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ABSTRACT
Many applications require not only representing variability
in software and data, but also computing with it. To do
so efficiently requires variational data structures that make
the variability explicit in the underlying data and the opera-
tions used to manipulate it. Variational data structures have
been developed ad hoc for many applications, but there is
little general understanding of how to design them or what
tradeoffs exist among them. In this paper, we strive for a
more systematic exploration and analysis of a variational
data structure. We want to know how different design deci-
sions affect the performance and scalability of a variational
data structure, and what properties of the underlying data
and operation sequences need to be considered. Specifically,
we study several alternative designs of a variational stack,
a data structure that supports efficiently representing and
computing with multiple variants of a plain stack, and that
is a common building block in many algorithms. The differ-
ent variational stacks are presented as a small product line
organized by three design decisions. We analyze how these
design decisions affect the performance of a variational stack
with different usage profiles. Finally, we evaluate how these
design decisions affect the performance of the variational
stack in a real-world scenario: in the interpreter VarexJ
when executing real software containing variability.
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1. INTRODUCTION
Variation is common in both software systems and data
computation. In software systems, variability is introduced
so that users can configure the software according to dif-
ferent use cases, for example, using command line options,
plugins, or preprocessor directives. In data computation,
variability arises by running a program or part of a pro-
gram many times with inputs that are varied only slightly,
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as in configuration testing, uncertainty analysis, and spec-
ulative analysis [8, 9, 15, 16, 18]. Although variation makes
software and computation flexible, it also requires more effi-
cient techniques for analyzing and executing programs since
it is usually not possible to explore each variant individually
due to the combinatorial explosion of possibilities. Recent
research in several domains addresses the combinatorial ex-
plosion problem with a variety of solutions that share some
common ideas: analyze, manipulate, and compute with an
explicit representation of variation in code and data, and
exploit sharing among the variants.

By encoding variation explicitly in code and data, many ap-
proaches gain significant performance improvement without
sacrificing precisions of the results. For example, uncertainty
analysis proposed by Sumner et al. [18] runs faster by oper-
ating on a vector of uncertain input values all at once, rather
than on individual values sequentially, since many compu-
tations are independent and can be shared. Encoding and
manipulating variability explicitly has also been extremely
successful in analyzing software product lines. Such vari-
ational analyses are shown to scale to large configuration
spaces but still provide sound results [13,19].

Data structures for computing with explicit variation are
often reinvented and optimized in an ad-hoc way with lit-
tle reuse across projects. We envision that more general
variational data structures can be essential building blocks
to be reused across all of these domains, but they are not
currently well understood [22]. This paper is a step towards
a more systematic exploration and analysis of the design and
implementation of variational data structures. Specifically,
we focus on variational stacks. We analyze how different
design decisions and optimizations affect the performance of
variational stacks, and we evaluate how different variational
stacks perform in practice when used in the implementation
of the the variability-aware Java interpreter VarexJ, where
variational stacks play a central role [12,14].

The main contributions of this paper are:

• The description of a small family of variational stack
data structures (Section 3). The family consists of
two alternative core stack implementations and two
independently optional optimizations, leading to eight
different variational stacks.

• An exploratory analysis of variational stacks on artifi-
cially generated operation sequences (Section 4.1) that
vary in the number of configuration options they refer-
ence and in the distribution of variational operations.

• An empirical analysis of the performance of each of
the eight variational stacks when used as the varia-
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tional operand stack of the variational Java interpreter
VarexJ (Section 4.2). Our experiments show that both
optimizations are highly effective in practice, and also
demonstrate that choosing the right variational data
structure can have a significant impact on the overall
performance of programs that compute with variability.

2. BACKGROUND AND RELATED WORK
In this section, we provide necessary background on varia-
tional data structures and also on variability-aware execution,
an analysis strategy that extensively uses variational data
structures to share common execution paths across variants.
We use the variability-aware interpreter VarexJ in later
sections to evaluate our variational stack implementations.

