
15

Migrating Gradual Types

JOHN PETER CAMPORA III, University of Louisiana at Lafayette

SHENG CHEN, University of Louisiana at Lafayette

MARTIN ERWIG, Oregon State University

ERIC WALKINGSHAW, Oregon State University

Gradual typing allows programs to enjoy the bene�ts of both static typing and dynamic typing. While it is often

desirable to migrate a program from more dynamically-typed to more statically-typed or vice versa, gradual

typing itself does not provide a way to facilitate this migration. This places the burden on programmers who

have to manually add or remove type annotations. Besides the general challenge of adding type annotations to

dynamically typed code, there are subtle interactions between these annotations in gradually typed code that

exacerbate the situation. For example, to migrate a program to be as static as possible, in general, all possible

combinations of adding or removing type annotations from parameters must be tried out and compared.

In this paper, we address this problem by developing migrational typing, which e�ciently types all possible

ways of adding or removing type annotations from a gradually typed program. The typing result supports

automatically migrating a program to be as static as possible, or introducing the least number of dynamic

types necessary to remove a type error. The approach can be extended to support user-de�ned criteria about

which annotations to modify. We have implemented migrational typing and evaluated it on large programs.

The results show that migrational typing scales linearly with the size of the program and takes only 2–4 times

longer than plain gradual typing.

CCS Concepts: • Theory of computation → Type theory;

Additional Key Words and Phrases: gradual typing, variational types, program migration

ACM Reference format:
John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2018. Migrating Gradual Types.

Proc. ACM Program. Lang. 2, POPL, Article 15 (January 2018), 29 pages.

DOI: 10.1145/3158103

1 INTRODUCTION
Gradual typing promises to combine the bene�ts of static and dynamic typing in a single language.

In the original formulation by Siek and Taha (2006), the goal is to bring the documentation and

safety of static typing to a dynamically typed language. In their formalization, function parameters

have dynamic types by default but can be explicitly annotated with static types. The resulting type

system provides the same safety guarantees as static typing for expressions using type-annotated

variables, yet allows the �exibility of dynamic typing for expressions with unannotated variables.

Dually, one can start with a statically typed language with type inference (such as F#, SML, OCaml,

or Haskell) and allow the programmer to add annotations for dynamic types where needed (Garcia

and Cimini 2015; Siek and Vachharajani 2008). A function parameter can be annotated with Dyn

(the type of dynamic code) when dynamically typed behavior is needed or when the programmer

is unsure whether all de�nitions are type-correct but wants to test the runtime behavior.

© 2018 ACM. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The

de�nitive Version of Record was published in Proc. ACM Program. Lang., http://dx.doi.org/10.1145/3158103.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

http://dx.doi.org/10.1145/3158103

15:2 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

1.1 Challenges Applying Gradual Typing
By integrating static and dynamic typing, gradual typing not only enjoys the bene�ts of both

typing disciplines, but also su�ers from their respective shortcomings. For example, statically typed

parts of the code have more restricted expressiveness and may contain static type errors that yield

cryptic error messages (Tobin-Hochstadt et al. 2017), while dynamically typed parts of the code

may contain dynamic type errors that are not captured until after the software is deployed. More

interestingly, combining statically and dynamically typed code together can raise new challenges,

for example, Takikawa et al. (2016) address the challenge of performance degradation in sound

gradual typing at the boundaries between statically typed and dynamically typed code.

Therefore, to fully realize the bene�ts of gradual typing, we also need the ability to navigate along

a program’s dynamic-static typing spectrum, in order to make it more static or more dynamic when

and where the respective strengths of each are desired. Answering the following three questions

will help harness the full power of gradual typing.

Q1. Can we make a gradually typed program as static as possible, to maximize the advantages

of static typing, while maintaining its well-typedness to keep it executable?

Q2. Can we migrate a program to a more static state while keeping some user-indicated parts

dynamic? Such parts may be indicated, for example, to reduce the granularity of boundaries

between static and dynamic code during execution, in order to maintain performance.

Q3. Can we introduce as few dynamics types as possible to migrate an ill-typed program to a

type correct one while still enjoying the bene�ts of static typing for the well-typed parts?

The answers to these questions are not obvious. Furthermore, if the answers are yes, it is not clear

whether we can implement the operations suggested by the questions e�ciently.

