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ABSTRACT
Data variations are prevalent in real-world applications. For ex-
ample, software vendors handle variations in the business require-
ments, conventions, and environmental settings of a software prod-
uct using hundreds of features each combination of which creates
a different version of the product. In database-backed software, the
database of each version may have a different schema and different
content. Variations in the value and representation of each element
in a dataset give rise to numerous variants in these applications.
Users often would like to express information needs over all such
variants. For example, a software vendor would like to perform
common tests over all versions of its product, e.g., whether each
relation in a relational database has a primary key. Hence, users
need a query interface that hides the variational nature of the data
and processes a query over all variations of a dataset. We propose
a novel abstraction called a variational database that provides a
compact and structured representation of general forms of data
variations and enables users to query database variations easily.
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1 INTRODUCTION
Variations in the content and representation of databases are com-
mon in real-world applications. Users often would like to express
the same information needs over all database variants in an applica-
tion. For example, to cope with variations in business requirements,
regional conventions, and/or environmental settings for different
groups of users, a software company creates different variants of
its software products [1]. These variants generally share a common
codebase and differ based on the selection of features that extend or
modify the core functionality. For example, one feature may deter-
mine the unit of currency and another one may indicate whether
a person must have a unique social security number. A software
product may have hundreds of features whose combinations create
a large number of software variants. In database-backed software
products, each variant may have a different databases with distinct
schema and content. As each data element may vary in terms of
content and representation, there are usually numerous possible
database variants in a software product. Software companies often
would like to perform some common tests over all these variants,
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for example, to check that each relation in a relational database has
a primary key. As another example of computing over variations of
data, during the process of feature extraction and selection, a data
scientist might train a model over many variants of a dataset to find
the variant over which the model has the highest accuracy. As each
element may have a distinct representation in or be absent from a
variant, the training is done over numerous variations of the under-
lying dataset. In these applications, users need to query or operate
on numerous variants of a dataset conceptually simultaneously.

In these applications, users would like to work with a query
interface that hides and/or simplifies the variational nature of the
data. Instead of dealing with myriads of databases with different
contents and/or structure, users prefer to work with a unified, com-
pact, and simple representation of these variants. Otherwise, users
have to rewrite and reconfigure their queries and algorithms over
each variant, which takes a great deal of time and effort. Further-
more, each variant may produce a different answer to the submitted
query. Hence, queries over such abstraction must be variation-
preserving: their inputs and outputs are sets of database variants.
Example 1.1 demonstrates the need for a system that can query
multiple databases given a query on only one of them.

Example 1.1. Anthropometric data 1 are measurements of human
bodies which help industrial designers build precise and usable
products. Anthropometric data is collected by physicians around
the globe working at different institutes, often as part of different
experiments and to address different questions. Since human phys-
iology differs significantly, designers want data from diverse and
representative populations. Each designer, however, needs a differ-
ent sets of attributes based on her application domain. Consider a
software production company that produces softwares to manage
these datasets. The company may produce different versions of its
software for each application domain and environmental setting.
For instance, the version of the software and its database used for
the automotive application domain is different with the one used
in designing computers. Table 1 shows two possible schemas used
in two different versions of the software.

Views have traditionally been used to define unified abstractions
over multiple databases. Nevertheless, queries over views are not
variation-preserving and their output is a single relation. Moreover,
due to the possible variability of each element in the underlying
dataset (e.g. in a database-backed software product line), one may
face exponentially many variants in an application. It is not clear
how to scale a view definition to this many databases.

In this paper, we outline our proposal for a novel abstraction
called variational databases that provides a unified, compact, and
structured representation of data variants in an application domain.
We also define the concept of variational queries whose inputs and
outputs are variational databases. One may use variational queries

1http://mreed.umtri.umich.edu/mreed/downloads.html
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Schema Variant 1 Schema Variant 2
info(id, gender, date, physician) subjectInfo(id, gender)
hand(hand_lnth, hand_brth) physician(id, name, date)
foot(foot_circ, foot_lnth) measurement(hand_lnth, foot_lnth)
Table 1: Schemas of two datasets for anthropometric data.

o ∈ Opt
b ∈ Bool ::= true | false

c ∈ Cond ::= b | o | ¬c | c1 ∨ c2 | c1 ∧ c2

Figure 1: Presence conditions.

to explore database variants simultaneously while preserving differ-
ences between them. In this paper, we mainly focus on schematic
variations in data, however, we believe that variational databases
have the potential to handle other types of data variations.

