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Abstract

The choice calculus is a simple metalanguage and associated
theory that has been successfully applied to several prob-
lems of interest to the feature-oriented software development
community. The formal presentation of the choice calculus
essentially restricts variation points, called choices, to vary
based on the inclusion or not of a single feature, while in prac-
tice variation points may depend on several features. There-
fore, in both theoretical applications of the choice calculus,
and in tools inspired by the choice calculus, the syntax of
choices has often been generalized to depend on an arbitrary
propositional formula of features. The purpose of this paper
is to put this syntactic generalization on more solid footing
by also generalizing the associated theory. Specifically, after
defining the syntax and denotational semantics of the formula
choice calculus (FCC), we define and prove the soundness
of a syntactic equivalence relation on FCC expressions. This
effort validates previous work which has implicitly assumed
the soundness of rules in the equivalence relation, and also
reveals several rules that are specific to FCC. Finally, we
describe some further generalizations to FCC and their limits.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory

General Terms Languages, Theory

Keywords variation, software product lines, choice calculus,
refactoring, program transformation

1.

The choice calculus [10} 24] is a simple metalanguage for
describing variation in programs and other structured data.
In the choice calculus, variation is represented in-place as
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choices between alternative subexpressions. For example, the
following variational expression e, contains three choices.

€aba = A(2,3) + B(4,5) + A(6,7+ 8)

Each choice has an associated dimension, which is used to
synchronize the choice with other choices in different parts
of the expression. For example, expression e,;, contains
two dimensions, A and B, and the two choices in dimension
A are synchronized. Therefore, the variational expression
€eaqbe Tepresents four different plain expressions, depending
on whether the left or right alternatives are selected from each
dimension. This is reflected in the semantics of e, shown
below. The semantics is defined in terms of a configuration
function ¢ that maps each dimension to either L or RE]

24446  cA-L cB—L
_)2+5+6 cA=L,¢cB=R
learale =3 4i748 cA—R eB-1
345+74+8 ¢cA=R,cB=R

The syntax and semantics of the choice calculus are briefly
summarized in[Section 2] For now, a helpful analogy is to con-
sider the choice calculus as a more concise and constrained
version of the C preprocessor’s #ifdef notation (CPP), where
a choice D{eq, e5) corresponds to the following CPP pattern.

#ifdef D \\ e; \\ #else \\ e3 \\ #endif

Like cPP, the choice calculus is a metalanguage that can be
used with different object languages. Unlike CPP, the choice
calculus does not operate on plain text, but respects the un-
derlying abstract syntax of the object language. This enforces
that in-place variation is “disciplined” [[16] and ensures that
any variant that can be obtained from a choice calculus ex-
pression is syntactically valid in the object language.

The choice calculus is also more restrictive than CPP in
that it only allows atomic dimension names as the condition
of choices, whereas CPP allows arbitrary propositional for-
mulas in the condition of an #if construct. This restriction
has drawbacks. For example, suppose we consider each di-
mension D to represent a feature in a software product line,

' We use adjacency to indicate function application, as in lambda calculus.



where ¢ D = L means feature D is enabled and c D = R
means it is disabled. A common scenario is to replace some
existing code e; with some new code e5 to deal with an infer-
action between two features A and B. We can represent this
scenario in the choice calculus using nested choices.

edup = A<B<627 el>7 61>

But this solution duplicates e;. In our previous work [10], we
introduced a let-construct to the choice calculus to enable fac-
toring out such redundancy as let v = e; in A(B(ea,v),v).
However, naming substantially increases the complexity of
the calculus, so this extension has not been used in most
applications of the choice calculus.

An arguably better solution is to generalize choices to
allow them to be indexed by propositional formulas of
dimensions, allowing us to rewrite egqy, as the following
€XPression €gop; -

econj = (A A B)<€2, €1>

Given a configuration c, the left alternative es will be selected
from e.opn; only if both ¢ A = L and ¢ B = L, otherwise
e1 will be selected. The expression is isomorphic to the
following CPP pattern using the more flexible #if directive.