We illustrate the challenges regarding Q1 by considering the following program written in

the calculus by Garcia and Cimini (2015) extended with Haskell functions and notations, where

parameters annotated with Dyn have dynamic types and those without annotations are inferred

to have static types. In the rest of the paper, we say these parameters are dynamic and static,
respectively. This program is adapted from van Keeken (2006) for formatting rows of a table

according to a given width by trimming long rows and padding short rows with empty spaces.

rowAtI headOrFoot (fixed::Dyn) (widthFunc::Dyn) (table::Dyn) (border::Dyn) (i::Dyn) =
let widest = maximum (map length table)

row = table !! i
width = if fixed then widthFunc fixed else widthFunc widest

in if headOrFoot
then replicate (width + 2) border
else border ++ take width (row ++ replicate (width-length row) ' ') ++ border

The local variable width represents the width of the table and is computed by the argument

widthFunc, either by applying it to fixed if fixed is true, or to widest, the size of largest row in

the table. The argument border is added to the beginning and end of each row and also used to

generate the header or footer row when the Boolean argument headOrFoot is true. If we bind the

variable tbl to a list of strings, we can then call rowAtI in many ways, such as rowAtI False True

(const 3) tbl "_" 0, rowAtI False False id tbl "_" 1, and rowAtI True False id tbl ’_’ 0.

After some testing, suppose we want to migrate rowAtI to a version that is as static as possible by

removing Dyn annotations. Removing Dyn annotations turns out to be much trickier than we may

expect. First, if we remove all Dyn annotations, then type inference fails for rowAtI since it contains

multiple static type errors, for example, the then branch requires border to have type Char while the

else branch requires it to have type [Char]. Second, if we remove Dyn annotations in a left-to-right

order, we will encounter a type error as soon as the annotation for widthFunc is removed. (In this

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:3

paper, we follow the spirit of Garcia and Cimini (2015) to infer static types only.) However, this

does not necessarily indicate that the error was solely caused by widthFunc being statically typed.

In fact, the type error involving widthFunc is due to the interaction with fixed when computing the

value of width. At this point, we can restore the well-typedness of rowAtI by either re-annotating

fixed or widthFunc with Dyn. Unfortunately, we cannot easily gauge which annotation is better for

typing the rest of the function. If we choose to re-annotate fixed, we will encounter another type

error when the Dyn annotation for border is removed. Does this type error go away if we instead

mark fixed as static and widthFunc as dynamic? The easiest way to tell is by trying it out.

The example illustrates that parameters give rise to complicated typing interactions. The type

error caused by making one parameter static may be avoided by making another parameter dynamic,

or the type error caused by making two parameters static can be �xed by making another dynamic,

and so on. In general, we must examine all possible combinations of static vs. dynamic parameters

to identify a program that is both well typed and as static as possible. We refer to all of the

potential programs produced by adding or removing Dyn annotations as a migration space. We say

a program in the migration space has a most static type if removing any Dyn from the program will

make it ill typed. We call a migration that yields a program with a most static type a most static
migration. Due to the nature of type interactions, the most static type, and thus the most static

migration, is not unique. Since every parameter can be either static or dynamic, the size of the

migration space is exponential in the number of parameters for all functions in the program. For

the program consisting of only rowAtI, which has six parameters, we would need to try out all

2
6 = 64 combinations to identify the most static migrations.

Questions Q2 and Q3 are similarly di�cult for the same underlying reason that the typing of

di�erent parameters are interrelated. This quality of type inference precludes the possibility of a

greedy algorithm that considers each parameter in turn, adding or removing Dyn annotations. In

general, we must conceptually explore all of the possibilities in the migration space.

The challenges posed by migration between more and less static programs may prevent program-

mers from fully realizing the potential of gradual type systems. As evidence for this, the CircleCI

project recently abandoned Typed Clojure mainly because the cost of adding type annotations to

Clojure programs was perceived to exceed the bene�ts.
1

Similarly, Tobin-Hochstadt et al. (2017)

reported that migration of Racket modules to Typed Racked requires too much e�ort.

1.2 Migrating Gradual Types
In this paper, we address Q1 by: (1) developing a type system that e�ciently types the entire

migration space and (2) designing a method to traverse the result of typing the migration space,

calculating which Dyn annotations can be removed. In this paper, we mainly consider the removal
of Dyn annotations to support migrating to a more statically typed program; that is, we make types

more precise (Siek and Taha 2006). However, in Section 8, we describe how the approach can be

extended to support the addition of Dyn annotations, along with extensions to address Q2 and Q3.