2 PRELIMINARIES
A schema S is a finite set {R1, . . . ,Rn } of relation symbols where
each Ri has a fixed arity ni ≥ 0. Let D be a countably infinite set of
constants. An instance IS of S assigns to each relation symbolRi ∈ S
a finite ni -ary relation RIi ⊆ Dni . For simplicity, we assume that
all attributes in a schema share the same domain. Our definitions
can be naturally extended for the case where attributes may not
share the same domain. The domain dom(I ) of instance I is the set
of all constants that occur in at least one relation in I . We denote all
instances of schema S as Inst(S). Am-ary query q over a schema
S ,m ≥ 0, is a function that maps every instance I ∈ Inst(S) into a
relation with aritym q(I ) ⊆ dom(I )m .

3 REPRESENTATION
In this sectionwe define variational schemas and variational queries.
The definitions are based on generic representations of variational
sets and maps, described in Section 3.1. Variational schemas and
queries are defined in Section 3.2 and Section 3.3, respectively. The
process of lifting a plain query written against a plain schema to
a corresponding variational query against a variational schema is
defined in Section 3.4.

3.1 Variational sets and maps
A variational set {ec11 , . . . , e

cn
n } is a set of elements where each

element ei is annotated by a presence condition ci [7, 16]. A presence
condition is a Boolean formula of configuration options [9], where
a configuration option is simply a Boolean variable that can be
enabled (true) or disabled (false). The syntax of presence conditions
is defined in Figure 1.

Conceptually, a variational set represents many different plain
sets that can be generated by enabling or disabling all of the con-
figuration options and including only the elements where the pres-
ence conditions evaluate to true. For example, the variational set
{2A, 3B , 4A∨B } represents four different plain sets: {2, 4} if A is
enabled but B is disabled, {3, 4} if B is enabled but A is disabled,
{2, 3, 4} if both are enabled, and the empty set if both are disabled.

We indicate variational sets with an arrow, as in
→

S , as a reminder
that variational sets are conceptually a function from a configu-
ration of its options to the corresponding plain sets. We typically
omit the presence condition true when writing variational sets, for

Schemas:

R ∈ Rel A ∈ Attr
s ∈ Spec ::= R(A1, . . . ,An )

S ∈ Schema ::= {s1, . . . , sn }

Queries:

k ∈ Const x ∈ Arg
a ∈ Arg ::= k | x | _

f ∈ Formula ::= R(a1, . . . ,an ) | a1 • a2
• ∈ Op ::= < | <= | = | > | >= | !=

д ∈ Goal ::= f | not f
r ∈ Rule ::= f :- д1, . . . ,дn

q ∈ Query ::= f with r1, . . . , rn

Figure 2: Abstract syntax of Datalog.

example, in the variational set {5, 6A}, the presence condition for
the value 5 is implicitly true, and so the element is included in both
variants of the set.

Similarly, a variational map
7→

M (note the different arrow) repre-
sents many different plain maps. A variational map associates each
key ki with a variational set of values

→

Vi , that is
7→

M(ki ) =
→

Vi . An
invariant of the variational map representation is that the presence
conditions in each

→

Vi in the range of
7→

M partition the configuration
space; that is, every variant of

→

Vi should have exactly one or zero
elements. If a ki maps to the empty set in some configuration of

7→

M ,
then that variant of

7→

M does not contain a mapping for ki , otherwise
ki is mapped to the elementvi of the configured set

→

Vi . For example,
consider the variational map {x 7→ {2A, 3¬A}, y 7→ {4A}}, which
represents two plain maps: {x 7→ 2,y 7→ 4} whenA is enabled, and
{x 7→ 3} when A is disabled.

3.2 Variational schemas
We start with variational schemas. For reference, the abstract syn-
tax of schemas and queries in plain Datalog is given in Figure 2. A
schema is defined as a set of relation specifications, where each spec-
ification provides the name of the relation and an attribute name
for each argument. Conceptually, a variational schema represents
many different plain schemas that can be obtained by configuration.

A naive representation of variational schemas would be to make
the set of specifications variational. While this allows arbitrary
variation among schemas, it does not reflect the fact that schemas
can vary in systematic ways. For example, generally we want to
support any variant of a schema in which the attributes of a rela-
tion have been reordered. Expressing all such reorderings explicitly
using a variational set of relation specifications is tedious and ob-
fuscates more interesting variations. Instead, we encode relation
specifications as (variational) sets of attributes rather than lists.

A trickier case is attribute renaming. Consider renaming the
attribute X to Y of a relation R based on a configuration option A.
We might represent this using the following variational relation
specification R {X¬A,YA,Z }, which also supports reordering X or
Y with attribute Z (present in all variants of the relation). However,
it’s not clear from this encoding thatX andY conceptually represent
the same attribute, as opposed to two different attributes that are
conditionally included in one variant or the other.
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f ′ ∈ VFormula ::= R {i1 : ac11 , . . . , in : acnn } | a1 • a2
д′ ∈ Goal ::= f ′ | not f ′

r ′ ∈ Rule ::= f ′ :- д′c11 , . . . ,д
′cn
n

q′ ∈ Query ::= f ′ with r ′c11 , . . . , r
′cn
n

Figure 3: Variational queries.

