
Programs for People:
What We Can Learn from Lab Protocols

Keeley Abbott
School of EECS

Oregon State University
Corvallis, OR, USA

Christopher Bogart
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA, USA

Eric Walkingshaw
School of EECS

Oregon State University
Corvallis, OR, USA

Abstract—Humans play an active role in the execution of
certain kinds of programs, such as spreadsheets, workflows and
interactive notebooks. Interacting closely with execution is espe-
cially useful when end-users are learning from examples while
doing their work. In order to better understand the language
features needed to support this kind of use, we investigated a
particularly rigid and formalized category of “program” people
write for each other: lab protocols. These protocols present a
linear, idealized process despite the complex contingencies of
the lab work they describe. However, they employ a variety of
techniques for limiting or expanding the semantic interpretation
of individual steps and for integrating outside protocols. We
use these observations to derive implications for the design of
interactive and mixed-initiative programming languages.

I. INTRODUCTION

A growing number of end-user programming scenarios such
as workflows and interactive notebooks serve the dual purpose
of being how-to documents for humans to learn from, as well
as mixed-initiative execution and programming environments
for the accomplishment of real tasks. Minimalist learning
theory [1] labels these situations “active learning”: learning
skills in the context of one’s work. Although research on
the cognitive aspects of active learning continues, less is
known about what programming language features are needed
to support this interplay between: (1) the designer-specified
sequence of activities and explanatory examples, and (2) the
user-specified sequences that emerge as the user transitions
from learning to doing.

This interplay is a form of mixed-initiative execution [2]
in which human and computer activities are interleaved. But
unlike the carefully scripted interaction of, say, a wizard,
in these active learning tools it is not always clear which
party, computer or human, is leading the way. How can the
same program not only communicate a fixed example but also
continue to help the learner understand the hows and whys
of generalizing that example to some real application? How
can a mixed-initiative programming environment be designed
to allow the user to take the reigns when necessary, without
altogether abandoning the computer’s guidance?

Like workflows and interactive notebooks, biological labo-
ratory protocols also have this same dual purpose: they teach
a process by example, while also serving as a template for
applying the process to a real-world goal. However, there are
many differences in how protocols are executed compared

to computer programs. Correspondingly, there are also many
differences in how protocols are written compared to computer
programs. Much of the existing work with protocols has been
sociological work focusing on their role in human activity.
In this paper, however, we focus on the distinctive language
features necessary to support humans executing protocols, as
contrasted with computers executing programs.

Understanding protocols can lead us to discover new models
for creating or improving current designs for mixed-initiative
programs. If the language features found in protocols can be
translated into design insights for mixed-initiative execution
(Section I-A), they could potentially be integrated into exist-
ing programs for active learning, where human participants
already play an active role in execution.

Furthermore, the design insights extracted from the lan-
guage features found in protocols can inform the design of
a mixed-initiative domain-specific language. This could be
used to build a new class of flexible mixed-initiative execution
programs, in which control of process and workflow would not
be “dominated” by either the human or machine, but rather
shifted along a continuum of control. This could allow both
human and computer to work in concert to achieve a goal,
using the best of each of their abilities.

A. Mixed-initiative execution

There are many programs that involve a mix of work
between human and computer actors that can be construed as
part of the broader spectrum of mixed-initiativity: distributed
human computation [3] in which a computer organizes and
integrates feedback from many people; wizards and interactive
forms in which a human supplies information in between
processing steps; computational notebooks like IPython [4]
in which computers fill in intermediate results as humans
edit programs; and the familiar interactive computing scenario
where subprograms are offered to users as tools to use freely
in the course of the their work.

In all these cases, however, either the computer or the
human maintains primary control of the process. In computer-
led mixed-initiative programs the wizard or form mostly
forces the user along a particular path, and the distributed
computing paradigm parcels out small tasks to humans at its
own convenience. Conversely, in human-led mixed-initiative



programs, the interactive tool paradigm puts the computer’s
services completely at the user’s disposal.

However there are tasks for which a more flexible exchange
of initiative would be useful; none of these paradigms suit
such situations. Computer-led mixed-initiative programs, for
example, do not easily allow the human actor to interleave
or integrate their own plans, goals, and constraints with the
actions the computer needs them to perform. They also do
not take advantage of resources or capabilities the human has
beyond the program designer’s expected audience. This might
make the decision to submit themselves to the computer’s
guidance an unnecessarily significant time investment, both in
carrying out the human tasks the computer might assign, and
in tailoring the results the combined task ends up producing.

Conversely, human-led mixed-initiative programs may not
provide enough guidance for a user without the experience
to carry out the task at the macro level. For example, de
Souza and Leitão [5] describe the plight of a Microsoft Word
user trying to make page numbers appear consistently in a
document where some pages are oriented vertically and some
horizontally. In their example, the computer provided the
pieces of functionality needed to complete the task, but did
not succeed in communicating to the human which pieces and
in what sequence the pieces should be applied.

B. Research questions and contributions

Although there has been research on the flexible relationship
between human action and human plans, less is known at
a granular level about the features and properties of written
protocols that accommodate such flexibility. Thus the high-
level goal of this research is to understand how people write
detailed, reusable processes (that is, programs) to be carried
out (executed) by other people, in a way that manages to con-
vey both constraints and degrees of freedom for the protocol
user. We look specifically at biological protocols, which are
used to describe step-by-step how to accomplish tasks in a lab.