2.1 Variational Data Structures
Conceptually, variational data represents many different con-
crete data values at once. However, variational data is not
just a flat set of variants, but also describes which configura-
tions each variant is associated with. Variation on atomic
data values can be expressed in different forms, such as by
trees of choices between alternatives or by maps from variants
to the configuration context where each is relevant [3, 22].

The choice calculus is one way to express variational data [3,
6, 21]. For example, consider the value x = Choice(α, 1, 3),
a choice that represents either the concrete value 1 if the
configuration option α evaluates to true, or 3 otherwise.
Computations on x will operate on both 1 and 3, preserving
the fact that 1 is associated with the variational context α and
3 with the context ¬α. Clearly, the size of the configuration
space for variational data is exponential in the number of
independent configuration options it contains.

Variational data structures are designed to compactly rep-
resent and compute with variational data [22]. In previous
work, we discussed some designs of variational lists, maps,
and sets [22]. However, it is still unclear how the design
decisions described in that work affect the scalability of vari-
ational computations in practice, and which design decisions
have yet to be identified. Thus, a systematic evaluation and
exploration of the design space is needed.

Variational data structures have diverse applications. They
are commonly used for variational program analysis, such as
variational ASTs for type checking [7], variational type infer-
ence [2], and variational executions [4, 12,16]. They are also
proposed for variational representations of software artifacts,
such as test suits, formal specification, and deductive verifi-
cation [22]. Further applications from other domains already
need to cope with variation, such as travel planning, uncer-
tainty in analysis, and context-oriented programming [22].

2.2 Variability-Aware Execution
Variability-aware execution makes extensive use of variational
data structures. The core idea is to combine repeated com-
putations into a single execution, tracking differences while
sharing as much data and execution as possible. This tech-
nique is useful, for example, in testing highly configurable
systems [8, 12, 14, 16], where it enables faster testing of all
configurations and scales well to large configuration spaces.

A variability-aware interpreter is a programming language
interpreter that supports variability-aware execution [8,12,
14, 16]. In such an interpreter, data values are variational
and instructions are executed within variational contexts
(corresponding to the selection of some or all configuration

Figure 1: Feature diagram for variational stacks.

options). In previous work we have designed VarexJ, a
variability-aware interpreter for Java [12, 14]. Since VarexJ
computes with variational data, there are many applications
for variational data structures.

Computation in the JVM centers around operand stacks,
so the operand stack is a central data structure that must han-
dle variation efficiently. In the JVM, there are instructions
for pushing constants, field values, or local variables onto the
stack; arithmetic operations pop inputs from the stack and
push their results; and method inputs and outputs are passed
via the operand stack. There are many ways variation could
be encoded in operand stacks. For example, one possibility
is to keep the stack implementation as-is and but manage
multiple versions dependent on the variational context (i.e. a
choice of stacks). Another possibility is to make the entries
in the stack variational (i.e. a stack of choices). Both imple-
mentations can represent the same data, but have different,
non-obvious, and scenario-dependent effects on performance.

Since the operand stack is central to the JVM, the design of
a variational stack has immediate effects on the performance
of the interpreter. In the rest of this paper, we explore
different designs of a variational stack and investigate how
the design decisions affect performance in different scenarios.

3. ALTERNATIVE VARIATIONAL STACKS
To explore the dimensions of the design space of variational
data structures, and to evaluate their impact on performance,
we need some implementations. In this section, we describe a
small family of variational stack data structures, illustrated
by the feature diagram in Figure 1. It consists of two mu-
tually exclusive core variational stack implementations and
two conceptually independent, optional optimizations, lead-
ing to eight different variational stacks. Throughout this
section, it is important not to confuse the variation between
the different variational stack implementations described in
Figure 1, which is an implementation-time concern about
which variational stack to pick, and the variation within a
particular variational stack, which is the runtime concern
that variational stacks are designed to handle efficiently.

