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IT University of Copenhagen

Denmark
wasowski@itu.dk

Abstract—Highly configurable software often uses preproces-
sor annotations to handle variability. However, understanding,
maintaining, and evolving code with such annotations is difficult,
mainly because a developer has to work with all variants at a
time. Dedicated methods and tools that allow working on a subset
of all variants could ease the engineering of highly configurable
software. We investigate the potential of one kind of such tools:
projection-based variation control systems. For such systems we
aim to understand: (i) what end-user operations they need to
support, and (ii) whether they can realize the actual evolution
of real-world, highly configurable software. We conduct an
experiment that investigates variability-related evolution patterns
and that evaluates the feasibility of a projection-based variation
control system by replaying parts of the history of a highly
configurable real-world 3D printer firmware project. Among
others, we show that the prototype variation control system does
indeed support the evolution of a highly configurable system and
that in general, it does not degrade the code.

I. INTRODUCTION

Tailoring systems to the specific needs of users, such as hard-
ware environments, runtime platforms or various combinations
of features, is becoming increasingly important. Such systems
are typically highly configurable by containing massive amounts
of variability, which is often realized using static variability
annotations, such as conditional compilation directives (e.g.,
#ifdef) in C code [19]. While such annotations are among the
most frequently used and most simple variability mechanisms,
their use is known to complicate writing, maintaining (e.g.,
bug-fixing), and evolving (e.g., adding a cross-cutting feature)
source code [12]. Variability annotations obscure the structure
and flow of the underlying code [32], since much of the
conditionally included code is often irrelevant for a particular
code-editing task. In fact, working on all possible variants
of the system at once is known to negatively impact the
comprehension of source code [26]. Beyond syntax highlighting
and code folding, no major IDE supports editing variant subsets
while ensuring the consistency of the whole system.

Consider the code excerpt in Listing 1 taken from the
Marlin 3D printer firmware, the subject of our study. The
code represents several variants related to the printer display.
Understanding the code and what impact a change might
have is difficult due to the many variability annotations and
the variant-specific code. Ideally, when editing one or more
features, developers would only see the relevant code without
being distracted by code that belongs to irrelevant features. For

// LCD selection
#ifdef U8GLIB_ST7920
//U8GLIB_ST7920_128X64_RRD u8g(0,0,0);
U8GLIB_ST7920_128X64_RRD u8g(0);

#elif defined(MAKRPANEL)
// The MaKrPanel display,
// ST7565 controller as well
U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);

#elif defined(VIKI2) || defined(miniVIKI)
// Mini Viki and Viki 2.0 LCD,
// ST7565 controller as well
U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);

#elif defined(ELB_FULL_GRAPHIC_CONTROLLER)
// Based on the Adafruit ST7565
// (http://www.adafruit.com/products/250)
U8GLIB_LM6059 u8g(DOGLCD_CS, DOGLCD_A0);

#else
// for regular DOGM128 display with HW-SPI
// HW-SPI Com: CS, A0
U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0);

#endif

Listing 1. Marlin excerpt (dogm_lcd_implementation.h at commit a83bf18)

instance, for editing Marlin’s feature MAKRPANEL, a developer
could choose to select variants that include this feature, in
order to obtain a simplified view similar to the one shown in
Listing 2. Now, the developer could edit this view, and should
then be able to consistently update the underlying code from
Listing 1, which contains all the variants.

Various methods and tools that allow working on dedicated
subsets of all variants have been proposed in the literature [38],
[23], [3], [20], [18], [29]. We refer to them as variation control
systems. To some degree, they can ease the engineering of
highly configurable software by providing views that only show
the code related to specific variants, while hiding irrelevant
code. However, none of them has found widespread adoption.
In fact, no empirical data is available that shows how exactly
they can be used to engineer real-world systems, and what
their specific benefits and challenges are. Another kind of tools
that provide views on programs, but that are actually adopted
in practice [35], are projectional editors, such as Jetbrains’
Meta Programming System [1] or Intentional’s Domain Work-
bench [30], [5]. Unfortunately, they lack dedicated operations

// The MaKrPanel display,
// ST7565 controller as well
U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);

Listing 2. Code relevant for editing the feature MAKRPANEL



related to editing source code with variability.
Towards building efficient, projection-based methods and

tools for engineering highly configurable software, we need to
understand what operations users need and how they could deal
with such operations. In this paper, we conduct an empirical
study to assess the feasibility and actual use of a variation
control system. Specifically, we realize a variation control
system prototype and use it to evolve parts of the history of
a highly configurable software. Our prototype supports the
following workflow: (1) checkout a view (a version of the
full source code with less variability) according to a given
projection condition, (2) edit the view, and (3) checkin the
edited code (updating the underlying, fully variational code).

Our system combines and extends concepts from prior
work [38], [24]. We describe it using the choice calculus [10],
[36], [37], a concise and formal notation that avoids dealing
with intricate C preprocessor semantics and allows reasoning
about highly configurable systems.

To identify end-user edit operations that the system should
support, we analyze the history of a highly configurable open-
source software system: the 3D printer firmware Marlin. We
aim at understanding the kinds of changes (patterns) related to
variability done by developers. We cross-validate the patterns
using Busybox, an open-source project implementing shell
tools for embedded systems. Based on the patterns we show
how the edit operations for the variation control system can
be implemented. We then conduct an experiment to study how
the edit operations can be realized using the variation control
system. In the experiment, we use our prototype to replay parts
of Marlin’s history, by applying randomly selected patches.

In summary, we contribute:
• A projection-based variation control system prototype

relying on a checkout/checkin workflow and automatically
handling variability annotations.

• End-user edit operations that show the use of the variation
control system, based on identified variability-related code
evolution patterns.

• Empirical data (metrics) that shows feasibility, benefits,
and challenges of using the system, specifically showing
that the resulting code is not significantly degraded by
using the variation control system.

• A replication package in an online appendix,1 showing
the use of the system (i.e., the code before projection, the
projection and its resulting view, the code changes, and
the code after checking the edited view back in).