As demonstrated in Section 1.1, in general, �nding the most static migration requires exploring

the entire migration space, which is exponential in size. This rules out a simple brute-force approach

that type checks each possibility and compares the results to �nd the best one.

To illustrate how we can improve on a brute-force search, let us focus on a single parameter, say

i in the rowAtI function from Section 1.1. To decide whether we can remove the Dyn annotation, we

need to type two programs: one where i is static and one where i is dynamic. Observe that the two

typing processes di�er only slightly. Of the three let-bound variables, only the type of the second

(row) is a�ected by whether i is static or dynamic. The typing of the other two let-bound variables

1
https://circleci.com/blog/why-were-no-longer-using-core-typed/

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

https://circleci.com/blog/why-were-no-longer-using-core-typed/

15:4 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Program Dyn annotations Type for rowAtI

1 + + + + + Bool→ Dyn → Dyn → Dyn → Dyn→ Dyn→ [Char]

2 − + + + + Bool→ Bool→ Dyn → Dyn → Dyn→ Dyn→ [Char]

3 − + − + − Bool→ Bool→ Dyn → [[Char]]→ Dyn→ Int→ [Char]

4 + − + + + Bool→ Dyn → (Int→Int)→ Dyn → Dyn→ Dyn→ [Char]

5 + − − + − Bool→ Dyn → (Int→Int)→ [[Char]]→ Dyn→ Int→ [Char]

6 − − + + + 7
7 + + + − + 7
8 + + − − − 7

Fig. 1. Types for a sample of the migration space for the rowAtI function. The second column contains a
sequence of + and − symbols, indicating whether the Dyn annotation is kept or removed, respectively, for
each of the five parameters annotated with Dyn in rowAtI. For example, for program 2, all parameters except
fixed keep their Dyn annotations. The 7 entries denote that the corresponding program is ill typed.

is identical in both cases. Moreover, since the type of row is determined to be the same regardless

of whether i is static or dynamic, the typing of the body of the let-expression is also identical.

This observation suggests that we should reuse typing results while exploring the migration

space to determine which Dyn annotations can be removed. A systematic way to support this reuse

is provided by variational typing (Chen et al. 2012, 2014). In this paper, we develop a type system

that integrates gradual types (Siek and Taha 2006) and variational types (Chen et al. 2014) to support

reuse when typing the migration space. This type system supports e�ciently typing the entire

migration space, in roughly linear time, despite the presence of type errors.

After typing the migration space, we want to �nd the point in that space that is most static.

Although the number of results to be considered is large, this step can be made e�cient by exploiting

several of relationships between the resulting types. To illustrate these relationships, we list a

subset of the migration space for the rowAtI example and their corresponding types in Figure 1.

The �rst observation is that some parameters, whether they are static or dynamic, do not a�ect

the type correctness of the program. In the example, the 3rd and 5th parameters (table and i,

respectively) are examples of such parameters. Given this knowledge and the fact that program 3

is well typed, we can deduce that program 2 is also well typed since they di�er only in the Dyn

annotations of the 3rd and 5th parameters. Similarly, given that program 8 is type incorrect, we

can deduce that program 7 is also type incorrect for the same reason.

The second observation is that if a program is well typed after removing Dyn annotations from a

set of parameters P , then (1) removing Dyn annotations from a subset of P will also yield a well-

typed program (this corresponds to the static gradual guarantees of Siek et al. (2015)), and (2) the

program with all Dyn annotations removed from P is the most statically typed of these programs.

For example, program 3 has a more static type than program 2, which in turn has a more static

type than program 1. Similarly, this relation holds for the sequence of programs 5, 4, and 1. Note

that the number of removed Dyn annotations does not provide the same ordering. For example,

program 3 removes more Dyn annotations than program 4, but program 4 has a more static type.

The third observation is that, if removing all Dyn annotations for a set of parameters causes a

type error, then removing the Dyn annotations for any superset of those parameters must also cause

a type error. For example, given that making the 4th parameter (border) static in program 7 causes

a type error, we can deduce that additionally making the 3rd (table) and 5th (i) parameters static

in program 8 will also cause a type error.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:5

These three observations enable an e�cient method for �nding the most static program. For

rowAtI, we immediately discover that programs 3 and 5 are most static (neither one is more static

than the other). In this case, we can either pick one of the results or have a programmer specify

the preferable program. In Section 5, we show that these three observations hold for arbitrary

programs, which allows us to develop an e�cient method for �nding desired programs in general.