Protocols are written at different levels of formality for
different purposes. At the least formal extreme, a scientist
might create a protocol in their own lab notebook for personal
use as a way to recall the process between iterations or
when writing up results. Slightly more formal are protocols
developed for specific internal or institutional use, which may
address safety or quality standards specific to the organization,
or may be employed to ensure consistency between actors.
At the most formal extreme, there exist fully elaborated and
highly refined protocols used to communicate novel techniques
to other scientists around the world.

We focus on the formal extreme in this study. Specifically,
we analyze peer-reviewed protocols published in Cold Spring
Harbor Protocols. Unlike personal or internal protocols, these
represent programs written for people unknown to the au-
thor(s) of the program. This aligns with our long-term goal
of developing a language for mixed-initiative programming.
Additionally, the protocols are more consistently formatted,
and similar protocols contain similar visual and organization
features, which makes them easier to analyze.

We have the following research questions:
RQ1. How are individual instructions expressed, and what

is the granularity of an instruction? What balance of
constraint and freedom do they allow, and how do they
accomplish this?

RQ2. In what ways do protocol writers control and manage
the factors that contribute to imprecise execution of
protocols? Are there any distinguishing features that
highlight the importance of steps within the protocol,
and when there can be variance, how do protocol
authors clue users in to this?

RQ3. How are relationships among protocols expressed in a
ways that constrain or allow flexibility in composing
them? Is there any inter-protocol structure, and if so,
what does it look like? Are large protocols separated
into multiple smaller protocols? Do protocols refer to
external protocols?

In answering these questions, we make these contributions:
C1. A protocol coding scheme, summarized in Tables I and II.
C2. Descriptions and examples of how protocols specify in-

structions in terms of simple actions, goals, tasks, and
open-ended tasks (RQ1; Subsections IV-B,IV-D).

C3. How protocols describe constraints and allowable vari-
ability within instructions (RQ2; Subsection IV-A).

C4. How control flow, error handling, and references to ex-
ternal protocols are specified in a lightweight fashion that
relies on human adaptability and the flexibility of the
instructions (RQ2 & 3; Subsections IV-C)

C5. Design implications for workflow tools (Section VI).

II. RELATED WORK

As early as 1960 [6], researchers have noticed the differ-
ences between human instructions and computer programs,
and called for more flexible flows of control between people
and computers. Mechanisms for trading off initiative have
been explored, for example discourse-based techniques (e.g.
[7], [8]), allowing humans to shape machine learning searches
by interactively adding constraints (e.g. [9], [10]), or simply
explicitly hardwiring the interleaving of human and computer
tasks (e.g. [11]). That prior work has been more about how to
implement or improve mixed-initiative programs; in this paper
we are investigating what role the written language behind
mixed-initiative programs needs to play.

While programs and protocols seem superficially similar,
the pragmatics1 around their use are quite different. Re-
searchers have noted that people use plans [13] and protocols
[14] as resources, not as rigid instructions to be followed
mechanically. Timmermans and Berg [15] argue that:

“subordination and rearticulation of the protocol to
meet the primary goals of the actors involved is a
sine qua non for the functioning of the protocol in

1Horn and Ward [12] define pragmatics, a subfield of linguistics, as
"the study of those context-dependent aspects of meaning a which are
systematically abstracted away from the construction of content or logical
form". Pragmatics explains how context can turn "it’s getting late" from a
literal observation about time to a hint for guests to leave after a party.



the first place. [...] Tinkering is a prerequisite for
the protocols functioning.”

Their claim is that people simply would refuse to adopt an
overly inflexible protocol, because it would be so unlikely to
precisely fit their goals, expertise, and resources.

Suchman [13] argues that human plans are more like
descriptions or predictions than prescriptions of what actions
a person will take given the most likely sequence of future
actions; they are resources for anticipating likely future events.
In programming language terms, perhaps, they are more
declarative than imperative in that people draw on knowledge
of the whole plan rather than blindly following each step.

Different actors adapt protocols to their own purposes.
Timmermans and Berg emphasize that actors following a
protocol have their own “trajectories”, that is their own goals
and priorities; they stray from the protocol to various extents,
in various ways, for a variety of reasons. For example, a cancer
patient may be careful to take medications prescribed in a
research protocol, but might skip some measurement steps,
since their priority is getting better, not furthering the research.
Timmermans and Berg also cite the example of emergency
personnel choosing to follow the CPR protocol even when
the patient is not likely to be saved, using the time and
visible activity as a way to soften the blow to a family coping
with a sudden death. Lynch [14] describes protocols as being
“situated in other procedures”: they are not executed in a
vacuum, but are meant to apply in situations where appropriate
actors, goals, materials, and values are already present.

Protocols simplify coordination because, they “contain ex-
plicit criteria on whether, when and how next steps are to
be taken. Personnel delegate some of their coordinating tasks
to it, and the protocol appoints specific tasks to them.” [15].
Sidner [7] et al. have shown one way this simplification can
have practical benefit in human-computer interaction: knowl-
edge about task state can help a computer guess the correct
interpretation of an otherwise ambiguous human action.

Some existing software tools play a similar role to protocols
as tailorable process descriptions. For example the Bioconduc-
tor project [16] uses literate [17] R programs, called “work-
flows” and “vignettes”, to describe how various packages can
be marshalled to perform tasks. In these programs the data
file and task are merely illustrative examples; the program
does not differ semantically from any other R program, but it
is meant pragmatically to be used primarily as a resource for
copy/paste creation of a new program to do a similar task.