#if A&& B \\ ez \\ #telse \\ e; \\ #endif

We refer to the choice calculus restricted to atomic dimen-
sions as the atomic choice calculus (ACC) and the version gen-
eralized to propositional formulas of dimensions as the for-
mula choice calculus (FCC). We use “choice calculus” when
the distinction does not matter.

There are some reasons to prefer ACC over FCC in formal
contexts: it is somewhat simpler and many operations on FCC
expressions require solving Boolean satisfiability problems.
However, FCC is more expressive and corresponds more
closely to CPP, which is very widely used in practice. There
is also strong evidence that SAT solvers are fast at solving
the kinds of satisfiability problems that arise when working
with variational software [[17, [20].

Next, observe that the choice calculus representation is
not unique—there are many different ways to represent a
variational expression with the same semantics. For example,
by distributing shared code over the alternatives of a choice,
as illustrated below, we can obtain a new expression that is
semantically equivalent.

Aler,ea) +es = Aler + ez, e+ e3)

In our previous work, we have defined and proved sound an
equivalence relation consisting of several such syntactic rules
relating ACC expressions [10} 24].

This equivalence relation has been very useful in practice.
For example, it the basis for a variational type unification
algorithm [5, 6] that has applications to typing software prod-
uct lines, C++ templates, generalized algebraic data types,
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and improving type error reporting [2H4]]. This equivalence
relation has also been used to define the update operation of
a view-based editing model for variational software 23} 25]],
and is the (usually implicit) theoretical basis for languages
and tools for variational programming [[7, 11} [14} 191 21} 26].

The major contribution of this work is to extend ACC’s
equivalence relation to FCC. In particular, in[Section 3] we
formally define the syntax and semantics of FCC, then in
we enumerate a set of rules that syntactically relate
semantically equivalent expressions. Some of these rules are
straightforward generalizations of corresponding ACC rules,
while some are new and specific to FCC. We provide human-
readable soundness proofs for a representative set of rules in
the text, and also a complete mechanized soundness proof of
all the rules using the Coq proof assistant [1]].

This effort is significant since it validates existing work
that uses FCC and was already relying on the correctness of
the corresponding rules from Acc [23} 125 26]. Additionally,
many other languages and tools that use FCC or very similar
representations, such as TypeChef [[13] [15], can benefit by
using this relation as a sound basis for defining semantic-
preserving transformations and optimizations.

In[Section 3] we discuss further generalizations of FCC to
other Boolean algebras. We discuss related work in
and future work and conclusions in

2. Atomic Choice Calculus

In this section, we briefly present ACC as necessary back-
ground for the development of FCC in Section[3] The language
presented here is simpler than the original presentation of the
choice calculus [10] since it omits local dimension declara-
tions and the let-construct described in Section[I] However,
this simplified ACC has been used in the majority of appli-
cations and its corresponding equivalence relation has also
been proved sound [24]].

The syntax and semantics of ACC are defined in Figure [T}
The choice calculus is a metalanguage that can be instan-
tiated by an arbitrary object language. Here we represent
the abstract syntax of the object language X as a labeled
binary tree. This choice is made for simplicity, but is not
a fundamental restriction. Note that a binary tree supports
encoding internal nodes of arbitrary arity, for example, with
right-nested trees. The syntax of ACC is then just X extended
by dimension-labeled choices.

A configuration is a (total) function from dimensions
to tags that describes how to configure an expression in
ACC into one of its variant plain programs in X. The tag L
means to select the left alternative of every choice in a given
dimension, while R means to select the right alternatives.
The metavariables ¢ and c are used to represent arbitrary tags
and configurations, respectively, unless qualified otherwise.

The semantic domain for ACC expressions is the function
domain C' — X, which is the set of functions from con-
figurations to terms in the object language. The semantic



Generic object language syntax:

a€A AST Label
reX o= ¢ AST Leaf
|  a<z,z> AST Node
Atomic choice calculus syntax:
de D Dimension
eckE = ¢ AST Leaf
| a<e,ex AST Node
| d(e,e) Choice
Tags and configurations:
teT == L |R Tag
ceC = D—T Configuration

Semantics of atomic choice calculus:

E[]:FE—-C—X
Ele].
Efa=eq, es>]. = a<E[e1]c, E]e2] >

) Eled]e, ifcd=L
E[[e2]]c7

otherwise
Figure 1: Atomic choice calculus language definition.