We make the following contributions in this paper:

(1) In Section 1.1, we identify three questions, Q1 through Q3, for migrating gradual program

to fully harness the bene�ts of gradual typing.

(2) In Section 4, we present a type system that integrates gradual types (Siek and Taha 2006),

variational types (Chen et al. 2014), and error tolerant typing (Chen et al. 2012). The type

system is correct and e�ciently types the whole migration space.

(3) In Section 5, we investigate the relationship between di�erent candidate migrations and

develop a method for computing the most static migrations.

(4) In Sections 6 and 7, we generate and solve constraints to provide type inference for migra-

tional typing, and prove that the constraint solving algorithm is correct.

(5) In Section 8 we describe extensions to migrational typing to answer all of the questions

outlined in Section 1.1, and to support additional common language features.

(6) In Section 9, we study the performance of our implementation by applying it to synthesized

programs. The result shows that our approach scales linearly with program size.

To improve readability, the following table summarizes where important terms and operations

are introduced. In the “F | P” column, F i and P i are shorthands for Figure i and Page i , respectively.

Term Notation F | P Operation Notation F | P

static types T F 3 selection b·cd .1 P 7

gradual types G F 3 compatibility (M) ≈ F 4

variational types V F 3 constrained compatibility (M) ≈π F 5

migrational types M F 3 constrained operation (M) opπ F 5

stati�er ω F 2 better ordering (G) � P 15

variational stati�er Ω F 3 more static ordering (G) v P 15

choices d 〈, 〉 P 7 stricter ordering (δ) � P 16

decisions/eliminators δ P 7/P 16 less de�ned ordering (π) ≤ F 6

valid eliminators δv P 16 pattern meet (π) ⊗ P 19

typing pattern π , >, ⊥ F 5

2 BACKGROUND AND PREPARATION
In this section, we brie�y introduce two areas of previous work that our type system for migrating

gradual types builds on. In Section 2.1, we present a simple gradually typed language that represents

the starting point for our work. This language is adapted from Garcia and Cimini (2015), but includes

some minor di�erences to set up the presentation in Section 4. In Section 2.2, we introduce the

concept of variational typing (Chen et al. 2014), which is the key technique that allows us to

e�ciently type the entire migration space.

2.1 Gradual Typing
Gradual typing allows the interoperability of statically typed and dynamically typed code. The

original formalization by Siek and Taha (2006) de�ned gradual typing for a simply typed lambda

calculus extended with dynamic types. Siek and Vachharajani (2008) and Garcia and Cimini (2015)

further investigated gradual typing in the presence of type inference.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:6 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Syntax:

Expressions e ::= c | x | λx .e | λx : Dyn.e | e e | if e then e else e
Static types T ::= γ | α | T→T
Gradual types G ::= γ | α | G→G | Dyn

Type system: ω; Γ `GC e : G

Con

c is of type γ

ω; Γ `GC c : γ
Var

x : G ∈ Γ
ω; Γ `GC x : G

Abs

ω; Γ,x 7→ T `GC e : G

ω; Γ `GC λx .e : T→G

AbsDyn

ω; Γ,x 7→ ω(x) `GC e : G ′

ω; Γ `GC λx : Dyn.e : ω(x)→G ′

App

ω; Γ `GC e1 : G ω; Γ `GC e2 : G
′ dom (G) ∼ G ′

ω; Γ `GC e1 e2 : cod (G)

If

(ω; Γ `GC ei : Gi)i :1..3 Bool ∼ G1

ω; Γ `GC if e1 then e2 else e3 : G2 uG3

Gradual type consistency:

C1

G ∼ G
C2

G ∼ Dyn

C3

Dyn ∼ G
C4

G11 ∼ G21 G12 ∼ G22

G11→G12 ∼ G21→G22

Auxiliary de�nitions:

dom (G1→G2) = G1

dom (Dyn) = Dyn

cod (G1→G2) = G2

cod (Dyn) = Dyn

Dyn uG = G
G u Dyn = G
G uG = G

G11→G12 uG21→G22 = (G11 uG21)→(G12 uG22)

Fig. 2. Syntax and type system of ITGL, an implicitly typed gradual language. The operations dom, cod, and
u are undefined for cases that are not listed here.