Process description tools like CoScripter [18], and Au-
tomator [19] provide platforms for designing and annotating
scripts for repetitive tasks. In the case of CoScripter, these
scripts are limited to parameterized web-based tasks, where
the parameters are instantiated from a database of local values.
The “You” construct in CoScripter presents an opportunity for
mixed-initiative execution by pausing the script and providing
the user an opportunity to respond to a prompt. Like Co-
Scripter, Automator provides similar functionality for turning
control over to the user, but these are more structured than
CoScripter’s open-ended “You” construct.

III. METHODOLOGY

We performed a qualitative analysis of lab protocols using
open-ended coding. In this section, we describe the coding
scheme we used and discuss how it was developed and applied.
We present the coding scheme in two parts. In the first, we
describe the coding scheme applied to each step of a protocol.
These codes provided the data needed to address RQ1 and
RQ2. In the second, we describe the coding scheme applied
to each external reference in a protocol. These codes provided
the data needed to address RQ3.

A. Coding scheme for protocol steps

To start, each of the authors reviewed a set of 2–3 protocols
and independently developed a coding scheme to categorize
each protocol step and to note features in each step relevant
to our research questions. By comparing and discussing our
individual efforts, and by working through each of the anno-
tated protocols together, we developed a single coding scheme
by consensus to use throughout the protocol analysis.

Within this scheme, each step of the protocol is assigned
(1) a kind, which describes the primary action of the step (e.g.
physical, measurement, monitoring); (2) a precision, which
describes how the step is stated (e.g. as an instruction, as a
goal); and (3) zero or more additional features relevant to
our research questions (e.g. gives additional advice, describes
contingencies). The complete coding scheme is described in
Table I. For each kind, precision, and feature, we provide an
example from the protocols assigned that code. We reference
protocols using the notation [ID; Step], where ID is the protocol
ID number, and Step is the step or section number.2

Next, two of the authors coded the same protocol using the
established coding scheme to establish agreement in the use
of the scheme. We used Cohen’s Kappa [20] to measure the
agreement on each of the three components (kind, precision,
features) of the coding scheme. We chose Cohen’s Kappa as a
conservative measure that corrects for coincidental agreements
since we checked agreement on a small sample. The results
of the analysis are listed below.

• Kind: 52 coding assignments, of which 50 were identi-
cally coded by both researchers (Kappa=0.868).

• Precision: 52 coding assignments, of which 47 were
identically coded by both researchers. (Kappa=0.732).

• Features: 55 coding assignments, of which 51 were
identically coded by both researchers. (Kappa=0.815).

This demonstrates a “substantial” to “almost perfect” agree-
ment [20] for each of the components. Therefore, one author
coded an additional 19 protocols, bringing the total number of
coded protocols to 20. The coded protocols include randomly
chosen recent free protocols from CSHP’s website where ten
were from the Bioinformatics category, five from the Neu-
roscience category, and five from the Laboratory Organisms
category.

2To retrieve a protocol, click its ID number in the PDF version of this paper,
or append the ID number to the url “http://dx.doi.org/10.1101/pdb.prot”.



Kind Example
physical

Manipulate physical objects

“Slowly pour 14 mL of lysis buffer . . . ”
[5384; 3]

virtual

Manipulate virtual objects
“Using NimbleScan software, open the
scanned image . . . ” [5385; 56]

cognitive

Evaluate or analyze

“. . . check the quality of the amplifica-
tion.” [4974; 12]

measurement

Take a measurement
“Quantify the DNA yield . . . ” [4974; 14]

non-human

No required human action
“This method was adapted from an orig-
inal protocol . . . ” [4918; pg. 3]

selection

Make a selection decision
“Select a gene/genomic locus . . . ”
[5491; 1]

monitoring

Watch or monitor

“. . . monitor wet slides . . . ” [4706; 12]

branching

Perform parallel actions

“This step can be performed during . . .
(Step 12).” [5237; 17]

looping

Repeat a process or step

“Repeat Step 10.” [5385; 12]

(a) Kind of action described in the step.

Precision Example
instruction

Straightforward instruction
“Anesthetize the animal by injecting in-
traperitoneally with 16 μL ketamine/xyla-
zine per gram of body weight.” [5410; 1]

goal-directed

Describes goal, not action

“Reduce the volume to a 15-μL concen-
trate using . . . ” [4974; 20]

task-directed

Describes task, not goal/action
“Examine the ruffled morphology charac-
teristic of mats by . . . ” [085076; 3.ii]

open-ended

Requires creativity or ingenuity

“Determine the amount of MNase to
use for each cell type experimentally.”
[5237; 23]

(b) Precision of the description of the step.

Features Example
advice

Suggested method or process
“For best results . . . ” [4918; 8]

constraints

Avoid this method or process
“Do not use syringe needles to load the
pipettes . . . ” [5201; 1]

expected outcomes

Expected result or outcome

“This provides a final effective dilution
of 10–6 viable cells per milliliter . . . ”
[5492; 7]

optionality

Optional process

“(Optional) Remove cells for additional
analysis.” [085076; 4.iii]

wiggle room

Alternative method or process

“This mixture can be stored for up to 6
mo at -20◦C.” [4974; 8]

contingencies

In-line troubleshooting

“If the density of cells and chromosome
spreads is insufficient, pellet the cells,
resuspend in a smaller volume of fixative,
and repeat with fresh drops.” [4706; 8]

information

Background information
“The PCR product is denatured and the
nonbiotinylated strand is removed in this
step.” [5491; 37]

reference

Outside source
“. . . see Preparation of Fixed Xenopus
Embryos for Confocal Imaging (Walling-
ford 2010b).” [5427; 2.i]

mapping

Map instruction over a set

“Treat all reserved aliquots with 20 μg
of proteinase K for 30 min at 65◦C.”
[084848; 33]

visual pattern match

Human visual processing

“View whole-cell K+ currents and record
for further analysis (Fig. 3).” [5014; 35]

(c) Additional features that appear in the step.