II. MOTIVATION

We briefly introduce three previous variation control sys-
tems [20], [27], [38] that provide editable views based on
projections specified by developers. All rely on variability
realized using annotations embedded in code, similar to C’s
conditional-compilation directives (e.g., #if or #ifdef). These
annotations carry a Boolean expression over features, called
presence condition (PC) in the remainder. The first two systems

1http://bitbucket.org/modelsteam/2016-vcs-marlin

do not exist anymore and there is hardly any evidence on their
usefulness. The third one has not been empirically evaluated
and no publicly available tool exists.

Kruskal [20], [21] presents an editor that realizes both
concurrent versioning (variability) and sequential versioning
(evolution in time) relying on variability annotations. Similar
to conditional compilation, code lines are mapped to Boolean
PCs, representing both the variant and the version to which
the lines belong to. The editor creates views based on a
partial configuration (a conjunction of features) called mask,
supporting workflows where developers start with a relatively
broad mask (e.g., projecting on just one feature), potentially
restricting the mask by conjoining other features (e.g., “push”
more masks on a stack), editing code in the views belonging
to the more restricted masks, and then returning to more broad
masks (e.g., “pop” masks from a stack). Code lines with PCs
that do not contradict the mask are visible for editing. Several
convenience commands are available to the user for iterating
through variants and for manipulating PCs. The editor is not
available anymore, and no empirical data on its use exists.

Lie et al. [24], Munch [27], and Westfechtel et al. [39] present
and evaluate an alternative versioning model based on logical
changes: change oriented versioning (CoV). It also unifies
concurrent and sequential versioning, by attaching Boolean PCs
to file fragments. It follows a classical checkout/checkin cycle,
where a configuration (conjunction of features) determines
both the version and the variant available in the view (e.g., the
workspace), which can be edited. It decouples the projection
(called “choice”) from the expression used to checkin the edited
view (called “ambition”) to denote to which variants a change
applies to. In an empirical study the authors translate existing
C/C++ source code files of gcc into CoV representation in
a database (EPOSDB-II [14]), and compare the performance
against RCS [33] when doing a full checkin of version 2.4.0
of gcc. The experiment investigates only performance. It does
not show how feasible it is to actually engineer a real-world
system, and how exactly the checkout/checkin cycles using
choices and ambitions can be used by developers.

Walkingshaw et al. [38] present a model for a variation
control system called projectional editing.2 They present a
formal specification of the model with the get (create a view
using a projection) and put (update the underlying program
with changes done within the view) functions at its core.
Examples are provided that show how to create the view
and how an update executes the changes done to the view.
However, in contrast to CoV, the definition of put is founded
on an edit isolation principle that ensures that the only variants
that change in the underlying program are those that can be
reached from the view. In other words, when we use put to
perform the update, the edits made on the view are guaranteed
not to affect code that was hidden by the get function. Given
this limitation, and since it was not evaluated on a real-world
system, it is not clear whether this model can handle the

2Not to be confused with projectional editing [35], [4] used in the Meta
Programming System [1] or the Intentional Domain Workbench [5]

http://bitbucket.org/modelsteam/2016-vcs-marlin


B ::= true | false
F ::= B | ¬F | F ∨ F | F ∧ F
e ::= F 〈e, e〉 Choice

| e · e Append
| a Token
| ι Identity

Fig. 1. Choice calculus syntax

engineering of real-world, highly configurable systems.
To study the concepts and the feasibility of using a variation

control system based on projections, we create one that takes
concepts from previous work.

III. VARIATION CONTROL SYSTEM PROTOTYPE

Our variation control system prototype can be seen as a
generalization of the one described before [38]. We avoid
some limitations by allowing partial configurations and using
the concept of ambition from CoV [27], which specifies what
variants are affected by the change when updating the code.

A. Choice Calculus

We use the choice calculus [10], [36], [37], a formal and concise
notation for variational software, to describe our projection-
based variation control system and for expressing examples in
a language independent manner. Fig. 1 describes its syntax.

Unlike previous applications of the choice calculus [11], we
do not embed choices within abstract syntax trees. Instead,
we use a generic monoid structure. This better models the
use of #ifdef directives in existing code repositories, since
#ifdef directives are line-based and do not need to respect the
syntactic structure of the underlying object language.

The metavariable e denotes a choice calculus expression (i.e.,
code). An expression can consist of a choice, the concatenation
of one expression to another using the monoid append operation
(·), an arbitrary token, or the monoid identity element (ι). A
choice represents a variation point in-place as a choice between
alternatives, written F 〈e1, e2〉. The associated condition F is
the choice’s PC. When configuring a choice calculus expression,
each feature is set to true or false , then each choice is replaced
by either alternative e1 if F evaluates to true , or alternative e2
otherwise. For example, given the choice (A∧B)〈2, 3〉, if both
features A and B are set to true , the choice will resolve to 2

during configuration, but will resolve to 3 if A or B is false.
We consider tokens to be arbitrary strings, the append operation
to be string and line concatenation, and the identity element
to be the empty string. This allows for a finer representation
of variability than afforded by #ifdef, as it is not constrained
to varying lines.

B. Workflow

Fig. 2 shows the intended workflow of our system. Symbols r
and r′ refer to the highly configurable software source code
stored in a repository, and v and v′ refer to working copies of
the source code that are viewable and editable by the developer.
The source code (r, r′, v, v′) is represented by a choice calculus
expression (e in Fig. 1). The operation get is used to checkout
a particular working copy from the repository, and put is used
to checkin any changes back to the repository. Our workflow is

r r′

v v′

derived edit

(1) get(p, r)

get(p∧ a, r′)
(2) actual edit

put(p, p, r, v) (3) put(p, a, r, v′)

Fig. 2. Projection-based variational editing workflow and relationships. Symbol
r represents the repository that contains source code, p is the projection that
specifies how to obtain the view v from r using the get function. The ambition
a specifies how should the changes from the edited view v′ be applied to the
repository using the put function. Both p and a are Boolean expressions over
features.

independent of the type of storage used to contain the source
code (e.g., version control systems or just folders).