In this paper, we consider the migration of programs in implicitly typed gradual languages. In

Figure 2, we present the syntax and type system of one such language, ITGL, which is adapted

from Garcia and Cimini (2015) and forms the basis for this work. In the syntax, c ranges over

constant values, x over variables, γ over constant types, and α over type variables. There are two

cases for abstraction expressions, one where the parameter is annotated by Dyn and one where it is

not. The rest of the cases are standard. The type system will be explained below.

The presentation of ITGL in Figure 2 di�ers from the original in Garcia and Cimini (2015) in two

ways. First, our syntax is more restrictive: we omit a case for explicit type ascription of expressions

and we do not allow arbitrary type annotations on abstraction parameters. We also don’t consider

let-polymorphism here. These restrictions are made to simplify our formalization later, but we show

in Section 8 how they can be lifted. Second, the typing rules are parameterized by a stati�er, ω,

which is used in the full migrational type system later (Section 4). The stati�er speci�es what static

types to assign to parameters whose Dyn annotations will be removed. For simplicity, we assume

parameters have unique names. In the type system as de�ned in Figure 2, ω is always empty and

ω(x) = Dyn for any parameter x , corresponding to the type system in Garcia and Cimini (2015).

In the type system for ITGL in Figure 2, the typing rules for constants and variables are standard.

There are two rules for abstractions, Abs for unannotated parameters which must have static types,

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:7

and AbsDyn for annotated parameters which may have dynamic types. Typing applications is tricky

since dynamically typed arguments can be passed to functions with statically typed parameters

and vice versa. For example, assuming the function, succ, has static type Int→ Int, both of the

following programs in our Haskell-like notation should be accepted by gradual typing.

inc (num::Dyn) = succ num
foo (f::Dyn) = f True

The App rule accommodates this with the help of a consistency relation, ∼, that dictates when two

unequal types are compatible with each other. An application is well typed if the domain of the LHS

(i.e. the parameter type) is consistent with the RHS, and the type of the application is the codomain

of LHS. The auxiliary functions dom and cod return the domain and codomain of a function type,

respectively, or Dyn for a dynamic type (re�ecting the fact that Dyn is equivalent to Dyn→ Dyn).

The gradual type consistency relation is de�ned in Figure 2 by four rules: C1 de�nes that

consistency is re�exive, C2 and C3 de�ne that a dynamic type is consistent with any type, and C4

de�nes that two functions types are consistent if their respective argument and return types are

consistent. As a result, Int→ Int ∼ Int→ Dyn but not Int→ Int ∼ Bool→ Dyn, since the argument

types are not consistent in the latter case. Note that the consistency relation is not transitive. Due

to C2 and C3, transitivity would lead every static type to be consistent with every other static type,

which is clearly undesirable.

Typing conditional expressions relies on the meet operation, u, on gradual types. Intuitively,

meet chooses the more static of two base types when one is Dyn. For two equal static types, meet is

idempotent. For two function types, meet is applied recursively to their respective argument and

return types. The meet operation helps assign types to conditionals when the two branches might

not have an identical type but still have consistent types. Intuitively, meet favors the type of the

more static branch of the conditional expression.

2.2 Variational Typing
Variational typing (Chen et al. 2012, 2014) enables e�ciently inferring types for variational programs.
A variational program represents many di�erent variant programs that share some parts amongst

each other and which can each be generated through a static process of selection.

The theoretical foundation for variational typing is the choice calculus (Erwig and Walkingshaw

2011), a formal language for representing variational programs. The essence of the choice calculus

is that static variability in programs can be locally captured in variation points called choices, as

demonstrated by the following example.

vfun = A〈succ, even〉 1

This program contains a choice named A with two alternatives, succ and even. We write becd .i to

indicate the selection of the ith alternative of each choice named d in e . So, bvfuncA.1 yields the

program succ 1 and bvfuncA.2 yields even 1. We call d .i a selector and use s to range over selectors.

A decision is a set of selectors; we use δ to range over decisions. The elimination of choices

extends naturally to decisions by selecting with each selector in the decision. An expression e is

called plain if it does not contain any choices and is called variational if it does contain choices. A

plain expression obtained by eliminating all choices in a variational expression is called a variant.
For example, succ 1 is a plain expression and a variant of the variational expression vfun.