TABLE I: Coding scheme for protocols steps. Each step is
assigned a kind, a precision, and zero or more features.

B. Coding scheme for references

To address RQ3, we developed a separate coding scheme
for references to other instructions, protocols, papers, or
policies. The coding scheme was developed through a similar
consensus-based approach as described in Section III-A.

References in the analyzed protocols can be separated into
two broad categories. The first category includes references to
other instructions, protocols, or policies that are intended to
be integrated into the execution of the current protocol. The
second category includes references to other documents that
provide supplementary information, but are not integrated into
the execution of the protocol.

Within our coding scheme, each reference is assigned
(1) a reference type, which indicates the type of document
referred to (e.g. manufacturer instructions, institutional proto-
col); (2) either an integration strategy for integrated references
(e.g. use concurrently), or alternatively the role of a non-
integrated reference (e.g. background information); (3) zero
or more additional features. The complete coding scheme is
described in Table II.

To establish agreement in the use of the coding scheme, two
researchers coded the same two protocols. Again, we apply
Cohen’s Kappa as a conservative measure of agreement for
each of the coding components. The results of this analysis
are listed below.

• Reference Type: 57 coding assignments; 50 were identi-
cally coded by both researchers (Kappa=0.748).

• Integration Strategy: 55 coding assignments; 50 were
identically coded by both researchers (Kappa=0.914).

• Non-integration Role: 57 coding assignments; 55 were
identically coded by both researchers (Kappa=0.737).

• Features: 58 coding assignments; 51 were identically
coded by both researchers (Kappa=0.611).

This shows “substantial” to “almost perfect” agreement [20]
for three of the four components. We observed only “moder-
ate” agreement on the features component. Since this category
has a small number of possibilities, and a high frequency for
one of them (link), it is more difficult to distinguish the raw
agreement rate we observed (88%) from chance. Since the
accuracy of this component is not central to our results, we
did not perform another iteration. Therefore, one author coded
the remaining 18 protocols included in our data set.

IV. RESULTS

In this section we summarize and interpret the results of
the study in response to the research questions listed in
Section I-B. In the spirit of open science, our raw results
(coding data and calculations) are published in-full online.3

A. Precision of protocol steps

In contrast to Licklider’s claim that “instructions directed
to computers specify courses; instructions directed to human
beings specify goals” [6], we found a surprising number of
steps in the form of straightforward instructions (Table Ib).

3https://github.com/lambda-land/ProtocolStudy-Data



Reference Type Example
manufacturer

Manufacturer instructions
“. . . according to the manufacturer’s rec-
ommendation . . . ” [4974; 4.i]

academic

Academic protocol or paper
“This can be accomplished in yeast
by overexpressing herpes simplex virus
thymidine kinase to phosphorylate nucle-
osides (Lengronne et al. 2001)” [5385; 2.ix]

laboratory

Institutional protocol or policy

“. . . using standard restriction digestion
protocols.” [5168; 7.iii]

equipment

Equipment instructions

“For other array platforms, perform
washes as directed by the microarray sup-
plier.” [5385; 8.ii]

(a) Type of document referred to.

Integration Strategy Example
before

Use reference before starting
“The double-stranded RNA needed for
RNAi is prepared as in Preparation of
Double-Stranded RNA for Drosophila
RNA Interference (RNAi).” [4918; Related
Information]

concurrent

Use reference in parallel
“Imaging can also be performed simulta-
neously with . . . ” [5427; Discussion]

splice

Use reference, then continue

“Combine PCR products of replicate sam-
ples and purify them using the QIAquick
PCR Purification kit . . . ” [4974; 4.i]

merge

Combine reference with protocol
in an unspecified way

“. . . the power of such a screening method
is further enhanced when it is combined
with the simple pyro- screening enrich-
ment protocol, another pyrosequencing-
based innovation we have developed (Liu
et al. 2009).” [5491; 9.i]

(b) Strategy for integrating a reference into the protocol.

Non-integration Role Example
derivation

Derived from reference
“The 6C assay combines three differ-
ent methodologies: chromosome confor-
mation capture (3C) (Dekker et al. 2002),
chromatin immunoprecipitation (ChIP),
and cloning (Fig. 1).” [5168; 1.i]

comparison

Similarity to reference

“. . . it may be useful to employ other
labeling methods, such as those described
in . . . ” [5460; 1.i]

background

Additional information

“. . . (for details, see CSH Protocols ar-
ticles Embedding Mouse Embryos and
Tissues in Wax and Sectioning Mouse
Embryos).” [4820; 4.ii]

(c) Role of a non-integrated reference.

Features Example
modifications

Use reference with modification
“If another species is used, surgical con-
ditions and drug dosages should be opti-
mized for that species.” [5410; 2.iii]

link

Location/link to external source
“For imaging cleared embryos, see Prepa-
ration of Fixed Xenopus Embryos for
Confocal Imaging (Wallingford 2010b).”
[5427; 5.i]

(d) Additional features that appear in the reference.