In step (1) the developer obtains a simplified view v from
the initial repository r. The parameter p, the projection, defines
how v is obtained from r. More specifically, p describes a
partial configuration of r, eliminating all of the variability that
is irrelevant to the current code-editing task. In step (2) the
developer edits v into v′ using whatever standard tools they
prefer. In step (3) an additional parameter a, the ambition, is
introduced, which specifies how the developer’s changes should
be integrated into the repository. Note that the put operation
takes into account the initial repository, the updated working
copy, the projection, and the ambition when producing the
updated repository r′.

The two dashed edges in the diagram describe some basic
consistency principles that get and put should satisfy. These
are derived from the lens laws developed in research on
bidirectional transformations [13] and constrain the potential
definitions of get and put .

The left dashed line requires that a get followed by a put
is idempotent. Specifically, if we retrieve a simplified version
v with some projection p and then immediately check it back
in with the same ambition a = p, then the repository should
remain unchanged. This enforces that the get operation is not
effectful from the perspective of the repository.

The right dashed edge requires that a put followed by a
get (with an appropriately structured projection) is idempotent.
Specifically, immediately after applying the put function to
checkin changes from the edited view v′, we can obtain that
same working copy by doing a checkout using the conjunction
of p and a as the projection. This enforces that the put operation
is always reversible.

C. Get and Put Function

Specifying and implementing get is straightforward (e.g., using
full or partial preprocessing). We chose partial preprocessing to
allow projections that are partial configurations. The function
get obtains a view using the following process. It iterates
through all top-level choices in the AST. It takes the right
alternative if the choice’s PC contradicts the projection. It takes
the left alternative if the negated PC contradicts the projection.
Contradictions are checked using a SAT solver [9]. If neither
the PC nor its negation contradict the projection, get keeps the
choice as it is. For each not eliminated alternative, get repeats
this process descending into each alternative’s sub-tree.



FACTORING
F 〈e1, e2〉 · F 〈e3, e4〉 F 〈e1 · e3, e2 · e4〉

F 〈e1, e2〉 · ¬F 〈e3, e4〉 F 〈e1 · e4, e2 · e3〉

CHOICE-IDEMPOTENCY
F 〈e, e〉 e

CHOICE-DOMINATION
belcF = e′l berc¬F = e′r

F 〈el, er〉 F 〈e′l, e′r〉
JOIN-OR
F 〈el, F ′〈el, er〉〉 (F ∨ F ′)〈el, er〉
JOIN-AND
F 〈F ′〈el, er〉, er〉 (F ∧ F ′)〈el, er〉
JOIN-OR-NOT
F 〈el, F ′〈er, el〉〉 (F ∨ ¬F ′)〈el, er〉
JOIN-AND-NOT
F 〈F ′〈er, el〉, er〉 (F ∧ ¬F ′)〈el, er〉

Fig. 3. Choice calculus minimization rules

For the put operation it is difficult to identify a simple and
rational definition that is consistent with the above requirements
by analyzing examples alone. Recall that our previous work [38]
relied on an edit isolation principle: when doing a put in (3),
the edits made in (2) cannot affect code hidden by get in
(1). Although this principle is somewhat restrictive, it leads
naturally to a definition that satisfies the requirements derived
from the lens laws. Generalizing the edit isolation principle,
we can obtain a put operation that is less restrictive than in
the previous work, while still retaining the properties.

This generalized edit isolation principle can be defined as
follows. Let C be the set of all configurations of r and r′,
and r′ = put(p, a, r, v′) as defined in Fig. 2. The get function
obtains all choices whose PC does not contradict the projection:

∀c ∈ C. get(c, r′) =
{
get(c, v′) if SAT(c ∧ p)
get(c, r) otherwise

The put update function consists of constructing a new
choice with the updated view v′ in the left branch, and the
original source r in the right branch:

put(p, a, r, v‘′) = minimize(F 〈v′, r〉)
F = (p ∧ a)

We minimize the choice expressions to a more compact
representation, which reduces redundancy, using the rules
shown in Fig. 3. Note that they can change the syntax of a
choice, but preserve its semantics. For an in-depth description
of choice-idempotency, choice-domination, and the join rules,
please refer to previous work [38]. In addition, we introduce
the two FACTORING rules, which join two consecutive choices
that have compatible PCs into a single choice.

D. Implementation

We implement the variation control system prototype, compris-
ing parser, get and put function, minimization rules, and pretty
printer, in Scala. The prototype is programming-language inde-
pendent (line-based), but the parser and pretty printer recognize
and write variability annotations in C preprocessor syntax (e.g.,
#if, #ifdef, #endif). Internally, the choice calculus [36] is used.

IV. STUDY DESIGN

In our study we investigate two research questions:
RQ1: What edit operations should a variation control system
support? We analyze the history of an open-source project
repository at the source code level to identify variability-related
editing patterns. We show how edit operations for the variation
control system can realize the patterns found.
RQ2: Can a variation control system be used to maintain and
evolve a highly configurable system? In an experiment we
replay parts of the history of our subject system using the
variation control system prototype, and check how many cases
we can support and which are not trivial to support. Using
metrics we study characteristics of the code before checkout,
of the view itself, and of the code after checkin. Specifically,
we check that there is no negative effect (e.g., deterioration)
on the source code by our variation control system prototype.

Our investigation of both research questions is followed by
a discussion of the challenges we encountered (e.g., choosing
a projection and ambition) during the experiment, and of the
edit operations we identified.

Subject System

We study Marlin, a highly configurable firmware for 3D
printers written in C++, which uses conditional compilation to
implement variability. Marlin emerged in 2011 as a mixture
of the existing projects Grbl (firmware for CNC machines)
and Sprinter (firmware for 3D printers), and original code. We
choose Marlin as it is large and complex enough for our purpose
(40 KLOC and over 140 features) and we have prior experience
with understanding the system [34], which reduces the chance
of misinterpretations or mistakes. We use the development
branch of Marlin’s Git repository3 on Github. We clone the
“MarlinDev” repository with the HEAD pointing to commit
3cfe1dce1. This version of Marlin consists of 187 source files
(excluding additional library files supporting Arduino boards).