=c

Efd(e1,ez)]c

function E[-] is defined in Figure [1] In the last equation,
note that if ¢ d # L, then ¢ d = R. Elements of the object
language in the image of E[e] are called variants of e and
application of E[e] to a given c is called configuration.

To illustrate both the semantics and how binary trees can
encode other object languages, consider the choice calculus
instantiated with the object language of decimal notation.
Labels in this object language are Arabic numerals, such as
1, 2, and 3. Terms of this object language are right nested
branches. For convenience, we write the concrete syntax of
terms as sequences of Arabic numerals, for example, 123
and 213 are terms in concrete syntax which correspond to
the terms 1<g, 2<e, 3<e, e>>> and 2<eg, 1<g, 3<e, >>>, re-
spectively, in the abstract syntax. Suppose A is a dimension.
Then 1 A(23,32) is a choice calculus expression. This ex-
pression consists of a node labeled 1 with an empty left child
and a choice as the right child. The choice is labeled with the
dimension A and the alternatives are the terms 23 and 32. For
each configuration c, the semantics of this expression is the
following: (1) if ¢ d = L, then the variant 123 is selected,
and (2) if ¢ d = R, then the variant 132 is selected.

It is easy to extend the definition of ACC to support
choices with more alternatives. For example, to support three-
alternative choices, add a new element to the set of tags, add
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an additional alternative to the syntax of choices, and extend
the semantic function to include a new case in the semantics
of choices.

3. Formula Choice Calculus

In this section we present FCC. As described in the intro-
duction, this language has already been widely used. The
presentation in this paper is similar to one given in previous
work [25]], but more thorough. First, we define propositional
formulas of tags and dimensions in then define
the syntax and semantics of FCC in[Section 3.2

3.1 Propositional Formulas

We begin with a “semantics first” [9, [12] description of
propositional formulas over tags. The set T forms an algebra
with a prefix unary operator (—), called complement, and
infix binary operators (V) and (A), called join and meet,
respectively. These operators are defined by the tables below.

t |-t V|L R AL R
LR LIL L LIL R
R| L R|L R R|R R

Note that 7" is just the Boolean algebra with two elements,
up to isomorphism, where L is “true” and R is “false”.

The syntax and semantics of formulas over tags and
dimensions is given in the first half of Note that
for convenience we reuse in the syntax the semantic-level
operators (—, V, A) defined by the tables above (and used in
the right-hand side of the semantics definition). The semantic
domain for formulas is the function domain C — 7. In
other words, given a formula (e.g. attached to a choice), the
semantics tells us whether to select the left alternative or the
right for a given configuration. The semantic function for
formulas is F[-], defined by the equations in[Figure 2] This is
isomorphic to the evaluation of Boolean expressions with an
environment (configuration) mapping variables (dimensions)
to truth values (tags).

3.2 Language Definition

The syntax and semantics of FCC are defined in the second
half of Note that although we repurpose the meta-
variable e and sort £/ to FCC (and these refer to FCC terms
hereafter), we directly reuse the sort X to refer to plain object
language terms, as defined in

The syntax of FCC is the same as ACC, except we label
choices by formulas rather than atomic dimensions. The
semantic domain of FCC remains unchanged, C' — X,
mapping configurations to terms in the object language. The
semantic function differs in the case for a choice f(eq,e2),
which now the configuration to evaluate the formula f rather
than simply looking up the tag associated with the dimension.

To illustrate, consider FCC instantiated by the object lan-
guage of decimal notation, as before. Suppose A and B are
dimensions. Then 1(A V B)(23,32) is an FCC expression.



Formula syntax:

felr ==t Tag
| d Dimension
| —-f Complement
|  fVvf Join
|  fAf Meet

Semantics of formulas:

F[]:F—-C—>T

F[t]. =t
F[d]. =cd
F[=fle =-FIfl

F[fl \/f2ﬂc :Fﬂf1HCVFHf2HC
F[[fl /\f2ﬂc = F[[flﬂc/\F[[f2ﬂc

Formula choice calculus syntax:

ecE == ¢ Empty
| a<e,ex Tree
| fle,e)  Choice

Semantics of formula choice calculus:

E[]:E—=-C—=X

Ele]. =€
Ela~eq, e2>]. = a<E[e1]c, Elez] >

- E[[el]]ca lfF[[fﬂc =L
E[[f<el7 €2>]]c - {E[[QQ]](;, otherwise

Figure 2: Formula choice calculus language definition.