Each variational stack implements the interface shown in
Listing 1. For simplicity, we only discuss the operations push

and pop. Note that both push and pop take an argument
ctx to indicate in what variational context the operations
are performed. The main challenge of designing an efficient
variational stack is that the height of the variant stacks can
differ if values are pushed and popped in different contexts.
In the rest of this section, we show how unbalanced variant
stacks can be managed with different tradeoffs, and how these
implementations can be further optimized by exploiting prop-
erties of different usage profiles. Implementation details and
other stack operations, such as peek and switch, are available
as open source at http://meinicke.github.io/VarexJ/.
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(a) Choice-of-stacks. (b) Stack-of-choices.

Figure 2: Comparison of two different core variational stack implementations.

1 interface VariationalStack {
2 void push(FeatureExpr ctx, Conditional value);
3 Conditional pop(FeatureExpr ctx);
4 }

Listing 1: Interface for variational stacks.

1 class ChoiceOfStacks implements VariationalStack {
2 Conditional<Stack> stack;
3 void push(FeatureExpr ctx, Conditional value) {
4 value.foreach((FeatureExpr c, Object v) -> {
5 push(c.and(ctx), v);
6 });
7 }
8 private void push(FeatureExpr ctx, Object value) {
9 stack = stack.flatMap((FeatureExpr f, Stack s)->{

10 if (f.and(ctx).isContradiction()) {
11 return new One(s); }
12 if (f.andNot(ctx).isContradiction()) {
13 s.push(value);
14 return new One(s); }
15 final Stack clone = s.copy();
16 clone.push(value);
17 return new Choice(ctx, clone, s);
18 });
19 }}

Listing 2: Implementation of choice-of-stacks.

3.1 Choice-of-Stacks
One way to implement a variational stack is as a choice among
non-variational stacks. Since each stack may be a different
size, this design represents unbalanced stacks naturally.

In Figure 2a, we illustrate how a choice-of-stacks stores
variational data for a sequence of three conditional push
operations. On the second push, the stack splits because
of the non-trivial context. Since it only splits on the rel-
evant configuration option A, these two alternative stacks
will be shared among all configurations that differ in other,
irrelevant options. Also note that as the stacks split, the
original value 1 is redundantly stored in the first position
of all variant stacks. If operations are performed in many
different variational contexts, the number of variant stacks
and potential redundancy grows exponentially.

Listing 2 shows the implementation of push for choice-of-
stacks. A Conditional type represents a value that may be
variational, encoded as a choice calculus expression with
plain values at the leaves. A FeatureExpr is a Boolean ex-
pression of configuration options, and is used to represent

variational contexts. The underlying data structure for the
choice-of-stacks implementation is Conditional<Stack>, that
is, a choice calculus expression with stacks at the leaves.
Since the argument value is also variational, the push opera-
tion first iterates over all of the plain values in the argument
(line 5). The push helper method pushes a plain value to all
of the variant stacks. For each variant stack, it checks the
variational context of the stack, f, against the variational
context of the push operation, ctx. There are three possibili-
ties: at line 10, the push applies in no contexts that include
this stack, so it is returned unchanged (the One constructor
builds a Conditional value with just one variant); at line 12,
the push applies in all contexts that include this stack, so the
value is simply pushed; at line 15, the push applies to some
contexts that include this stack, so we must clone the stack
to capture the two different execution paths going forward.

The major drawback of the choice-of-stacks implementa-
tion is that if just one value of a stack differs in two contexts,
all of the values common to both contexts must be dupli-
cated, which has both space and time implications. If the two
variant stacks later converge, identifying and merging them
is expensive since we must iterate over all of the variants.

3.2 Stack-of-Choices
The next implementation inverts the relationship of stacks
and choices by representing a variational stack as a stack of
conditional values (stack-of-choices). The idea is to avoid
the cloning required by the choice-of-stacks implementation
by using a single stack and using choices within that stack
to encode difference among entries in different contexts.