A variational expression may contain several choices. Choices with the same name are synchro-

nized and independent otherwise. For example, the variational expression A〈succ, even〉 A〈2, 3〉
has two variants, succ 2 and even 3, obtained by the decisions {A.1} and {A.2}, respectively. The

program succ 3 cannot be obtained through selection and so is not a variant of this expression.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:8 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

On the other hand, the variational expression A〈succ, even〉 B〈2, 3〉 has four variants, and we can

obtain the variant succ 3 with the decision {A.1,B.2}.
In general, an expression withn distinct choice names can be con�gured in 2

n
di�erent ways. Since

variational programs can easily contain hundreds or thousands of independent choice names (Apel

et al. 2016), checking the type correctness of all variants is intractable by a brute-force strategy

of generating all of the variants and typing each one individually (Thüm et al. 2014). Variational

typing solves this problem by sharing the typing process across all variants, which is achieved by

de�ning and reasoning about variational types.

Variational types are types extended with choices. All concepts and operations on variational

expressions carry over to variational types. It is natural to assign variational types to variational

expressions. For example, A〈succ, even〉 has type A〈Int→ Int, Int→ Bool〉. Similar to gradual

typing, typing applications in the presence of variation is complicated by the fact that “compatible”

types may not be syntactically equal. In particular, (1) the LHS is traditionally expected to be a

function type but in variational typing may be a (nested) choice of function types, and (2) when

checking whether the type of the argument matches the type of the parameter, we must take into

account that either or both may be variational. For example, the type of the function on the LHS of

vfun is A〈Int→ Int, Int→ Bool〉, which is not a function type directly, but both variants of vfun,

succ 1 and even 1, are well typed.

Typing applications is supported in variational typing through the de�nition of a type equivalence

relation (Chen et al. 2014), which speci�es when a type can be transformed into another without

a�ecting its semantics. The semantics of a variational type maps decisions to the variant plain types

obtained by selecting from the type using the decision. For example, A〈Int→ Int, Int→ Bool〉,
A〈Int, Int〉→A〈Int, Bool〉, and Int→A〈Int, Bool〉 are all equivalent because selecting from each

of them with {A.1} yields the same type Int→ Int and selecting from each of them with {A.2}
yields the same type Int→ Bool. As a result, we can say that vfun has the type Int→A〈Int, Bool〉,
which is a function type with the argument type Int matching the type of 1. We can thus assign

the type Vvfun = A〈Int, Bool〉 to vfun.

An important result of variational typing is that choice elimination preserves typing. More

speci�cally, if e has the type V , then becδ has the type bV cδ for any decision δ . For example,

bvfuncA.1 yields succ 1, which has the type Int, the same as bVvfuncA.1. An implication of this result

is that the type of any variant can be easily obtained by making an appropriate selection into the

result type of the variational program. Another important result of variational typing is that it is

signi�cantly faster than the brute-force approach.

3 ROAD MAP TO MIGRATING GRADUAL TYPES
In Section 1.1, we argued that the complexity of the tasks implied by the questions Q1–Q3, involving

the migration of gradual programs, is exponential. In Section 2.2, we have shown that variational

typing can e�ciently type a set of similar programs. A main idea of this paper is to reduce the

problem of typing the migration space to variational typing. Speci�cally, we assign each parameter

with a Dyn annotation a choice type whose the �rst alternative is a Dyn and whose second alternative

is a static type. Consider, for example, the following function widthV that represents the variationally

typed version of the function width (also shown below) for computing the table width in rowAtI.

width (fixed::Dyn) (widthFunc::Dyn) = if fixed then widthFunc fixed else widthFunc 5
widthV (fixed::A〈Dyn, Bool〉) (widthFunc::B〈Dyn, Int→ Int〉) =

if fixed then widthFunc fixed else widthFunc 5

The function widthV encodes all four possible migrations of width. If VwidthV is the type of widthV,

then bVwidthVc{A.1,B .1} is the type for width with no Dyn annotations removed, bVwidthVc{A.2,B .1} is

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:9

Term variables x , y, z Value constants c Choice names A, B, d
Type variables α , β , κ Type constants γ Program locations l

Expressions e ::= c | x | λx .e | λx : Dyn.e | e e | if e then e else e

Static types T ::= γ | α | T→T
Gradual types G ::= γ | α | G→G | Dyn
Variational types V ::= γ | α | V →V | d 〈V ,V 〉
Migrational types M ::= γ | α | M→M | Dyn | d 〈M,M〉
Type environment Γ ::= � | Γ,x 7→ M
Substitution θ ::= � | θ ,α 7→ V
Variational stati�er Ω ::= � | Ω,x 7→ V

Fig. 3. Syntax of expressions, types, and environments.

the type that replaces Dyn with Bool for fixed and keeps Dyn for widthFunc, bVwidthVc{A.1,B .2} is the

type that keeps Dyn for fixed but replaces Dyn with Int→ Int for widthFunc, and bVwidthVc{A.2,B .2}
is the type that removes both Dyn annotations.