Now, for each configuration ¢, the semantics of this expres-
sionis: (1)if ¢ A = L or ¢ B = L, then the variant 123 is
selected; (2) if c A = R and ¢ B = R, then the variant 132
is selected.

4. Equivalence Relation

In this section we define and prove sound a syntactic relation
(=) on FCcC terms, where if two terms e; = ey are related,
then e; and ey are semantically equivalent, that is, Efe;] =
Efez]. The rules that make up this equivalence relation
can therefore be used to prove the semantic equivalence
of two FCC expressions, or if applied in a directed fashion,
can be used to transform an FCC expression in a semantics-
preserving way.
We begin in by defining an equivalence re-

lation on formulas, then define the equivalence relation on
FCC in[Section 4.2] We provide human-friendly proofs for an
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illustrative subset of the rules directly in the text. A mecha-
nized proof of the complete equivalence relation, written in
Coq [, is available onlineE]

4.1 Formula Equivalence

In this subsection, we establish syntactic rules for deriving
the semantic equivalence of formulas. This relation is needed
in the premises of several rules of the equivalence relation
for FCC defined in However, in practice, formula
equivalence can be checked using a SAT solver.

Before we proceed to the definition, it is useful to recall
the following elementary facts:

1. Two functions are equal, by definition, if they have the
same domain and codomain and their images agree for all
elements in the domain.

2. For any function, the inverse images of elements in the
codomain partition the domain.

3. Any partition defines a “canonical” equivalence relation
where the parts of the partition correspond to the equiva-
lence classes of the relation.

Definition 4.1 (Formula equivalence). Let (=) be a binary
relation on formulas defined by f = f’iff F[f] = F[f'].

Note that formula equivalence is defined in terms of function
equality. Since F'[-] is a well-defined function from formulas
to elements of the semantic domain, it follows from earlier
remarks that the relation (=) is an equivalence relation. We
refer to the relation (=) as semantic equivalence and we call
formulas f and f’ (semantically) equivalent if f = f'.

A set of formula equivalence rules are given in
They are organized into three groups. The structural rules
state that formula equivalence is reflexive, symmetric, and
transitive. Reflexivity and symmetry follow directly from
and transitivity follows from
and the definition of F'[-].

The congruence rules state that two formulas with the
same top-level connective are semantically equivalent if their
subexpressions are equivalent. Note that these rules are not
independent of each other. For example, the JOIN-CONG
rule can be derived from JOIN-CONG-L and JOIN-CONG-R.
Alternatively, both JOIN-CONG-L and JOIN-CONG-R can be
derived from JOIN-CONG and REFL.

Finally, the algebraic rules given in [Figure 3|encode sev-
eral of the usual laws of Boolean algebra expressed in terms
of formulas. These rules include axioms that characterize the
behavior of complementation (JOIN-ComP and MEET-COMP)
and identities for join and meet (MEET-ID and JOIN-ID); rules
that describe the idempotence, associativity, and commuta-
tivity of join and meet; and rules for distributing join and
meet over each other. The Comp-JOIN and COMP-MEET rules
are the De Morgan’s laws for formulas. Since these rules
are all standard, we include only a subset here. However, a
more complete set (including annihilators for join and meet,

Zhttps://github.com/lambda-1land/FCC-Coq
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Structural rules:

R SYMM-F TRAN-F
Piivy f=f h=f fo=f
- f'=r fi=fs
Congruence rules:
CoMP-CONG  JOIN-CONG MEET-CONG
f=r L= fo=f h=f =0
f=af AVER=fV  hANR=AAS

JOIN—CONG—/L
i=f
fiVfa=fiVfa

MEET—CONC[E—L
H=f
JiNfa=fiAf

JOIN—CONG—/R
fe=fo
fiVfa=fiVf

MEET—CONCI}—R
fe=fo
SiNfa=fiAf

Algebraic rules (subset):