TABLE II: Coding scheme for references. Each reference is
applied a type, either an integration or non-integration code,
and zero or more features.

These are expressed as directives to the user that contain little
to no ambiguity about the task the user is to complete:

• “Wash the cells with 5 mL of ice-cold PBS containing
protease inhibitor cocktail.” [5168; 4]

• “The moment that the slide lightly taps the tip and the
tip breaks, a small amount of the dye will leak from the
needle tip. Release the ‘clean’ button.” [4918; 7.ii]

• “Remove the Schneider’s insect medium from the sam-
ples.” [5460; 6]

Overall, we observed 777 examples of direct instructions out
of 833 total coded steps (93.3%).

The next most precise kind of step was also the second
most frequent. A goal-directed step describes an expected
goal, but leaves a degree of ambiguity about how the user
is to achieve it. Most examples of goal-directed steps we
observed involve bringing materials to a particular physical
state such as temperature or concentration:

“Add BrdU to a final concentration of 400 μg/mL
and incubate for the desired period.” [5385; 2]

Others instruct the actor to produce a measurement or calcu-
lation without spelling out a procedure:

“Calculate the percentage of the total responses.”
[5453; 12]

Overall, we observed 33 examples of goal-directed steps,
across 11 of 20 protocols.

Moving further from straightforward instructions, a
task-directed step describes a task where the goal itself is
ambiguous, or depends on the higher-level goals of the person
carrying out the protocol. Many of the examples we observed
instruct the actor to perform an evaluation without providing
an explicit indication of what the actor should be evaluating
or looking for:

• “Analyze 10 μL of the PCR products on a 1.5% agarose
gel to check the quality of the amplification.” [4974; 12]

• “Using a microscope (100X and 400X total magnifica-
tion), evaluate the degree of digestion.” [5014; 13.ii]

We observed 21 examples of task-directed steps, across
12 of 20 protocols.

Finally, we observed open-ended steps in just two of the
protocols. These steps are the least precise. They provide only
a general description of the intent of a step, but leave the goal
and task unspecified.

“DNase concentrations to achieve optimal smearing
sizes may differ for each cell line and therefore
must be determined empirically for each cell type.”
[5384; 20]

This type of step seems to require more creativity or ingenuity
by the user. As a collection of concrete and highly-polished
processes, it is not surprising that our data set provides
relatively few examples of such steps.

B. Linearity of protocols

Overall, the protocols we analyzed were surprisingly linear.
That is, they consist mostly of long sequences of instructions



with very few branch or loop steps.4 The branches that do
exist are expressed by directing the actor to skip ahead or
back to a particular step (similar to a GOTO) depending on
the result of a measurement or the task the actor is trying
to accomplish. Similarly, loops are expressed by directing the
actor to repeat a certain range of steps.

• “Proceed with step 7 during centrifugation . . . ” [5384; 6]

• “Repeat this step with the upper phase . . . ” [5168; 41]

• “Repeat steps 25.iii–25.v.” [5168; 25.vi]

We observed that only 10 of 20 protocols include any form
of branching or looping at all, and among these non-linear
protocols, they averaged just 2.3 branch/loop steps per
protocol. One protocol [5385] contained 8 loop steps but no
other protocol had more than 3 branches and/or loops. When
compared to all steps, branch and loop steps were just 2.76%
of the total coding instances.

In a few instances, instructions resemble higher-order func-
tions [21], such as the following map-like step that applies an
instruction to every member of a set.

“Slowly pipette 120 μL of nuclei suspension into
tubes #1–#7 . . . ” [5384; 9]

Higher-order functions may be used to “flatten” a non-
linear portion of a protocol to make it appear more linear.
A single step that maps an instruction over multiple physical
elements (tubes, phases, beads) is structurally simpler than
branch/loop steps that reference other steps by name.

C. Accommodating imprecise execution

Previous research has shown that protocols are only loosely
followed in practice (see Section II). A protocol describes an
idealized course of action, but the person executing it will
frequently deviate from this course by modifying, reordering,
adding, or even skipping steps. By way of analogy, consider
a program or protocol as describing a path. In a computer
program, the path specified is very narrow, like a tightrope,
which the computer follows precisely. In a human protocol, the
path is much wider, and the person following it may wander
freely from side to side, stop to smell the flowers, and so on.

We observed six different features within the analyzed
protocols that explicitly accommodate this imprecise execution
model by broadening or narrowing the path, or by helping the
user find their way back when lost. These are the first six
features listed in Table Ic. The frequency of each of these six
features is summarized in Table III.

Broadening. The features optionality and wiggle room

represent attempts by the protocol writer to broaden the path.
Quite different from anything found in computer programs,
steps that exhibit these features explicitly encourage actors to
vary from the narrowest interpretation of the step semantics
and rely on their own judgment.

Steps with the optionality feature indicate explicitly that
a step is optional. While people are free to use their judgment

4However, we did observe many references to external protocols, which
correspond roughly to subroutine calls and complicate the question of control
flow somewhat. See Section IV-D.

Code No. of protocols No. of instances
advice 19 (95%) 108 (12.9%)
constraints 20 (100%) 108 (12.9%)
expected outcomes 9 (45%) 18 (2.04%)
optionality 10 (50%) 23 (2.76%)
wiggle room 14 (70%) 35 (4.20%)
contingencies 6 (30%) 6 (0.72%)

TABLE III: Frequencies of features supporting the imprecise
execution of protocols.

to skip steps at any point in a protocol, the optionality feature
highlights to the actor that a particular step is not essential to
the ultimate goal of the protocol.