Figure 2b illustrates how stack-of-choices shares the com-
mon 1 value among different contexts. To handle unbalanced
stack sizes, we conditionally store null values (⊥) to the stack,
which we call holes. For example, when the number 2 is
pushed under context A, we push the choice Choice(A, 2,⊥).
The rest of this subsection describes how the push and pop
operations handle holes in the stack.

The push operation is straightforward. If a value is pushed
for the trivial context true (meaning the same value is pushed
in all contexts), the value can be pushed directly onto the
stack. However, if a value is pushed with a non-trivial context,
such as A, we must introduce a hole to represent the absence
of the value under the contradictory context, ¬A.

The pop operation is more complicated since it might need
to eliminate holes in order to return meaningful values. For
example, consider the rightmost stack of Figure 2b; a pop
in context true cannot simply return Choice(B,⊥, 3) since
there are still values on the stack under context B. Thus,



1 class StackOfChoices implements VariationalStack {
2 Conditional[] stack;
3 int top = -1;
4 void push(FeatureExpr ctx, Conditional value) {
5 stack[++top] = new Choice(ctx, value, null);
6 }
7 Conditional pop(FeatureExpr ctx) {
8 Conditional pop = null;
9 for (int i = top; i >= 0; i--) {

10 Conditional current = stack[i].get(ctx);
11 pop = new Choice(ctx, current, pop);
12 stack[i] = new Choice(ctx, null, stack[i]);
13 if (i == top && stack[i].isNull()) top--;
14 ctx = ctx.and(getCtxOfNull(current));
15 if (ctx.isContradiction()) break;
16 }
17 return pop;
18 }}

Listing 3: Implementation of stack-of-choices.

pop first fills the hole with Choice(A, 2, 1) then removes and
returns the value Choice(B,Choice(A, 2, 1), 3).

To handle holes, the pop operation traverses the stack top-
down and assembles values from different contexts until either
there is no hole in the return value, or the whole stack is
traversed. For example, consider again popping a value from
the rightmost stack in Figure 2b. When calling pop under
context ¬B, the top element can be removed and the value
3 returned directly since 3 is a value with no holes. However,
if pop is called under B, the hole is filled by traversing the
rest of the stack, eventually returning Choice(A, 1, 2). Since
pop is applied under context B, the part of the top entry
corresponding to context ¬B must be kept on the stack.

Listing 3 shows the implementation of stack-of-choices.
The member variable stack is an array of conditional values
and top is the index of the topmost element. The method
push adds an entry to the stack as a choice with a hole (null).
Popping a value from the stack works as follows: The variable
pop is used to incrementally collect values while traversing
the stack. Starting from top, the value under the current
context is retrieved (line 10) and stored in the current pop

variable (line 11). Next, the popped value is removed from
the current position in the stack. If this leaves the top entry
empty, top can be decremented. To fill the remaining holes
in pop, the context of the null value is determined by calling
getCtxOfNull, and this context is used for the next iteration,
until there are no holes left (i.e. ctx is a contradiction) or all
entries are traversed. Finally, the value pop is returned.

Stack-of-choices supports more sharing than the choice-of-
stacks implementation, but this comes at the cost of compli-
cating stack operations (e.g. pop). In the best case, the pop
operation can simply return part of the topmost entry if it
does not contain a hole in the given context. In the worst
case, however, the whole stack must be traversed to pop a
value. We discuss and evaluate these tradeoffs in Section 3.

3.3 Buffered Stack Decorator
Both choice-of-stacks and stack-of-choices support push and
pop operations with arbitrary contexts. During the devel-
opment of VarexJ, we discovered that values are usually
popped from the stack under the same context as they were
pushed. We turn this insight into a decorator for an under-
lying core variational stack that exploits this property.