RQ1: Identification of Edit Operations

To identify edit operations we analyze patches and extract
variability-related edit patterns. We retrieve all 3747 commits
(without merge commits) from Marlin’s history and split each
commit into a patch per changed file, excluding those files that
were added, removed or renamed, resulting in 5640 patches.

We classify the patches into patterns in three steps. First,
we randomly extract 50 commits that add or remove #ifdef

directives in code using grep, and manually inspect the patch
to understand the change and recognize patterns. Second, to
automatically classify to which edit pattern a patch belongs to,
we create several regular expressions to represent each pattern
defined previously, and apply them on the pool of patches. We
analyze the results of this step by verifying whether all the
patches have been classified. Third, for patches that remain
unclassified, we add the respective regular expressions and
re-run the classification. We repeat these steps until each patch

3https://github.com/MarlinFirmware/MarlinDev

https://github.com/MarlinFirmware/MarlinDev


is classified by at least one pattern (note that a patch can belong
to multiple patterns).

To cross-validate the patterns we run our classifier on the
Busybox project, a larger project with 175 KLOC. We use the
project’s Git repository4 at commit a83e3ae, containing 13,700
commits excluding merge commits, and again split them into
a patch per file, which yields 34,018 patches.

RQ2: Replaying a Sample of Marlin’s History

We replay randomly selected patches from Marlin (RQ2). We
filter the 5640 Marlin patches down to 2322 by considering
only those patches that modify files containing only Boolean
PCs. This is justified as we are not interested in analyzing
the complexity of Marlin’s PCs. Other kinds of PCs could
be handled using an SMT or CSP solver, without affecting
the variation control system’s main design features. From the
2322 patches we randomly select three for each identified
edit pattern. Some patterns did not have any purely Boolean
representative in the selection. For these we randomly pick
missing patches from the whole pool of 5640 (Boolean and non-
Boolean) patches, and transform non-Boolean expressions into
Boolean ones by introducing new variables for non-Boolean
sub-expressions (a simple form of predicate abstraction).

1) Experiment Setup: For each randomly selected patch,
we manually conceive the projection and ambition required
to replay it. Recall that the projection represents a set of
configurations for which the code is changed. To conceive it
we localize the change in the file using line numbers from the
patch’s meta-data and then check if those lines exist under a
PC. The projection is then a conjunction of all these PCs. The
ambition is conceived using only the patch information. We
replay each change in three steps, where S1 and S3 are done
by our prototype, and S2 is done manually in a text editor:
S1 Checkout the original source code file using the projection,
S2 Edit the view to apply changes from the patch,
S3 Checkin changes using the ambition.

2) Metrics: We compute metrics for the stages in our
workflow (cf. Fig. 2): original source code (r), view on source
code (v), and updated source code by our system (r’). To
compare the latter to the updated original source code, we also
compute the metrics for the original update (r’) from Marlin’s
Git repository. We use the following metrics:
• LOC: lines of code in a file, including comments but

excluding blank lines.
• NVAR: number of variation points; more precisely:

choices (represented by #if, #ifdef, #ifndef, etc.) in a
file. A high NVAR challenges code comprehension.

We compute the reduction factor for LOC and NVAR
by dividing their values after checkout (view) to the values
before checkout, which would show any positive or negative
impact of creating views. Finally, we consider the number of
checkout/checkin cycles per executed change. In some cases,
we need to apply different projections and ambitions to realize
a change. We record this number of steps.

4https://git.busybox.net/busybox

TABLE I
CODE-ADDING PATTERNS

Name #Multi #Only Example

P1 AddIfdef 969 129 ι→ F 〈e, ι〉
P2 AddIfdef∗ 424 32 (ι→ F 〈e, ι〉)∗
P3 AddIfdefElse 271 4 ι→ F 〈e1, e2〉
P4 AddIfdefWrapElse 43 17 e2 → F 〈e1, e2〉
P5 AddIfdefWrapThen 13 3 e1 → F 〈e1, e2〉
P6 AddNormalCode 4683 871 ι→ e
P7 AddAnnotation 293 12 not applicable

V. IDENTIFIED EDIT OPERATIONS

We now explain each identified pattern and how it can be turned
into an edit operation (RQ1) on top of the variation control
system. We use a stripped notation of the unified diff program to
represent the changes. A plus (+) in front of a line indicates that
the line is to be added, a minus (-) that the line is to be removed.
A line without plus or minus remains unmodified. We remove
meta information (e.g., header, hunks, range information), as it
is not particularly useful for representing the pattern. Running
the pattern classifier, we identify 14 types of edit patterns.
We split these into three categories: Code-Adding Patterns,
Code-Removing Patterns, and Other Patterns.

These patterns represent edit operations that projection-based
variation control systems need to support. We show for each
pattern how the workflow described in Sec. III-B can be applied
to realize the particular edit.

A. Code-Adding Patterns

Table 1 shows patterns where new code is added, together with
the number of patches belonging to each pattern. The #Multi
column indicates the number of patches that match the given
pattern and also one or more other patterns, while the #Only
column indicates the number of patches that match only that
pattern. The last column provides a brief illustration of the
pattern using the choice calculus.
P1 AddIfdef. In this pattern a simple #ifdef with no #else

branch is added in the code, as shown below.
+ #ifdef ULTRA_LCD
+ lcd_setalertstatuspgm(lcd_msg);
+ #endif

This pattern can be achieved in the variation control system
by doing a checkout with the trivial projection true , adding the
second line, then checkin changes with the ambition ULTRA_LCD.