“At this point, the cell pellet can be snap-frozen
in liquid nitrogen and stored at -80◦C until use.”
[5168; pg 5]

Similarly, steps with the wiggle room feature provide an
explicit range of execution, suggesting, for example, that a
particular measurement can be estimated.

“Incubate the mixture for 15-30 min at 70◦C . . . ”
[5491; 12.ii]

Narrowing. The features advice, constraints, and ex-
pected outcomes represent attempts by the protocol writer
to narrow the path. These features were much more common.
The presence of narrowing features makes it clear that protocol
writers assumes that actors will wander from the path they
are describing. These features focus the actor’s attention on
important aspects and expectations of the protocol.

Steps with the advice feature provide additional tips to help
the actor navigate the most important sections of the protocol.

“For best results, inject the embryos with the needle
at an angle slightly greater than 45◦ relative to
the embryo surface in the posterior quarter of the
embryo . . . ” [4918; 8]

Steps with constraints explicitly constrain the execution
path to ensure that the actor doesn’t deviate at an important
point. For example, the following instruction about a chamber
is followed by a constraint about its positioning.

“Close the hybridization chamber tightly and incu-
bate it in the dark for 16 h in a 60◦C water bath.
The hybridization chamber should be submerged in
water, but direct contact with the bottom of the water
bath should be avoided.” [4974; 29]

Constraints provide a way to alert the actor that an extra level
of care and precision should be used on a particular step.

Finally, steps with the expected outcomes feature provide
a sort of checkpoint after an instruction to ensure that the actor
can recognize that they are still on the right path.

“This step typically takes 12 min at 14,000g.”
[4974; 20.iii]

Expected outcomes are similar to assertions in computer
programming languages.



Code No. of protocols No. of instances
before 20 (100%) 99 (45.0%)
concurrent 16 (80%) 61 (27.7%)
splice 13 (65%) 39 (17.7%)
merge 8 (40%) 21 (9.5%)

TABLE IV: Frequency of integration strategies for references
to other instructions and protocols.

Finding the way back. Steps with the contingencies

feature provide an explicit way to recover from errors, which
might have been caused by deviating from the protocol.

“Use the markings on the 1.5-mL tube to provide
an estimate of the pellet volume. If the pellet is very
small, resuspend it in 300 μL of cell lysis buffer.”
[084848; 19]

This feature was quite rare: only 6 instances in our data set. It
seems that actors are typically expected to recover from errors
on their own.

D. Integrating other instructions and protocols

One of our research questions (RQ3) concerned relation-
ships between protocols and other instructions, whether pro-
tocols refer to each other and how they integrate. We observed
that protocols refer to other resources very often. We identified
a total of 261 references across all 20 protocols. The vast
majority of these (246, 94.3%) were to explicitly named
instructions or protocols (e.g. cited academic protocols or
specific manufacturer’s instructions), while the remainder were
generic references to documents in the actor’s lab (e.g. lab
policies or ethics documents). We coded all 261 references
using the coding scheme summarized in Table II.

Recall from Section III-B that we can classify references
according to whether they affect the semantics of the current
protocol, that is, whether they integrate with the protocol
or merely provide background or supplementary information.
We observed that 220 (84.3%) of the references integrated
with their protocol. The observed instances of each integration
strategy are summarized in Table IV.

The splice integration strategy most often occurred with
manufacturer’s instructions for lab “kits”, packages that in-
clude solutions and equipment needed to do a common lab
procedure. A spliced-in reference is similar to a subroutine
call in a computer programming language.

A large source of before and concurrent integrations
was a list of “recipes” and “warnings” given in the preamble
of every protocol. Recipes are protocols or instructions that
must be followed before the current protocol can be executed.
Warnings are additional instructions that must be kept in
mind during the execution of the protocol, typically for safety
reasons (coded as concurrent). For example:

“<!>DTT (Dithiothreitol; 0.1 M)” [5559; materials]

This warning refers to a brief appendix entry:
“DTT (Dithiothreitol) is a strong reducing agent that
emits a foul odor. It may be harmful by inhalation,
ingestion, or skin absorption. When working with

the solid form or highly concentrated stocks, wear
appropriate gloves and safety glasses and use in a
chemical fume hood.” [5559; cautions]

This DTT warning is typical of a concurrent integration; it
alters the semantics of the rest of the protocol by specifying
how to handle DTT safely. In fact, DTT appears only once
in the protocol among a list of ingredients in step 5 [5559; 5].
While this step just says to “prepare the mixture”, the warning
is much more specific and demanding: the worker must wear
gloves and glasses and perform the action in a specialized
workspace. Also, unlike a spliced integration, a concurrent
integration is applied implicitly throughout a protocol, to be
triggered when relevant. In this example, the reference appears
at the top of the protocol; the user must notice it and interleave
it appropriately wherever DTT appears later on. Sometimes the
integration point(s) are left even more implicit:

“It is essential that you consult the appropriate
Material Safety Data Sheets and your institution’s
Environmental Health and Safety Office for proper
handling of equipment and hazardous materials used
in this protocol.” [085076; materials]

In some ways, the concurrent strategy is similar to aspect-
oriented programming [22]. It separates concerns related to
specific materials or actions and the actor is responsible for
weaving those concerns into the execution of the protocol.