JoIN-CoMP MEET-COMP JOIN-ID MEET-ID
fv-f=L fA-f=R Rvf=f LAf=f
JOIN-IDEMP JOIN-ASSOC
fvf=f VvV (foVfa)=(fiVvfe)Vfa
JoiN-CoMM JOIN-DIST

V= faVhi AV (a2Afs) =V )A(fLVfs)

MEET-IDEMP

fNF=f

MEET-ASSOC

AN A= (A AFR)A S

MEET-COMM

HNnfao=foANf

MEET-DIST

AA(feV f3) = (fiAfo) V(fi A fs)

COMP-JOIN

(fiv)=-fin-fe

COMP-MEET

S(finfe)=-fivaf

Figure 3: Formula equivalence relation.

double negation, symmetric identity laws, etc.) is defined and
proved sound with respect to in the online Coq
implementation.

Clearly, the formula equivalence relation implies that the
set of equivalence classes of formulas is isomorphic to the
free Boolean algebra on the set of dimensions D. The op-
erations on equivalence classes are defined in terms of the
operations on representative formulas and the formula con-
gruence rules ensure that these operations are well-defined.

As an aside, consider the binary infix operator (A) on
the set of equivalence classes, called symmetric difference (or
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Structural rules:

REFL-E SYMM-E TRAN-E

- e=¢ e1=e ex=e3
e=e 7

e =e €1 = €3
Choice transposition and congruence rules:
OBJ-CONG
CHC-TRAN —_ _
€1 = €7 €2 = €9

flei,e2) == flez,e1)

7
a<e1, ex> = a<ey, x>

OBJ-CONG-L
e = 6/1

OBJ-CONG-R
€ = 6/2

/ /
a<e1, ex> = a<ey, ez2> a<e1, e2> = a<ey, x>

CHC-CONG CHC-CONG-F
e1=¢€} €2 = €h f=f f=rf
flei,e2) = f'(el, ed) fler,e2) = f'ler, e2)

CHC-CONG-L
€1 = 6/1

flei, e2) = flel, e2)

CHC-CONG-R
€2 = 612

f<€1762> = f<617el2>

Figure 4: Structural, transposition, and congruence rules.

exclusive or). For any representative formulas fy, fo € F, the
symmetric difference fi A f5 is defined to be the equivalence
class with representative formula (f1 A = f2) V (fa A = f1).
Note that the equivalence classes form a group with the law
of composition given by symmetric difference. We revisit this

idea in

4.2 FCC Term Equivalence

In this subsection, we establish syntactic rules for deriving
the semantic equivalence of FCC terms, which is the main
contribution of this work. The equivalence of FCC terms is
defined in the same way as it is for formulas.

Definition 4.2 (FCC term equivalence). Let (=) be a binary
relation on expressions defined by e = ¢’ iff Efe] = E[¢'].

By the same reasoning as for formula equivalence, the
relation (=) is an equivalence relation; we say that ¢ and ¢’
are (semantically) equivalent if e = ¢'.

Each of the equivalence rules stated in this section can be
proved sound directly from and the definition
of the semantic function, E[-]. However, such proofs are not
very insightful and also duplicate a lot of logic among the
proofs. To avoid duplication and to highlight relationships
among rules, we prove new rules by derivation using previous
rules, whenever possible. In the Coq implementation, we
often provide both proofs—one directly from the definition,
and one by derivation with other rules.



The first set of rules are given in Neither the
structural rules nor the object congruence rules refer to
formula choices, so they are identical to the corresponding
rules in ACC from previous work [24]]. The structural rules
follow directly from the definitions. For the object congruence
rules, one can prove OBJ-CONG directly and then derive
OBJ-CONG-L and OBJ-CONG-R from OBJ-CONG and REFL (or
derive the first after proving the latter two directly).

The choice transposition rule, CHC-TRAN, states that the
semantics of a choice is invariant under transposition of its
alternatives and complementation of its formula. We prove
this directly from the definitions. The CHC-TRAN rule is
extremely useful in derivations. Since it is simple and appears
so frequently, we often use this rule implicitly.

Like the object congruence rules, the choice congruence
rules are not independent. This is illustrated in the proof of
the following theorem.