In order to successfully employ variational typing to improve the performance of migrational

typing, several technical challenges must be addressed.

C1. In the presence of dynamic and variational types, we need to combine the type equivalence

relation and the consistency relation, which we refer to as the compatibility relation. After

introducing the syntax of the migrational type system in Section 4.1, we address this

problem in Section 4.2.

C2. In general, some variants of the variational program that encodes the migration space may

contain type errors. We need the typing process to continue even in the presence of type

errors to determine the types of all variants. In Section 4.3, we address this problem and

give a declarative speci�cation of our type system.

C3. In widthV, we explicitly assigned static types to each parameter. One may wonder whether

these are the best types to assign. Maybe other static types could improve the typing result

and produce more general types or fewer type errors. After presenting the typing rules

in Section 4.4, we prove in Section 4.5 that in our type system, there exists a best typing

derivation that contains the fewest errors and yields most static and general result types.

C4. With the best migrational typing, we have to determine the combination of Dyn removals

that makes the program as static as possible. This may require the comparison of an

exponential number of result types for the migration space. In Section 5, we develop an

e�cient algorithm for solving this problem.

C5. In challenge C3 we claimed that a best migrational typing exists, but how do we �nd it?

We answer this question by solving the type inference problem in Sections 6 and 7.

4 MIGRATIONAL TYPE SYSTEM
This section addresses the challenges C1–C3 from Section 3 to support e�cient migrational typing.

After introducing the syntax of types and expressions in Section 4.1, the compatibility relation

is de�ned in Section 4.2, addressing C1. A pattern-constrained typing relation is introduced in

Section 4.3 and de�ned via typing rules in Section 4.4, addressing C2. Finally, the properties of this

type system are discussed in Section 4.5, addressing C3.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:10 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

4.1 Syntax
The syntax of expressions, types, and environments is given in Figure 3. The metavariables we

use to range over the relevant symbol domains are listed at the top �gure. For type variables, we

typically use β to denote the result type of a function application during constraint generation and

κ to denote fresh type variables generated during constraint generation and solving (see Sections 6

and 7). For choice names, we typically use A and B to denote arbitrary speci�c choices in examples

and d as a generic metavariable to range over choices names in de�nitions.

The syntax of expressions, static types, and gradual types are repeated from Section 2.1. To this,

we add variational types, which are static types extended with choices, and migrational types,

which are gradual types extended with choices. Note that each top-level parameter is assigned a

restricted form of migrational type, which is either a fully static type, a Dyn, or a choice of restricted

migrational types; however, the more general syntax de�ned in Figure 3 is needed during the typing

process. In Section 8.2, we extend our framework to allow an arbitrary mix of Dyn and static types

for top-level parameters.

The type system relies on three kinds of environments: a type environment maps variables to

migrational types, a substitution maps type variables to variational types, and a variational stati�er
maps variables to variational types. As described in Section 2.1, a stati�er ω records one way of

making a program more static (by removing some subset of Dyn annotations). A variational stati�er

Ω instead compactly encodes all possible stati�ers for an expression. Since we want migration in

our formalization to assign static types to parameters whose Dyn annotations are removed, Ω maps

parameters to variational types, but not migrational types.

Substitutions map type variables to variational types rather than migrational types since substi-

tuting dynamic types is unsound. For example, suppose we have f 7→ α→α→α→α and x 7→ Dyn

in Γ. Now, when typing the application f x, we will substitute {α 7→ Dyn}, yielding Dyn→ Dyn→ Dyn

as the type of f x. However, this implies that f x 2 True is well typed, even though this violates

the initial static type of f. Type substitution, written as θ (M), is de�ned in the conventional way.

4.2 Type Compatibility
In the rest of this section, we use the widthV example (Section 3) to motivate the technical de-

velopment of the migration type system and investigate the properties of the type system. The

motivating goal is to type the condition fixed and the application widthFunc 5 in widthV.