1 class BufferedStack implements VariationalStack {
2 LinkedList buffer;
3 FeatureExpr bufferCTX;
4 VariationalStack coreStack;
5 void push(FeatureExpr ctx, Conditional value) {
6 if (!bufferCTX.equals(ctx)) {
7 debufferAll();
8 bufferCTX = ctx;
9 }

10 buffer.push(value);
11 }
12 Conditional pop(FeatureExpr ctx) {
13 if (bufferCTX.equals(ctx) && !buffer.isEmpty()) {
14 return buffer.pop();
15 } else {
16 debufferAll();
17 }
18 return coreStack.pop(ctx);
19 }}

Listing 4: Buffered-stack decorator.

1 class HybridStack implements VariationalStack {
2 FeatureExpr stackCTX;
3 VariationalStack stack = new Stack();
4 boolean switched = false;
5 void push(FeatureExpr ctx, Conditional value) {
6 checkParameter(ctx, value);
7 stack.push(ctx, value)
8 }
9 void checkParameter(FetureExpr ctx, Conditional

value) {
10 if (switched) return;
11 if (!ctx.equals(stackCTX) || !value.isOne()) {
12 // create a variational stack
13 // push all current values
14 switched = true;
15 }
16 }}

Listing 5: Hybrid-stack decorator.

The idea is to buffer pushed values in a plain stack as
long as the variational context doesn’t change. When several
sequential pushes and pops are called in the same context,
we can just push and pop from the buffer, saving the cost
of manipulating variational values. When a push or pop is
invoked in a different variational context, the buffered-stack
decorator default to the core variational stack implementa-
tion, pushing all currently buffered values to the core stack
in the context associated with the buffer. The implementa-
tion of the buffered stack is shown in Listing 4. The push

and pop operation check whether they were invoked in the
same context as the buffer. If not, they fall back to the core
implementation using debufferAll. As the implementation
illustrates, when pushes and pop occur in the same context,
there are no map calls at all, so even very large choice values
can be pushed and popped with no performance overhead.

3.4 Hybrid Stack Decorator
All of the implementations described so far assume that the
stack always needs to handle variational values and opera-
tions in different variational contexts. During the develop-
ment of VarexJ, we discovered that most calls to the stack
do not involve variation at all. To exploit this property, we
implemented the hybrid stack decorator, shown in Listing 5.
The hybrid stack uses a plain stack until a variational stack
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Figure 3: Comparing variational stacks on artificially generated operation sequences with different numbers
of configuration options that may appear in the variational contexts. Y-axes are on a logarithmic scale.

is necessary. The implementation of push checks whether
the context is different from the plain stack or whether the
pushed value is variational. If neither is true, it keeps using
the plain stack. Otherwise, it switches to a variational stack
initialized by the current contents of the plain stacks.

The hybrid stack decorator exploits the fact that in many
scenarios, stack operations are simple and do not need a
variational stack. The decorator exploits these cases by
working with more efficient plain values as long as possible.

4. EXPERIMENTAL ANALYSIS
Choosing the right data structure for an application often
depends on both the particular data that will be stored in
the data structure, and on patterns of its usage within the
application. The same is true for variational data structures,
except we must also take into account properties of data and
usage related to variability. In this section, we identify a few
of these properties and present two sets of experiments to
analyze their impact and evaluate the performance of the
family of variational stacks described in Section 3.

In the first set of experiments, described in Section 4.1,
we focus on understanding how individual properties of data
and usage influence the performance of variational stacks
in order to help recommend a specific variational stack for
a particular use case. In the second set of experiments,
described in Section 4.2, we evaluate the performance of
variational stacks in a real-world setting, when used as the
operand stack of the VarexJ interpreter.

4.1 Analyzing Tradeoffs in Generated Data
In principle, we can view the range of applications for varia-
tional data structures as as an n-dimensional space, where
each dimension represents a different property of data or
usage that influences which variational data structure to
choose. If we fully understood this space, we could partition
it into regions for each class of data structure (e.g. varia-
tional stacks) and then prescribe a particular variational data
structure for a given application.

Examples of data and usage properties that impact the per-
formance of variational data structures include: the number
of configuration options and unique variants, the density and
complexity of variation points within the data, and the ratio

and distribution of variational operations. In this subsection,
we experimentally analyze the impact of two of these proper-
ties on variational stacks: number of configuration options
and one aspect of the distribution of variational operations.