In Fig. 4 we illustrate this workflow using the choice calculus.
For simplicity of presentation, we assume starting with an
empty file or with just a few lines of code, in this and all
of the following examples. We use U as shorthand for the
ULTRA_LCD feature and lcd for the code on the second line. We
will use these abbreviations throughout the section.

r = ι r′ = U〈lcd, ι〉

v = ι v′ = lcd

get(true, r)

actual edit

put(true, U, r, v′)

Fig. 4. P1 AddIfdef editing workflow.

https://git.busybox.net/busybox


P2 AddIfdef∗. In this pattern two or more simple #ifdef with no
#else branches are added to the code. We distinguish this pattern
from the previous one, since adding multiple #ifdef blocks at
once may require multiple checkout/checkin sequences if the
PCs are different. If multiple #ifdef blocks are added that have
the same PC, then the edit can be executed in the same way
as the P1 AddIfdef pattern.
P3 AddIfdefElse. In this pattern, presented below, an #ifdef

with an #else branch is added in the code.
+ #ifdef ULTRA_LCD
+ lcd_setalertstatuspgm(lcd_msg);
+ #else
+ alertstatuspgm(msg);
+ #endif

This pattern is supported by the variation control system
in two ways. The first is to do a checkout with the trivial
projection true , add the full #ifdef–#else–#endif block directly,
and then checkin with the trivial ambition true . However, it is
also supported by a sequence of two edits, one that edits the
configurations where the ULTRA_LCD feature is enabled, and one
that edits the configurations where it is disabled.

Fig. 5 illustrates this edit using our workflow. We use lcd

and alert as shorthand for the code on lines 2 and 4, in the
pattern above.

ι U〈lcd, ι〉 U〈lcd, alert〉

ι lcd ι alert

get(true,r)
get(¬U,r2)

actual edit

put(true, U, r1, v
′
1)

actual edit

put(¬U,¬U, r2, v′2)

Fig. 5. P3 AddIfdefElse editing workflow.

P4 AddIfdefWrapElse. This pattern represents cases where
some existing code becomes the #else branch of a new #ifdef

block. The pattern is presented below.

+ #ifdef ULTRA_LCD
+ lcd_setalertstatuspgm(lcd_msg);
+ #else

alertstatuspgm(msg);
+ #endif

This pattern is well supported by our workflow, as illustrated
in Fig. 6, where we checkout with a trivial projection, edit the
original code, and then checkin with the ambition ULTRA_LCD.

r = alert r′ = U〈lcd, alert〉

v = alert v′ = lcd

get(true, r)

actual edit

put(true, U, r, v′)

Fig. 6. P4 AddIfdefWrapElse editing workflow.

Note that a checkout with projection U would yield the
same result, but the advantage of this workflow is that we can
decide after making the edits how they are be applied to the
repository.
P5 AddIfdefWrapThen. This pattern is dual to the previous
pattern. In this pattern, the original code becomes the then-
branch of a new #ifdef block, as illustrated in the code below:

TABLE II
CODE-REMOVING PATTERNS

Name #Multi #Only Example

P8 RemNormalCode 3932 209 e→ ι
P9 RemIfdef 534 24 F 〈e1, e2〉 → ι
P10 RemAnnotation 228 2

+ #ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);

+ #else
+ alertstatuspgm(msg);
+ #endif

The workflow to support this pattern is as the one from P4
AddIfdefWrapElse, except that we checkin with ambition ¬U .
P6 AddNormalCode. This pattern represents changes that do
not affect the variability of the code base. That is, the modified
code is either (1) non-variational or (2) exists under a specific
PC. This is the most common of the operations performed
during system evolution [25]. In case (1), we just checkout
and checkin with p = a = true. In case (2), we checkout
with a p equal to the PC of the modified code, then checkin
with a = true. In case (2), if the preprocessing eliminates a
significant amount of surrounding code, then we expect our
editing workflow to convey significant usability benefits since
this code is irrelevant to the edit being performed. This is
confirmed in a case in our experiment, where more than half
of the code is eliminated in the view.
P7 AddAnnotation. This pattern captures cases where preproces-
sor annotations are added to the code. This usually corresponds
to adding a new #ifdef line or a new #endif line to the code to
fix a previous mistake. We do not exclude whitespace changes,
thus, this pattern happens also when there are changes in the
line that contains the annotations (e.g., adding a comment to
the line). Our editing model does not support such cases since
we permit only well-formed variability annotations.

B. Code-Removing Patterns

Table II lists patterns that relate to removing code.
P8 RemNormalCode. This pattern captures cases where code
is removed, regardless of whether it is under a PC or not. The
pattern is presented below:

#ifdef ULTRA_LCD
- lcd_setalertstatuspgm(lcd_msg);
alertstatuspgm(msg);
#endif

The update in this case is simply to checkout the source
code with projection ULTRA_LCD, delete line 2, and checkin with
ambition ULTRA_LCD as shown in Fig. 7.

r = U〈lcd · alert, ι〉 r′ = U〈alert, ι〉

v = lcd · alert v′ = alert

get(U, r)

actual edit

put(U,U, r, v′)

Fig. 7. P8 RemNormalCode editing workflow.

For cases where an #else branch exists in the #ifdef block,
the workflow is the same, but the projection is the negation



of the PC. All the numbers corresponding to P9 in Table II
include any removed code from an #ifdef block.
P9 RemIfdef. This pattern captures cases where code blocks
guarded by PCs are removed. This pattern covers the removal
of both simple #ifdef blocks and those containing an #else

branch. The pattern is presented below:
- #ifdef ULTRA_LCD
- lcd_setalertstatuspgm(lcd_msg);
- #else
- alertstatuspgm(msg);
- #endif

This edit is dual to the P3 AddIfdefElse and can be similarly
supported either by a trivial projection or by a sequence of
two edits, as illustrated in Fig. 8.

U〈lcd, alert〉 U〈ι, alert〉 ι

lcd ι alert ι

get(U,r1)
get(¬U,r2)

actual edit

put(U,U, r1, v
′
1)

actual edit

put(¬U,¬U, r2, v′2)

Fig. 8. P9 RemIfdef editing workflow.