To make the conditional renaming of attributes clear, we intro-
duce a set ID of unique attribute identifiers, and refer to these in vari-
ational relation specifications. A variational schema then contains
both the variational set of variational relation specifications, and a
variational map from identifiers to attribute names. For example, we
can represent the variational relation above with the specification
R {1, 2} and the variational map {1 7→ {X¬A,YA}, 2 7→ {Z }}.

The representation of variational schemas can thus be summa-
rized as a pair (

7→

N ,
→

S), where
7→

N (i) =
→

A for i ∈ ID and
→

A is a variational
set of attribute names. The variational set

→

S contains variational
relation specifications of the form R

→

I , where
→

I is a variational set
of the identifiers included in relation R.

Assume variations in Table 1 only included tables info, subjectInfo,
and physician. A variational schema that includes both variants is
(
7→

N ,
→

S), where
7→

N and
→

S are defined as below.
7→

N = {1 7→ {id}, 2 7→ {gender}, 3 7→ {date}},
4 7→ {physicianE , name¬E },

→

S = {info{1, 2, 3, 4}, subjectInfo¬E {1, 2}, physician¬E {1, 4, 3}}

The configuration option E determines whether we are considering
the first variation or the second one. Note that the variational
schema does not capture the revised ordering in the evolved schema,
but rather all possible ordering of the attributes.

3.3 Variational queries
Conceptually, a variational query describes a query that can be
executed over any database consistent with the variational schema.
The property that must hold between a variational query q′ and a
variational schema S ′ is that for every plain query qC obtained from
q′ by configuring with a function C : Opt → Bool, qC is consistent
with the corresponding plain schema SC obtained by configuring S ′
with the same function C . That is, every variant query matches the
corresponding variant schema. In previous work, we have shown
how similar consistency properties can be efficiently checked [3, 4].

The representation of variational queries in Figure 3 builds on the
representation of plain queries in Figure 2. First, relations are gen-
eralized to accept a variational set of named arguments, where the
names are the unique identifiers defined in the variational schema.
Second, the sub-goals of a rule are annotated by presence conditions
indicating in which variants those sub-goals are applicable. Third,
each rule in a query is itself annotated by a presence condition
indicating in which variants the rule should be included.

3.4 Lifting plain queries to variational queries
One goal of our approach is to support writing a plain query over
an example database, then generalize or lift that query using a
variational schema to work on variant layouts of that database.
Since variational schemas can express arbitrary variability between
schemas (e.g. a degenerate case is a variational schema that encodes

two completely different and unrelated schemas), it is not in general
possible for this lifting process to produce a semantically equivalent
query for all variants.

However, lifting should produce a variational query that has the
following two properties: (1) it is consistent with the variational
schema as defined in Section 3.3, and (2) the variant queries should
be semantically equivalent for all variant schemas that different
from the initial schema only by attribute renaming or reordering.

We write ⌈f ⌉S
′

S to represent lifting a plain formula f defined
over schema S to a variational formula f ′ defined over a variational
schema S ′. The definition of formula lifting is given below. In the
definition, S(R, j) = Aj is the attribute nameAj for the jth argument
of relation R in S ; S ′(R,Aj ) = ic is the identifier and presence
condition for attribute Aj of relation R in S ′; and S ′(R) =

→

I is the
variational set of identifiers associated with relation R in S ′.

⌈R(a1, . . . ,an )⌉
S ′
S = R {i : _c | ic ∈ S ′(R), i < I }

∪ {i : acj | j ∈ {1..n}, ic = S ′(R, S(R, j))

⌈a1 • a2⌉
S ′
S = a1 • a2

The lifted formula essentially augments the initial formula with
the unique identifiers and presence conditions corresponding to
the given arguments, then pads out the relation with arguments
that match anything (_) for all attributes that exist only in other
variants of the schema.

With the function for lifting formulas, lifting goals, rules, and
queries is straightforward. For goals, we simply lift the argument
formula, for rules we lift each goal setting the presence conditions to
true, and likewise for queries we lift each rule setting the presence
conditions to true.

