incorrect, whereas the
parts of a program annotated with ? types may still be dynamically
type correct. Also, their system isolates ? types as much as possible
with respect to a plain type, while we allow ⊥ types to propagate
outward in plain types, but contain ⊥ types to as few variants as
possible. This is best demonstrated by the fact that (if we extend
the notion of definedness to partial types) ⊥ is equally defined as
⊥→ Int, but ? is strictly less informative than ? → Int.

Generating informative error messages and determining the
causes and locations of type errors has been extensively studied
in type systems [15, 28]. Our type system does not address this
problem per se, as far as individual program variants is concerned.
However, a partial type does indicate which variants contain type
errors. This information can be combined with traditional, single-
variant systems to improve error location in variational programs.

The unification problem for equational theories that contain
distributivity and associativity is known to be undecidable [27].
However, it is decidable when an idempotency law is added [1].
Therefore, because of choice idempotency, our unification problem
is decidable. As we have shown, our problem is also unitary. This is
important for implementing the type inference algorithm because it
is necessary for a type system that has the principal typing property.

11. Conclusion and Future Work
We have presented a type system and inference algorithm for as-
signing partial types to variational programs. We have shown that
the addition of error types and the resulting more-defined ordering
for types integrates well with a variational type system. Specifi-
cally, we were able to extend the unification and type inference
algorithms to produce most-general partial types for variational
lambda calculus expressions. These results are an important step to-
ward providing type-system support for massively variational soft-
ware, and for the incremental development of variational programs.

In future work we plan to explore incremental variational type
inference. We expect that programmers often work on only a small
subset of variants at a time, and so there is huge opportunity for effi-
ciency gains by reusing the unchanged variational context in typing
incremental changes. We expect this historical information to also
be useful for producing more precise error feedback. We also plan
to investigate how variational typing can be used to support strong
but flexible typing in functional, staged programming languages.
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