Theorem 4.3. The choice congruence rules hold for all
formulas f, f’ € F and expressions eq, e}, ez, ¢ € E.

Proof. First, we prove CHC-CONG-F and CHC-CONG-L di-

rectly from[Definition 4.1] Next, we show CHC-CONG-R by de-

riving the consequent from the antecedent using CHC-CONG-L.
The derivation is as follows.

flei,ea) = —flea,e1) = —fleh,er) = fler,ey)

Finally, CHC-CONG follows from the other three rules.

O

Observe that converses of the congruence rules for choices
do not hold. That is, in general f(e1, e2) = f'(e1, ea) is not
sufficient to conclude that f = f/, and f({e1,ea) = f{e], e2)
is not sufficient to conclude e; = €. For a counterexample
to the converse of CHC-CONG-F, consider L{a,a) = a =

R{a, a) but L # R. For a counterexample to the converse of

CHC-CONG-L, consider R{a,a) = a = R{d’,a) but a # d
if a # a'. A similar counterexample can be constructed to
disprove the converse of CHC-CONG-R.

Throughout the rest of this section, we use the structural
and congruence rules implicitly.

The next set of rules is given in When viewed
as semantics preserving transformations, applied left-to-right,
these rules can be used to simplify FCC expressions and merge
choices that contain identical or redundant alternatives. The
choice simplification rules describe cases where the semantics
of a choice is equivalent to one of its alternatives.

Theorem 4.4. The choice simplification rules hold for all
formulas f € F and expressions e, e1,es € F.

Proof. First, we prove CHC-IDEMP and CHc-L directly from

Definition 4.2] Next, we derive CHC-R from CHC-L using

CHC-TRAN and the fact = R = L, which can be shown from

the algebraic rules of formula equivalence (see [Section 4.T).

The derivation of CHc-R is as follows.

R<€1,€2> = _|R<€2,€1> = L<62,€1> = €2 O]
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Choice simplification rules:

CHC-L
L<61, €2> = e

CHC-R
Rie,er) = ez

CHC-IDEMP
fle,e) =e
Formula choice merge rules:
CHC-JOIN

filer, f2(er, e2)) = (f1V f2)(e1, e2)

CHC-MEET

fi{fzler, e2),e2) = (f1 A f2)(e1, e2)

CHC-JOIN-COMP

file, falez, e1)) = (f1 V = fa)(er, e2)

CHC-MEET-COMP
fi{fa(e2, 1), e2) = (f A= f2)(er, e2)
Generic choice merge rules:
CC-MERGE
f<f<61762>7f<63764>> = f<617€4>

CC-MERGE-L
f({fler,e2),e3) = fler,e3)

CC-MERGE-R
fler, flez,e3)) = fler, es)

Figure 5: Choice simplification and merge rules.

When viewed as a left-to-right transformation, the formula
choice merge rules reveal situations where redundant alterna-
tives in nested choices can be eliminated by combining the
formulas of the inner and outer choices.

Theorem 4.5. The formula choice merge rules hold for all
formulas fi, fo € F and expressions e1,e2 € F.

Proof. First, we prove CHC-JOIN directly from [Definition 4.2]

Next, we show CHC-MEET by CHC-JOIN and COMP-MEET.
The derivation of CHC-MEET is as follows.

fi(faler, e2), e2) = = fi(ea, 7 falez, €1))
(= 1V f2)(ea e1)
=(f1 A f2)(e2,e1)

(f1 A f2)(e1, e2)

Finally, we show CHC-JOIN-CoMP and CHC-MEET-COMP by
CHc-JoIN and CHC-MEET, respectively. The derivation of
CHC-JOIN-CoMP is as follows.

fi{er, falea, e1)) = filer, — faler, e2))
= (fi V= fa)(er, e2)



Choice-object commutation rule:

CO-Swap
fla<er, ear, a<es, es>) = a<fler,es), fez, ea)>

Choice-choice commutation rules:

CC-SwAP
Ji{faler, e2), fales, ea)) = fa(fi{e1, e3), fi{ez, eq))

CC-SwWAP-L

fi(fa(e1, e2),e3) = fa(fi(e1,e3), filea,e3))

CC-SWAP-R

filex, fa(e2, e3)) = fo(file1, e2), fi{e1,e3))

Figure 6: Choice commutation rules.