P10 RemAnnotation. This pattern represents cases where
annotations are removed from code. This can happens when an
#ifdef or #endif line was inconsistently removed, resulting in
ill-formed code. As with P7 AddAnnotation, this pattern cannot
be reproduced (and would not occur) using our editing model,
since we do not support ill-formed variability annotations.

C. Other Patterns

The remaining editing patterns are listed in Table III.
P11 WrapCode. This pattern describes cases where an existing
piece of code is made variational, as shown below:

+ #ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);

+ #endif

We show how to support this pattern in Fig. 9. We checkout
with a trivial projection, delete the code that should be
conditionally wrapped, in this case line two, and then checkin
with an ambition that describes the configurations in which
the code should no longer appear (e.g., ¬ULTRA_LCD).

r = lcd r′ = U〈lcd, ι〉

v = lcd v′ = ι

get(true, r)

actual edit

put(true,¬U, r, v′)

Fig. 9. P11 WrapCode editing workflow.

P12 UnwrapCode. This pattern describes the opposite case
of the previous pattern. In this pattern, an existing piece of
variational code is made non-variational, that is, the surrounding
#ifdef and #endif annotations are removed, as shown below:

- #ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);

- #endif

This pattern is not very amenable to the projectional editing
model. The workflow for this pattern is shown in Fig. 10.
Essentially, it requires to obtain the variants that do not include

TABLE III
OTHER PATTERNS

Name #Multi #Only Example

P11 WrapCode 77 29 e→ F 〈e, ι〉
P12 UnwrapCode 12 2 F 〈e, ι〉 → e
P13 ChangePC 225 74 F1〈e1, e2〉 → F2〈e1, e2〉
P14 MoveElse 5 2 F 〈e1, e2 · e3〉 → F 〈e1 · e2, e3〉

the code, re-adding the same code, and checkin with the same
ambition as the projection.
Note that before minimization, the put will produce a choice
U〈lcd, lcd〉, where both alternatives are the same. This can
be simplified to simply lcd using the choice idempotency
minimization rule, resulting in r′.

r = U〈lcd, ι〉 r′ = lcd

v = ι v′ = lcd

get(¬U, r)

actual edit

put(¬U,¬U, r, v′)

Fig. 10. P12 UnwrapCode editing workflow.

Observe that the manual edit to transform v into v′ requires
reproducing the code that was projected away during checkout.
Although this can be accomplished for a single #ifdef with
copy–paste, clearly this is not ideal. Therefore, this scenario is
better supported by a non-projectional edit, doing a checkout
with the trivial projection true , removing the #ifdef and #endif

annotations, and using the ambition true for checkin.
P13 ChangePC. This pattern describes cases where the PC
associated with an #ifdef is changed, as shown below:

- #ifdef ULTRA_LCD
+ #if ULTRALCD && ULTIPANEL

lcd_setalertstatuspgm(lcd_msg);
#endif

In this example two changes have occurred: the ULTRA_LCD

option has been renamed to ULTRALCD, and an additional
constraint ULTIPANEL has also been added.

This pattern is perhaps better supported without a projec-
tional edit because it would require to remove all code under
the old PC and then add the same code that was removed under
the new PC. In future work, we plan to explore operations for
explicitly supporting such edits, including feature renaming
and systematic modifications to PCs.
P14 MoveElse. This pattern captures cases where an #else

annotation is moved in order to move some code from one set
of configurations to another. This pattern is presented below:

#ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);

- #else
alertstatuspgm(msg);

+ #else
cleanup(msg);
#endif

This (infrequent) pattern is another that is better supported
without projectional editing, but it can be achieved by two
edits as illustrated in Fig. 11. We use the first letter of lines 2,
4, and 6 from the pattern above, to indicate the respective line
of code.



U〈l, a · c〉 U〈l, c〉 U〈l · a, c〉

a · c c l l · a

get(¬U,r1)
get(U,r2)

actual edit

put(¬U,¬U,r1,v′1)

actual edit

put(U,U,r2,v
′
2)

Fig. 11. P14 MoveElse editing workflow.

As with the P12 UnwrapCode pattern, this requires repro-
ducing some part of the code between projectional edits (e.g.,
alert in this example).

VI. RESULTS

We now present the results of applying the variation control
system. All evaluation data is available in the online appendix.5

Our objective in this experiment is to verify if the edit
patterns described in Sec. V are indeed supported, and what
kind of projections and ambitions are used. Moreover, we are
interested to see if there is any negative effect on the source
code when using the prototype variation control system.

A. Applying the Changes

Following the methodology from Sec. IV, we randomly selected
patches that belong to only one edit pattern, covering 12 edit
patterns out of 14. Patches from the remaining two edit patterns
(P7 AddAnnotation, P10 RemAnnotation) cannot be executed
with the prototype. We therefore ignore these two update
patterns and obtain 34 patches. One patch belonging to P12
UnwrapCode contains merge conflicts leading to an ill-formed
variation and is excluded. In total we use the variation control
system on 33 patches.

All the selected patches were successfully applied using the
variation control system. The actual changes on the view were
performed with a simple text editor. Note that for all patches
that add or remove #ifdef blocks, we only touched the code
between the annotations to realize the edit; the annotations are
handled by the variation control system.

A projection-based variation control system can support
all the presented edit patterns when no malformed
variability annotations exist.

B. Complexity of Projections and Ambitions

Since some patches required multiple steps to execute the
change, we performed a total of 37 projections. Of these, 14 use
one feature and 11 the trivial condition true. The remaining 12
projections use two, three or four features in their expressions.
In three cases the projection is the conjunction of four features,
making these projections more difficult to understand and use.

Yet, it is not uncommon that a developer needs to consider
two or more features (i.e., ≥ 4 system variants) when fixing
bugs. In fact, Abal et al. [2] identify 30 bugs that occur when
there is a combination of at least two configuration options. In
such cases, using a projection-based editing tool could simplify
the task, focusing only on the variants in which the bug appears.