Assume designers in Example 1.1 want to get a list of subjects and
their physicians. While they need to query the first variation with:
A(x, y) : −info(x, a, b, c, d, y), they need to query the second vari-
ation in Table 1 with A′(x, y) : −subjectInfo(x, a, b), physician(x, y, c).
These queries can be lifted to the variational schema defined in
Section 3.2 to produce the following variational query:
A {1 : x , 4 : y} :- info {1 : x , 2 : a, 3 : b, 4 : y},

subjectInfo¬E {1 : x , 2 : a}, physician¬E {1 : x , 4 : y, 3 : b}

To obtain the plain query for the second variation SE , we first
configure this variational query with E = false, then substitute the
IDs for the corresponding attribute names, and finally order the
arguments according SE and remove the attribute names.

After lifting, a variational query can be manually augmented to
support other variants described by the schema, which differ from
the initial schema arbitrary ways. This can be done by editing the
variational query directly, or by projecting on the relevant variant(s)
of the query and editing this simplified view [12, 17].

4 CHALLENGES
In this section we discuss challenges that we foresee in using varia-
tional schemas and variational queries in practice.

Generalizing queries over other systematic transforma-
tions: The variational schema representation immediately sup-
ports several kinds of refactorings, including renaming, reordering,
adding, and removing attributes. Other kinds of refactorings, such
as renaming relations, would be easy to add using similar tech-
niques to those we have already applied. However its not clear how
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best to support other kinds of refactorings, such as (de)composition
of relations. The variational schema representation supports arbi-
trary variation among schemas by conditionally including or not
different variants of the same relation, however, encoding refac-
torings using these techniques means that we lose more specific
information about the refactoring that was applied and so cannot
automatically generalize the query to work on such variants. There-
fore, future work should consider how to encode other kinds of
transformations in variational schemas.

Ensuring properties of generalized queries: A benefit of the
variational schema representation is that it can express arbitrary
variation among schemas, and is not limited only to a set of stan-
dard schema refactorings. However, this expressiveness limits the
strength of guarantees we can make about the lifting process. As
described in Section 3.4, lifting ensures only that a variational query
is consistent with the variational schema in the sense that each
variant query uses relations that are defined and of the appropriate
arity. Building on our previous work on variational typing [3, 4],
we could also guarantee that arguments in each variant query are
all of the correct type. In the case of simple refactorings like re-
naming and reordering variants, it should be easy to prove that
lifting also preserves the semantics of the query across all variant
schemas. However, for many other kinds of variation in schemas,
lifting will not ensure semantic equivalence across variants and will
often require manually augmenting the query to support variants
not covered by the original query. So what can we say about such
variational queries? Future work should consider how to express
and prove properties about variational queries that vary in arbitrary
ways. Existing work on variational analysis (e.g. in the context of
software product lines [14]) can provide guidance here.

5 RELATEDWORK
Probabilistic databases represent uncertainty about the content
of a database by maintaining a set of possible states where each
state has a probability of being true [13]. These states all share
the same schema and it is assumed that one is the actual state of
the database. Variational databases, however, aim at providing a
principled approach to modeling general types of variations where
there may be numerous valid variations with different schemas.

Dataset versioning systemsmanagemultiple versions of a dataset
created as a result of database updates over time [2]. They enable
users to query certain versions of a dataset. Nevertheless, users of
variational databases would like to have a variation-independent
view of the data and query all variations simultaneously. Variational
databases also seek to model general forms of data variations, e.g.,
representational variations. Schema independent data analytics sys-
tems return semantically equivalent results over different schematic
variations of the same dataset [10]. Variations of a variational data-
base, however, may have different amount of information.

The representation of variational queries differs from our previ-
ous approach to encoding variation in abstract syntax trees [6, 15]
with choices. A choice f ⟨e1, e2⟩ is labeled by a condition f and re-
solves to either the alternative e1 if f is true or e2 if f is false. The
representation chosen here, based on presence conditions, is similar
to our previous work on variational lists, sets, and graphs [7, 16].
An advantage of choice-based variation is that we can apply a set

of laws for factoring and distributing choices within the abstract
syntax tree, which can be used to minimize redundancy in the rep-
resentation. However, the representation chosen here is a better fit
for variation in collections (e.g. sets of arguments, lists of sub-goals
and rules) [16].

6 CONCLUSION AND FUTUREWORK
We introduced variational schemas and variational queries to ad-
dress the problem of query dependence on a particular represen-
tation of data. Note that although we chose relational databases
and Datalog queries, this problem and this approach are applica-
ble to other data sources, such as spreadsheets, and other query
languages, such as SQL. As future work, we will address the chal-
lenges described in Appendix. We will implement our approach to
study it empirically. And we will extend our model of variational
databases to support a wider variety of systematic transformations
and other kinds of data sources, such as spreadsheets. The concept
of variational databases can be used in a variety of applications
including ,but not limited to, database versioning, schema evolu-
tion, relational learning algorithms, feature selection, and software
maintenance.
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