And the derivation of CHc-MEET-CoMmP is as follows.

fi(falea, e1),e2) = fi1(= faler, €2), €2)

= (fi N fa)ler, e2) O

The generic choice merge rules are directly adapted from
ACC, and capture the idea that outer choices dominate in-
ner choices labeled by the same formula. The left-to-right
application of these rules can be used to eliminate unreach-
able alternatives in nested choices. For example, consider the
expression f(f(e1,es), e3), and observe that if f evaluates
to LL for a given configuration c, then the first alternative of
both the inner and outer choices will be selected, yielding
e1, otherwise e3 will be selected. The alternative e, is un-
reachable and so can be safely eliminated by applying the
rule CC-MERGE-L.

Theorem 4.6. The generic choice merge rules hold for all
formulas f1, fo € F, and expressions e, €2, e3,¢e4 € E.

Proof. First, we prove CC-MERGE-L directly from
Next, we show CC-MERGE-R by CC-MERGE-L. The
derivation of CC-MERGE-R is as follows.

fle1, flea, e3)) = = f(= fles, e2), e1)
ﬁf<63,61>
= f<€1,€3>

CC-MERGE follows directly from the other two rules.

O

The last set of rules are the choice commutation rules,
stated in The rule CO-SwaP describes the commu-
tation of choices with internal nodes in the AST (“O” stands
for object language, and is used for consistency with previous
work). This rule is the same as in ACC and can be proved

directly from [Definition 4.2] The CO-SwaP rule is significant
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because it can be used (applied right-to-left) to factor out
commonalities among the alternatives of a choice, and so is
essential to minimizing the representation of a variational
expression. The rule is also useful (applied left-to-right) to
increase the granularity of choices, which is often needed, for
example, during variational execution [7].

In this paper, the CO-SwaP rule and the object congruence
rules are defined in terms of binary trees. However, corre-
sponding rules can be easily generated for whatever object
language the choice calculus is instantiated by [24].

Finally, the choice-choice commutation rules describe
the commutation of choices with each other. These are also
adopted directly from ACC.

Theorem 4.7. The choice-choice commutation rules hold for
all formulas f1, fo € F, and expressions ey, eo, €3,¢e4 € E.

Proof. First, we prove CC-Swap directly from [Definition 4.2}

Next, we show CC-SwaP-L by applying CHC-IDEMP then
CC-Swap, producing the following derivation.

fi{f2(er, e2), e3) = fi(fale1, e2), fales, e3))
= fa(fi(e1,e3), fi(ez, €3))

Finally, we show CC-SwaP-R by CC-SwaP-L. The derivation
of CC-SWAP-R is as follows.

file1, falez, e3)) = = fi(fa(ea, e3), €1)
= fa(—- fi(ez, e1), — fi{es, e1))

Ef2<f1<61,€2>,f1<617€3>> [

5. Further Generalizations

At the end of we described how to extend ACC to
support choices with more than two alternatives by extending
the set of tags, adding an alternative to each choice, and
updating the corresponding case of the semantic function. It
is also straightforward to update the equivalence relation by
systematically updating all rules that involve choices. In fact,
in the original presentation of the equivalence relation for
ACC, we expressed the rules in a way that allowed for choices
of arbitrary arity [10].

While it might seem that one could generalize FCC and its
equivalence relation in the same way, it turns out this is not
the case. In particular, the soundness of any rule that uses a
connective in a formula depends on the assumption that the
set of tags forms a Boolean algebra. Since any non-trivial
Boolean algebra has an even number of elements, it follows
that FCC cannot be extended to incorporate choices with an
odd number of alternatives. At least, not without sacrificing
many of the equivalence rules.

To see why any non-trivial Boolean algebra has an even
number of elements, note that any Boolean algebra is a group
with law of composition given by symmetric difference. In
such a group, every element is its own inverse. This means
that the order of a non-identity element is two, which means



t |t vil 2 3 4 Al 2 3 4
1| 4 1/1 1 11 111 2 3 4
213 2|1 2 1 2 2|12 2 4 4
3| 2 3|1 1 3 3 3|3 4 3 4
4| 1 4|11 2 3 4 414 4 4 4

Figure 7: Boolean algebra on four tags.

the order of the group is a multiple of two by Lagrange’s
theorem [8} p. 89].