4.1.1 Number of Configuration Options
The most efficient variational data structure for an applica-
tion with only two variants (e.g. in delta execution [20]) is
unlikely to be the same as an application where the data
varies in 10s or 100s of independent configuration options (e.g.
when analyzing software product lines [7]). Within our family
of variational stacks, we expect this tradeoff to be illustrated
by the choice of which core stack implementation to choose.
For a small number of variants, we expect the directness of
the choice-of-stacks implementation of Section 3.1 will win
out over the relatively more complicated stack-of-choices im-
plementation of Section 3.2. For a large number of variants
with enough commonalities, we expect the increased sharing
in the stack-of-choices implementation has a chance to pay off.
This experiment attempts to identify the threshold of variants
where the stack-of-choices core stack implementation pays off.

Experimental setup. For each number of configuration
options from 0 to 8, we artificially generate a sequence of 500
push/pop operations. The generated operation sequences
are constrained to prevent stack underflow errors, and also
to approximate realistic data by preferring simple variational
contexts [10] and sequential operations in the same vari-
ational context (see Section 3.3). More specifically, each
operation sequence is generated in the following way: start
by generating a push operation with a random feature se-
lected from among the 0–8 available configuration options
and the trivial true context; for operation n + 1, 90% of
operations will use the same variational context while the
remainder will choose a new random feature; if any variant
stack in the chosen context is empty, produce a push opera-
tion, otherwise randomly push or pop; for push operations,
choose a random integer or, in 10% of cases, push a choice
in a random configuration option between random integers.

For each operation sequence, we measure the runtime1

1All measurements throughout the paper were performed on
a machine with an Intel Core i7-5600 CPU (4 cores, 2.6 GHz),
11.6 GB of RAM, running 64-bit Ubuntu Linux.
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Figure 4: Comparing variational stacks on randomly generated operation sequences with different probability
that an operation is executed in the same variational context as the previous operation.

and the maximum memory consumption2 of four of the
variational stacks produced by the product line described in
Section 3. Each operation sequence is executed on each stack
10 times, choosing the fastest execution. We omit the four
stack variants that include the hybrid optimization since this
optimization cannot provide benefits (and only causes small
overhead) in such a variation-dense scenario.

Results and analysis. The results of the experiment are
presented in Figure 3. The independent variables are: (1)
the number of configuration options, plotted on the x-axis,
and (2) the choice of stack, indicated by separate lines (CoS
represents the core choice-of-stacks implementation, SoC
is the stack-of-choices implementation, and +B indicates a
stack decorated by the buffered optimization); the dependent
variable is the runtime of the operation sequence in the left
graph and amount of memory consumed in the right graph.

In general, the precise threshold where the stack-of-choices
core stack implementation pays off can depend on many
variables that are fixed in the experiment, such as the ratio
of operations with a non-trivial context. However, what
we observe in the results is that this threshold is quite low
for the values of these variables that we analyzed. In our
experiment, the stack-of-choices core stack implementation
outperforms the choice-of-stacks implementation at three
configuration options, and outperforms the buffered choice-
of-stacks implementation at five configuration options.

Despite the low threshold for switching from choice-of-
stacks to stack-of-choices, we expect there are many appli-
cations where this threshold is not exceeded, either because
the number of configuration options is low [1,20] or because
they do not interact much [14].

In the memory measurement of Figure 3, we observe the
stack-of choices outperforms the choice-of-stacks already for
three features. As expected, the choice-of-stacks implemen-
tation requires memory that is exponential in the number of
configuration options. In contrast, the memory consumption
of the stack-of-choices stays almost constant, independent
of the number of involved configuration options. This is
because adding more configuration options does not increase
redundancy in the stack-of-choices, but instead just changes

2https://github.com/meinicke/ObjectSizeMeasure.

the context associated with each choice in the stack.