The modification feature captured 11 instances where a
reference was integrated with some explicit changes.

“Purify the eluate using a MinElute PCR Purifica-
tion Kit according to the manufacturer’s protocol
with the following modifications: . . . ” [5385; 33-33.i]

Finally, we observed 21 instances of the merge integration
strategy across 8 of the protocols. In some cases, these
references seemed intended to help the user know when to
choose this protocol by describing how the protocol might
fit into a larger workflow and combine with other processes.
The 17 instances across 8 protocols of the comparison role
for non-integrated references also seemed tailored for this
purpose, as illustrated by the following example.

“Pei et al. (1997) describe an alternative method to
isolate Arabidopsis guard cell protoplasts suitable
for patch clamping.” [5014; pg 6]

V. DISCUSSION

Although the results in Section IV-A show that protocols are
written precisely, Section II discusses the substantial evidence
that, in practice, protocols are not executed precisely. Rather,
a protocol describes an idealized path to follow in order to
accomplish a task. Protocol authors seem to be well-aware of
how protocols are used and tailor the presentation of protocols
to support this execution strategy by alerting the protocol user
about which shortcuts and side-trips are dangerous and which
might be useful. By calling extra attention to especially im-
portant instructions, or providing checks to help the executor
determine whether they are still on track to accomplish their
task, the protocol author builds in checkpoints, redundancy,



and safety measures to ensure the task will be successfully
accomplished.

These features demonstrate how differences between hu-
mans and computers motivate differences between protocols
and programs. On the one hand, the computer does exactly
what it is told, which is useful for predictability and repeata-
bility. On the other hand, the human can use common sense,
which supports flexible error handling and recovery. Human
common sense stands in sharp contrast to the commonly
observed situation in imperative programs where the computer
blithely chugs away after an error, unless the programmer has
built in an explicit, complex system of fail-safes.

Similarly, the ambiguity and allowance for variation writ-
ten into protocols are advantageous by allowing the user to
interleave or integrate other plans: their own plans, goals,
and constraints, and the auxiliary recipes, warnings, and
procedures suggested by the protocol’s author. Since protocol
writers provide explicit allowances for variation, and explicit
constraints and checks to reign in the variation they expect
their users to make on their own, this suggests they know
these features are important and must be supported if they
want users to adopt their protocols.

The linearity that we observed in protocols may also play
a role in supporting the integration of user goals and outside
plans. Since protocol authors describe the path as a straight
line rather than a garden of forking paths, they make it easier
for users of the protocol to understand the document as a
whole, and reason about the consequences of skipping, adding,
or varying steps. That is, linearity allows the user a greater
“field of view” when it comes to execution of the protocol.
Rather than seeing a small slice of the process, they have
access to many steps in advance, allowing them to plan and
incorporate outside information in a more interactive way.

VI. IMPLICATIONS FOR DESIGN

The design of literate “workflow” tools may benefit from
our findings. Workflows, such as those provided by Biocon-
ductor [16] or Galaxy [23], and interactive computation tools,
such as IPython [4], are like protocols in that they describe a
complex sequence of activities that a user may need to adapt
to their own purposes, but the user is manipulating code and
program entities instead of beakers and solutions. These tools
could borrow the following features from protocols:

Path width. Authors of workflow tools could include
explicit ways to add and execute invariants and tests that
constrain a user’s modifications to a workflow step. Or even
without such changes, authors of workflows could add asser-
tions and tests in locations where users are most likely to tinker
with the script. Workflow users presumably use trial-and-error
to adapt scripts, and could benefit from such hints about the
expected scope of the exploration process.

Connection to original. Workflow tools could preserve and
make visible the relationship between an original demonstra-
tion protocol and any script the user creates by adapting it.
When users edit example code to meet their own needs, the
original becomes harder to recover and relate to the tailored

script. This forfeits some of the benefits that protocols provide
since they no longer communicate adherence to a normative
process, and their hints about the path and its width may be
lost or damaged due to the user’s experimentation.

Composition. Some workflow tools do not really allow for
composition the way protocols do: IPython for example can
only call plain Python code, and Bioconductor workflows can
only call ordinary R packages. Perhaps auxiliary workflows
could be referenced in some of the ways protocols are (Ta-
ble IIb), but adding facilities to help the user interleave the
workflows’ actions, and using the assertions and tests men-
tioned above to check that their actions interleave correctly.

Our previous work on variation languages is relevant for the
design and implementation of these features. We have devel-
oped techniques for adding variation points to programs and
other data structures, which can be used to explicitly broaden
execution paths [24]–[26]; and we have developed editing
techniques for maintaining a history of explicit variations
which can be used to maintain a connection to the original
example as well as previously explored alternatives [27].

VII. CONCLUSION

At the start of this study, we wanted to know how to improve
the state of the art in mixed-initiative execution, to help people
and computers collaborate more flexibly and effectively on
tasks. This is important because in many cases, such as active
learning scenarios, neither the computer nor the user alone
have complete information about the sequence of tasks that
need to be completed. To that end we investigated biological
protocols, to mine them for ideas about what the human side of
a human-computer program should look like. What we found
embedded in these documents was a toolbox of ways to specify
tasks, that take advantage of human capabilities:

• Ways of communicating both limits and liberties from the
central activity sequence

• A simplified, linear structure, perhaps aimed at lowering
the perceived risk of adoption, and cost of tailoring

• Simple statements of expected intermediate results in lieu
of elaborate error-handling mechanisms

These tools seem immediately applicable to the design of
workflow tools that help end-user programmers learn a com-
plex task while adapting it to a real application. Beyond that,
we hope to use these results to inform the design of more ef-
fective mixed-initiative features in programming languages, in
which human-computer interaction is a continuum of control,
rather than as a function of “domination” by one or the other.