Notwithstanding this limitation, choices in FCC can be

extended with an even number of alternatives. Consider the
following example of extending choices with four alternatives.
The set T' = {1, 2, 3,4} together with the operators defined
by the tables in is the Boolean algebra with four
elements, up to isomorphism, where 1 is “true” and 4 is
“false”. The syntax and semantics of formulas is defined in
the same way as before. For expressions, we extend the syntax
and semantics of choices in a similar way as for ACC.
The equivalence rules for choices must be updated as well,
but now this is a systematic adaptation of the existing rules,
using the Boolean algebra in[Figure 7)as a guide. For example,
the choice transposition rule CHC-TRAN is replaced by the
following rule.

— f(er, ez, e3,e4) = fea, e3,e2,€1)

And the revised CHCc-MEET rule looks as follows.

f1<f2<61,62,€37€4>»
f2<62a62764764>5

fa(es, eq,e3,eq),eq) = (f1 A f2)(e1, €2, €3, €4)

We leave open the question of whether higher-arity formula
choice calculuses are useful in practice.

6. Related Work

In addition to CPP’s #if construct, which is ubiquitous in C
and C++ software, many research tools use variation represen-
tations quite similar to FCC, and can therefore benefit from the
explication provided by this paper, and from new semantics-
preserving transformations suggested by the equivalence re-
lation. Kastner et al.’s TypeChef tool [13| [15] includes a
representation of formula-based choices that has been reused
in a wide variety of projects including variability-aware type
and data-flow analyses [[17], a variability-aware refactoring
engine [18]], and several variational interpreters [14, |19} 21]].

A concise definition of FCC was originally defined for use
in a view-based editing model for variational software [23
25]]. In that work, we discussed the generalization of equiva-
lence rules from ACC and identified some of the FCC-specific
rules presented in However, the previous work
presented the new rules without proof of their correctness,
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and also omitted some basic rules (CHC-TRAN, CHc-L, and
CHC-R) that are useful in many derivations.

In previous work on variational data structures [20], we
have discussed the trade-off between variation encodings
that use atomic dimensions vs. Boolean formulas. These
tradeoffs apply directly when comparing ACC to FCC. The
main disadvantages of atomic dimensions are: (1) common
variation patterns (e.g. include code to deal with a feature
interaction) lead to redundancy in the representation or else
require an explicit reuse mechanism that complicates the
language, and (2) atomic dimensions do not align well with
representations like CPP that are widely used in practice,
which is significant if using the choice calculus as the basis
for a practical tool. The main disadvantage of formula-based
variation is that many operations require solving satisfiability
problems to complete. However, multiple researchers have
observed that this does not seem to be a problem in practice
since SAT solvers are fast at checking the kinds of formulas
that arise in variational software [[17}20].

7. Conclusions and Future Work

This paper presented the formula choice calculus, a gener-
alization of the choice calculus that replaces atomic dimen-
sions as conditions on choices with propositional formulas
of dimensions. This more expressive notation supports more
efficient (i.e. containing less redundancy) variation represen-
tations without introducing complicated naming constructs. It
also provides a closer mapping to existing variation languages
used in practice.

The main advantage of using the choice calculus is the
ability to reuse its associated theory. The most important
and useful part of this theory is the equivalence relation
on choice calculus terms. Although FCC has appeared and
been used in previous work, the equivalence rules had only
been fully defined and proven sound in terms of ACC. This
work fills this gap, defining many equivalence rules for FCC
and proving their soundness. This validates previous work
that has already used FCC, and also suggests new semantics-
preserving transformations on formula-based representations
going forward.

In future work, we plan to identify minimal complete
subsets of the equivalence rules. A complete set of rules is one
that ensures that any two semantically equivalent expressions
are syntactically related using only rules in the set. There
is existing work on identifying complete sets of axioms for
Boolean logic [22] that can be directly reused here. Obviously,
complete sets of equivalence rules are not unique since many
of the rules are mutually derivable.
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