4.1.2 Distribution of Variational Operations
In Figure 3 we observe that the buffered implementations
outperform their unbuffered counterparts. This is not surpris-
ing since in the generated sequences, 90% of operations are
in the same variational context as their predecessor, which
is exactly the situation the buffered optimization is intended
to exploit. In the next experiment we attempt to measure
the runtime and memory performance of this optimization
with respect to each of our core variational stacks and to the
ratio of sequential operations in the same context.

Experimental setup. For r from 0 to 100 in increments
of 5, we artificially generate a sequence of 500 push/pop
operations where exactly r% of sequential pairs of operations
occur in the same variational context. We arbitrarily fix
the variation space at six independent configuration options.
As before, we constrain the operation sequences to avoid
stack underflow errors. For each operation sequence, we
measure the runtime of four variational stacks: the two core
stacks and the two core stacks decorated by the buffered
optimization. As before, each operation sequence is executed
on each stack 10 times, choosing the fastest execution.

Results and analysis. The results of the experiment are
presented in Figure 4. The independent variables are: (1) the
ratio of sequential operations in the same variational context,
plotted on the x-axis, and (2) the choice of stack, indicated by
separate lines, labeled as before; the dependent variables are
runtime and memory consumption of the operation sequence.

We observe that for the choice-of-stacks core implemen-
tation, the buffered optimization has a significant effect on
runtime and remains profitable all the way until the ratio
is nearly zero. In contrast, the buffered optimization has a
very small effect for the stack-of-choices core implementation,
and the effect nearly vanishes at a relatively high ratio of se-
quential operation in the same context. This reflects the fact
that the stack-of-choices implementation already supports
relatively well the scenario that the buffered optimization
addresses; for example, pushing and popping a value in the
same context will simply push and pop a corresponding choice
from the stack. In contrast, the choice-of-stacks implementa-
tion would require splitting and copying all variant stacks

https://github.com/meinicke/ObjectSizeMeasure


Choice-of-stacks Stack-of-choices
Core +H +B +HB Core +H +B +HB

Email 556.8 492.0 499.7 517.8 508.1 502.6 506.2 501.7
Elevator 792.2 645.3 610.2 596.4 786.3 651.2 643.7 582.8
ZipMe 8 385.6 4 687.7 5 244.7 4 549.8 6 482.7 4 599.3 5 077.6 4 588.8
GPL 35 962.1 21 043.5 25 866.5 20 466.0 29 188.5 20 822.5 25 637.8 20 713.3

Table 1: Running time (ms) of each variational stack used as the operand stack in VarexJ while executing
different variational programs. Each row measures the overall running time of VarexJ using each stack in-situ.

LOC Opt Conf Stacks λH λB λHB
Email 644 9 40 4 938 195 21 18
Elevator 730 6 20 14 154 1 772 1 499 1 454
ZipMe 2 827 15 10 76 392 93 169 28
GPL 662 15 146 533 162 7 345 500 497

Table 2: Overview of four variational programs.
Columns indicate: lines of code (LOC), number of
configuration options (Opt), and total number of
configurations (Conf) for each example; the total
number of operand stacks created while executing
the example in VarexJ (Stacks); and the failure rates
for the hybrid optimization (λH), buffered optimiza-
tion (λB), and both optimizations combined (λHB).

on the push operation, even if the next pop operation is in
the same context (rendering the copied variants irrelevant).

In the graph of memory consumption in Figure 4, we can
see that the memory required by choice-of-stacks is signifi-
cantly higher than the memory required by stack-of-choices
for all ratios except for 100%. For all ratios below 100%, the
memory consumption of choice-of-stacks is approximately
21 kilobytes since the stack has to represent all 26 variant
stacks. The stack-of-choices is again more efficient since
common values are shared across variant stacks. For both
implementations, the buffered-stack optimization has only
minimal effects on memory consumption.

Neither of the experiments in this subsection analyzed vari-
ational stacks containing the hybrid optimization described
in Section 3.4. The improved performance of hybrid stacks
depends on whether variability occurs at all in each stack in-
stance. This is something that is best measured on real-world
examples, which we do in the next subsection.