5http://bitbucket.org/modelsteam/2016-vcs-marlin

TABLE IV
LOC AND NVAR METRICS WITH THE MIN, MAX, AND MEDIAN VALUES FOR

THE 33 CHANGES FOR OUR PUT FUNCTION. REPOSITORY UPDATE
REPRESENTS THE CHANGE DONE BY THE DEVELOPER IN THE ORIGINAL GIT

REPOSITORY OF THE PROJECT.

LOC NVAR

Our put function Repository update Our put function Repository update

MIN 65 72 1 1
MAX 2448 2368 193 147
MEDIAN 447 449 20 21

In ambitions, the highest number of features is the same as
in projections, four. But we see a decrease of trivial ambitions,
which is expected, as for example P11 WrapCode edits may
be performed on trivial projections, but require an ambition
different than true. In one case the expression used for both
projection and ambition is a conjunction of a feature and a
disjunction, p = A ∧ (B ∨ C). Finally, for 18 changes the
ambition equals the projection.

C. Metrics and Reduction Factors

Table IV shows the aggregate values (min, max, and median)
of our metrics on the source code resulted from the update
done by the prototype, and the original update from the Git
repository. While our goal is not to improve code with regards
to LOC or NVAR, Table IV shows that the prototype does not
perform worse than the original update in almost all cases.

The boxplot in Fig. 12 shows the reduction factor for LOC
and NVAR after the projection. For the LOC reduction factor
when doing projections, we would expect it to be zero, in the
case of using a trivial projection, or larger than zero when a
non-trivial projection is used. Table IV and the boxplot confirm
this hypothesis. The average number of LOC after projection
is smaller than before projection. In one outlier case the LOC
in the view was reduced by half, compared to the original
file. The reason is that the source code has a sequence of
#if-#elif-#else-#endif directives with many #elif branches,
which naturally contradicted the projection. In such cases, the
benefit of projecting views can be high, especially for code
comprehension (e.g., to understand the control flow).

As we would also expect, NVAR is reduced when projecting
the code, although this reduction is minimal in most cases. In
our experiment, many changes are done on features that wrap
an entire file’s source code or use the trivial projection true.
Nevertheless, in three outlier cases there is a high decrease in
NVAR when many #ifdef blocks are projected away.

Finally, we investigate whether there is any degradation of
code when using the variation control system. Comparing the

NVAR

LOC

0.0 0.2 0.4 0.6
Reduction Factor

Fig. 12. Reduction factors for LOC and NVAR for the view

http://bitbucket.org/modelsteam/2016-vcs-marlin


LOC between the update done by the variation control system
and the original update, shows that the former has the same or
less LOC in most cases. The differences mostly occur when
two consecutive choices (#ifdef blocks) with the same PC
are merged, or when one has the other one’s negated PC, as
formulated by the factoring rule shown in Fig. 3. This merging
also affects the number of variation points, generating a lower
number in the case of the variation control system’s update.

A projection-based variation control system can be used
to engineer a highly configurable system. Our prototype
did not negatively impact the code in terms of LOC, NVAR.
In some cases it even improved the code.

VII. DISCUSSION

Let us now discuss challenges we encountered in the experiment
(RQ2) and then get back to the editing operations (RQ1).

A. Challenges of Using the Variation Control System

Most importantly, the editing workflow is different. This
requires some mental effort in understanding what projection
and ambition to use. However, in our experience, choosing a
projection and ambition was straightforward in most cases,
but more difficult for changes that required two or three
checkout/checkin cycles.

An interesting case to consider is choosing the ambition when
making code optional, that is, wrapping existing code with a
PC. Both P11 WrapCode and P5 AddIfdefWrapThen required
the ambition to be the negated desired PC. The intuition is
that the we have to choose an ambition that describes in which
configurations should the code not appear. This may seem
unintuitive at first, but it is easy to see why this is necessary.
In a text editor or IDE, the user could select the code that
should be under a PC and just enter that PC.

B. Edit Operations for a Variation Control System

Some of the identified edit patterns were difficult to replay
using the projection-based editing workflow and our realization
of the get /put functions. However, the edit patterns should not
be seen as the edit operations a developer would use when
using a variation control system. We use the edit patterns to
derive, where needed, the edit operations for a variation control
system. Most patterns can be used in a straightforward manner
and do not require specialized operations. However, a variation
control system would require a specialized edit operation for
renaming and changing a PC. We also need better support
for P12 UnwrapCode and P14 MoveElse patterns, as an extra
copy-paste editing step is required. These would require more
specialized primitive operations, ideally in a text editor or IDE.
In future work we plan to define and implement these edit
operations, and experiment how well they can be used.

Finally, we identified a limitation of the variation control
system, that is not solved by any of the existing ones either. The
generalized edit isolation principle (cf. Sec. III-B) raises the
following problem: How to handle the cases when an ambition
is weaker than the projection? An example scenario could

be fixing a bug in a particular variant, where the fix might
affect other variants as well. So instead of fixing the bug in all
variants, we would like to have a specific projection, but then
perform the change with a weaker ambition. Our definition
of the put function (which conjoins projection and ambition)
cannot handle this case. Solving this problem in a sound way
is subject to future work.

VIII. THREATS TO VALIDITY

A. Internal Validity

We consider our updates to be correct as the put function is
correct by construction. To check for bugs in the prototype,
we used KDiff3 to compare the update result of the prototype
with the original update from the repository. We examined and
compared the two updates visually. We double-checked the
two cases where our update performs worse, which showed
that the update result is correct and preserves semantics.

We developed a general parser for the C preprocessor
language, as it is simpler and less error-prone than language-
specific parsers. This allows to use the system with any source
code that implements variability using preprocessor annotations.

Our definition and implementation of the variation control
system might be incorrect, and we might have introduced
bias when identifying the edit operations or conducting the
experiment.

To identify edit operations we followed a systematic ap-
proach: first studying samples, then iteratively creating regular
expressions to validate them on all 5640 Marlin patches. We
also cross-checked the identified operations on 34,018 patches
from Busybox, another highly configurable software from a
different domain. 99.27% of the patches in Busybox were
classified in one or more patterns that we previously identified.

In the experiment, we reduced bias of replaying changes
with the variation control system by randomly selecting patches
spanning all twelve edit operations considered.