ACKNOWLEDGMENTS

We would like to thank Margaret Burnett and Stephen
Ramsey for helpful comments and advice in the early stages of
this research, Stephen for directing us to CSHP as a repository
of high-quality protocols to study, and the generous support
of the Alfred P. Sloan foundation.



REFERENCES

[1] J. M. Carroll, The Nurnberg Funnel: Designing Minimalist Instruction
for Practical Computer Skill. MIT press Cambridge, MA, 1990.

[2] E. Horvitz, “Principles of mixed-initiative user interfaces,” ACM SIGCHI
1999, pp. 159–166, May 1999.

[3] A. J. Quinn and B. B. Bederson, “Human computation: A survey and
taxonomy of a growing field,” SIGCHI Conference on Human Factors
in Computing Systems, pp. 1403–1412, 2011.

[4] F. Perez and B. E. Granger, “IPython: a system for interactive scientific
computing,” Computing in Science & Engineering, vol. 9, no. 3, pp.
21–29, 2007.

[5] C. s. de Souza and C. F. Leitão, “Semiotic engineering methods for
scientific research in HCI,” Synthesis Lectures on Human-Centered
Informatics, vol. 2, no. 9781598299441, pp. 1–122, 2009.

[6] J. C. R. Licklider, “Man-computer symbiosis,” IRE Transactions on
Human Factors in Electronics, vol. HFE-1, no. 1, 1960.

[7] C. L. Sidner, C. Rich, and N. Lesh, “Collagen: Applying collaborative
discourse theory to human-computer interaction,” AI Magazine, vol. 22,
no. 4, pp. 15–26, 2001.

[8] C. Miller and R. Larson, “An explanatory and “argumentative” interface
for a model-based diagnostic system,” in ACM Symposium on User
interface Software and Technology (UIST). Monterey, California,
United States: ACM, 1992, pp. 43–52.

[9] N. Lesh, J. Marks, C. Rich, and C. L. Sidner, “"man-computer symbio-
sis" revisited: Achieving natural communication and collaboration with
computers,” IEICE Transactions on Information and Systems, vol. E87-
D, no. 6, pp. 1290–1298, 2004.

[10] T. Kulesza, S. Stumpf, W.-K. Wong, M. M. Burnett, S. Perona, A. Ko,
and I. Oberst, “Why-oriented end-user debugging of naive bayes text
classification,” ACM Transactions on Interactive Intelligent Systems,
vol. 1, no. 1, pp. 1–31, 2011.

[11] T. Lau, E. M. Haber, T. Matthews, and G. Leshed, “Coscripter: Au-
tomating & sharing how-to knowledge in the enterprise,” in SIGCHI
Conference on Human Factors in Computing Systems. Florence, Italy:
ACM, 2008, pp. 1719–1728.

[12] G. L. Ward and L. R. Horn, The Handbook of Pragmatics. Blackwell
Publishing, 2004.

[13] L. A. Suchman, Plans and Situated Actions: The Problem of Human-
machine Communication. Cambridge University Press, 1987.

[14] M. Lynch, “Protocols, practices, and the reproduction of technique in
molecular biology,” The British Journal of Sociology, vol. 53, no. 53,
pp. 203–220, 2002.

[15] S. Timmermans and M. Berg, “Standardization in action: Achieving
local universality through medical protocols,” Social Studies of Science,
vol. 27, no. 2, pp. 273–305, 1997.

[16] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling,
S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry et al., “Bioconductor:
Open software development for computational biology and bioinformat-
ics,” Genome Biology, vol. 5, no. 10, p. R80, 2004.

[17] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27,
no. 2, pp. 97–111, 1984.

[18] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. a. Lau, “End-user
programming of mashups with vegemite,” IUI 2009, pp. 97–106, 2009.

[19] Apple. Mac basics:automator. [Online]. Available: https://support.apple.
com/en-us/HT2488

[20] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.

[21] P. Sestoft, “Higher-order functions,” in Programming Language Con-
cepts. Springer, 2012, pp. 77–91.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP
1997-Object-oriented Programming. Springer, 1997, pp. 220–242.

[23] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor et al., “Galaxy: a platform
for interactive large-scale genome analysis,” Genome Research, vol. 15,
no. 10, pp. 1451–1455, 2005.

[24] M. Erwig and E. Walkingshaw, “The Choice Calculus: A Representation
for Software Variation,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 21, no. 1, pp. 6:1–6:27, 2011.

[25] E. Walkingshaw, “The Choice Calculus: A Formal Language of Varia-
tion,” Ph.D. dissertation, Oregon State University, 2013.

[26] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden,
“Variational Data Structures: Exploring Trade-Offs in Computing with
Variability,” in ACM SIGPLAN Symposium on New Ideas in Program-
ming and Reflections on Software (Onward!), 2014, pp. 213–226.

[27] E. Walkingshaw and K. Ostermann, “Projectional Editing of Variational
Software,” in ACM SIGPLAN International Conference on Generative
Programming and Component Engineering (GPCE), 2014, pp. 29–38.