4.2 Variational Stacks in VarexJ
In this subsection we consider how our variational stacks
perform in practice, when used as the operand stack in the
variational Java interpreter VarexJ (see Section 2.2). We
use VarexJ to execute all configurations of four systems
that have previously been used as benchmarks in research on
configurable software: the systems Email [5] and Elevator [17]
are small academic Java programs that were designed with
many interacting configuration options, ZipMe3 is a small
open-source library for accessing ZIP archives, and GPL [11]
is a small-scale configurable graph library often used for
evaluations in the software product line community.

Experimental setup. We use VarexJ to execute each of
the four systems, using each of the eight possible variational
stacks described in Section 3 as VarexJ’s variational operand
stack. For each combination of system and stack, we configure

3https://sourceforge.net/projects/zipme/

VarexJ to use the corresponding stack implementation as its
operand stack, then use VarexJ to execute all configurations
of the system 10 times, choosing the fastest execution.

Additionally, we count how many total operand stacks are
created during the execution of each system. For each stack
implementation that includes either the hybrid or buffered
optimization, we count how many times these optimizations
miss during the execution of each system. For the hybrid
optimization, the optimization misses when a variational
operation is first performed on a particular operand stack.
For the buffered optimization, the optimization misses when
an operation is first performed on some operand stack in a
different variational context than the previous operation.

Results and analysis. The runtime results are presented
in Table 1, while Table 2 presents some basic characteristics
of each system: lines of code, number of configuration options,
and number of unique configurations. Table 2 also shows the
number of operand stacks created during the execution of
each system in VarexJ, the miss rates for each optimization
in isolation (columns λH and λB), and the miss rate of both
optimizations combined (λHB).

In the runtime results, we observe that the stack-of-choices
core implementation outperforms the choice-of-stacks core
implementation for all systems. More interestingly, we ob-
serve that both optimizations are highly relevant in practice—
either optimization alone produces substantial speedups with
the choice-of-stacks implementation, and including both op-
timizations renders the choice of core stack implementation
moot. This suggests that the optimizations capture an over-
whelming majority of the cases in this application scenario.
This observation is confirmed by the miss rates in Table 2.
A core stack is created only when the included optimizations
miss, and we observe that the miss rate for both optimiza-
tions combined (λHB) is less than 1% of the total operand
stacks created in 3 out of 4 systems. The exception is the
Elevator system, which was specifically designed to exhibit
many interactions [17], and has a miss rate for the combined
optimizations of approximately 10%. This still seems low
enough that the choice of core stack is insignificant. For
larger applications we expect even higher success rates for
the optimizations since such systems tend to have fewer in-
teractions between configuration options and lower variation
density than our test cases [14].

Overall, the results demonstrate that choosing the right
implementation of a variational data structure can have a
significant impact on the overall performance of a variational
computation, even if that data structure is only a relatively
small part of the tool, as is the case for the operand stack
in VarexJ. For example, when executing GPL, switching
from the choice-of-stacks to the stack-of-choices implemen-
tation saves 19% of the overall runtime and adding both
optimizations saves overall 43% of the runtime.

https://sourceforge.net/projects/zipme/


5. CONCLUSION
Variational data structures are needed to efficiently compute
with variability in data and code. Toward a systematic under-
standing of the design space for variational data structures,
we have presented a family of variational stack implemen-
tations. We evaluated the performance of these variational
stacks when used as the operand stack in the variational
interpreter VarexJ. The results demonstrate that the choice
of variational data structure can have a significant impact on
the performance of a program that computes with variability.

A distinguishing feature of the application domain targeted
by VarexJ is that it involves the creation of many short-
lived stacks, where relatively few contain variation in multiple
different variational contexts (see Section 4.2). As future
work we should evaluate the family of variational stacks in
application scenarios that involve longer-lived variational
stacks with different variability profiles.
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