B. External Validity

The identified edit patterns overlap with some extracted in
previous work [17], [28], [7], which increases our confidence in
the method and completeness. While more patterns might exist,
our collection was sufficient for executing complex changes.

Composing edit operations can allow a user to execute the
same change as in a normal editing model, modulo the number
of steps. The edit operations are generic and also specific
enough to allow to execute any change. Using the trivial
projection and ambition true, the proposed workflow behaves
similarly as the normal editing model.

We did not consider systems that use a variability model and
a dedicated variability-aware build system for implementing
more complex variability, such as the Linux Kernel or Busybox.
However, the variation control system can still be used to
directly manipulate the source code, as well as the variability
model and the build files.



IX. RELATED WORK

In addition to the three variation control systems discussed in
Sec. II that our prototype is most similar to, other techniques
to realize views on configurable code exist.

A. Views on Source Code

Atkins et al. develop a version editor that hides preprocessor
directives, allowing to edit a particular variant of a source
file [3]. Edits to the view are propagated back into the source
file. Their study on a large telecommunication project shows a
productivity increase of up to 40%. In comparison, we focused
mainly in understanding what kind of operations should such
a tool support, and if indeed, these operations can be used to
maintain and evolve highly configurable software systems.

Hofer et al. argue that existing approaches to assist with
handling the preprocessor are tied to IDEs, thus, their adoption
rate is low [15]. They introduce the filesystem LEVIATHAN
that mounts a view representing a variant. Heuristics are used
to synchronize changes in the view with the source code in
the physical storage. However, it does not allow modifying the
structure of the conditional blocks when working on a view.

C-CLR is an Eclipse plugin that allows creating a view by
selecting the respective preprocessor macros (features) [31]. The
tool offers support for generating views, but not for executing
changes and updating the view. Similarly, folding is used as
a visualization technique by Kullbach et al. [22] to hide and
unhide code in the GUPRO tool [8]. The idea is to fold parts of
code (including preprocessor directives) and possibly labeling
the fold to easily identify its purpose. Compared to these two
works, we wanted to allow modifying the view and updating
the repository with the new changes.

Kästner et al. propose colors to show annotated code
corresponding to a feature [18], and implement the Colored IDE
(CIDE). The tool requires disciplined preprocessor annotations,
such that arbitrary code fragments cannot be annotated. A vari-
ant view shows annotated code fragments using a background
color according to a feature selection. Markers are used to
show code that belongs to features that are not selected.

A similar tool that uses colors (but lacks the ability to hide
code) is developed by Le et al. [23]. Internally it uses the choice
calculus. A controlled experiment with students shows that the
prototype increases code comprehension compared to the C
preprocessor tool. Users were more successful and efficient in
completing their tasks and gave more correct answers, which
motivates the use of dedicated variation control systems.

Janzen et al. propose to use a concept called crosscutting
effective views to modularize concerns [16]. The modules view
provides a decomposed structure in terms of module units of
the program. A classes view shows the decomposed structure
of classes. Changes applied to one view are reflected in the
other view, which is automatically modified and updated. The
tool stores the structure of the program internally, while the
developer edits a so-called virtual source file [6].

B. Evolution of Highly Configurable Software

Several studies of changes performed to highly configurable
software consider the variability model and the build system [7],
[28], [25], whereas we focus only on the code level.

Dintzner et al. aggregate feature-evolution information by
mining commits [7], including extensive information of what
artifacts are affected. They mainly consider commits that touch
#ifdef blocks. They create this data for the variability model,
build system, and source code. Their focus is not to detect the
exact type of changes, but to offer an overview of the evolution
of features. In contrast, our work identifies what kind of code
edits occur in real systems and whether these can be applied
using a variation control system.

Passos et al. present a catalog of patterns on the co-evolution
of features in the variability model, build system, and code,
obtained from the Linux kernel [28]. Several patterns use
only the variability model and/or the build files to add or
remove features. Some of our patterns overlap with theirs: P3
AddIfdefElse corresponds to AVONMF (Add Visible Optional
Non Modular Feature), P5 AddIfdefWrapThen to FCUTVOF
(Featurize Compilation Unit to Visible Optional Feature), and
P9 RemIfdef to RVONMF (Remove Visible Optional Non
Modular Feature). The main difference between our work and
theirs is that we did not want to understand how a system
evolves in all three spaces, but whether source code changes
can be realized using a variation control system.

X. CONCLUSION

Maintaining and evolving highly configurable software is chal-
lenging for many projects. Using a projection-based variation
control system may overcome some of these challenges. But
so far, the experience with variation control systems is limited.

In this paper, we have designed and formally described a
variation control system that combines and extends concepts
of prior proposals in the literature. In a study, we identified 14
variability-related edit patterns from the highly configurable
3D printer firmware Marlin. We used the patterns to derive
what edit operations a projection-based variation control system
needs to support. We then conducted an experiment using our
variation control system prototype to replay real changes from
the subject system, to show that it can in fact be used to
maintain and evolve a highly configurable software system.

We found that while the projection-based editing model can
support most edit operations, some are difficult to realize with
this model and require extra effort. However, when executing
changes with the prototype, we found that in most cases the
code does not degrade with respect to code size and number
of variation points, and that it is fairly easy to use. In a few
cases, the view had considerably less code.

In future work, we strive to allow developers to work in
parallel on a project, which means that we need to handle code
merges, merge conflicts, and other possible code-integration
aspects. We are also currently developing a user interface that
is connected to the prototype, to allow us to implement and test
the identified edit operations on highly configurable systems.
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Variability Affect Bug-Finding? In International Conference on Software
Engineering (ICSE), 2016.

[27] B. P. Munch. Versioning in a Software Engineering Database — the
Change Oriented Way. PhD thesis, Norwegian Institute of Technology,
Division of Computer Systems and Telematics, 1993.

[28] L. Passos, L. Teixeira, D. Nicolas, S. Apel, A. Wąsowski, K. Czarnecki,
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