According to the annotation of widthV, the parameter fixed has type A〈Dyn, Bool〉. Since fixed is

used as a condition, it should have type Bool. Since both alternatives of the choice are consistent with

Bool, this use should be considered well typed. The variable widthFunc has type B〈Dyn, Int→ Int〉,
which can be considered equivalent to B〈Dyn, Int〉→B〈Dyn, Int〉 (in Section 4.4, we show how to

achieve this formally with dom and cod). The constant 5 has type Int. Since both alternatives of

B〈Dyn, Int〉 are consistent with Int, widthFunc 5 should also be considered well typed.

These two examples demonstrate that we need a notion of compatibility between two migrational

types to express that all of their variants are consistent. Intuitively, the compatibility relation

incorporates both type equivalence for variational types (Chen et al. 2014) and type consistency for

gradual types (Siek and Taha 2006). The de�nition of compatibility (M1 ≈ M2) is given in Figure 4.

The relation is re�exive (T1) and symmetric (T2). The relation is transitive (T3) in the case that no

Dyns are present, which we indicate by using the metavariable for variational types (V).

The rules T4 and T5 specify compatibility under choice type simpli�cation. Rule T4 states that

a choice with identical alternatives is compatible with its alternatives. Rule T5 says that two

types are compatible under elimination of dead alternatives. Note that the operation bM1cd .1 in

the �rst alternative of d replaces each occurrence of a d choice in M1 with its �rst alternative

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:11

T1

M ≈ M
T2

M1 ≈ M2

M2 ≈ M1

T3

V1 ≈ V2 V2 ≈ V3
V1 ≈ V3

T4 d 〈M,M〉 ≈ M T5 d 〈M1,M2〉 ≈ d 〈bM1cd .1, bM2cd .2〉

Cong

M1 ≈ M2

M[M1] ≈ M[M2]
DynIntro

M1 ≈ M2

M1 ≈ M2[Dyn]

Fig. 4. Rules defining type compatibility

and thus removes the second alternative, which is unreachable due to choice synchronization.

For example, A〈A〈Int, Bool〉, Int〉 ≈ A〈Int, Int〉, since Bool is unreachable in A〈A〈Int, Bool〉, Int〉
because selection with either A.1 or A.2 yields Int. A corresponding relationship holds for bM2cd .2.

The rule Cong de�nes that compatibility is a congruence relation. This rule allows us to replace

a type M1 in a context M[] with a compatible type M2. For example, since Bool ≈ B〈Bool, Bool〉,
we have A〈Int, Bool〉 ≈ A〈Int,B〈Bool, Bool〉〉 if we view A〈Int, []〉 as the context. Finally, the rule

DynIntro states that if two types are compatible, replacing part of one type with Dyn preserves

compatibility. This rule holds because Dyn is compatible with anything. By choosing M to be an

empty context, this rule encodes M ≈ Dyn and thus Dyn ≈ M through T2.

To illustrate compatibility, we show A〈Int, Dyn〉 ≈ B〈Dyn, Int〉. This should hold, since both

choice types only produce Int or Dyn, which are consistent with each other and themselves. We can

start by A〈Int, Int〉 ≈ Int via T4 and Int ≈ B〈Int, Int〉 via T4 and T2. We can then use T3 to derive

A〈Int, Int〉 ≈ B〈Int, Int〉. After that, we can apply DynIntro to replace the �rst Int in B with a

Dyn, apply T2, and apply another DynIntro to replace the second Int in the choice A with a Dyn,

yielding B〈Dyn, Int〉 ≈ A〈Int, Dyn〉. By applying T2 one more time, we can derive the original goal.

We demonstrate the correctness of ≈ by establishing its connection with type equivalence (≡)

from (Chen et al. 2014) and type consistency (∼) from (Siek and Taha 2006) through the following

theorems. In the theorems we write bMcδ ∈ V and bMcδ ∈ G to denote that bMcδ yields a

variational type (no Dyn) and a gradual type (no variations), respectively. The �rst two theorems

state the soundness of ≈; the third theorem states its completeness.

Theorem 4.1. IfM1 ≈ M2, then ∀δ .bM1cδ ∈ V ∧ bM2cδ ∈ V ⇒ bM1cδ ≡ bM2cδ
Theorem 4.2. IfM1 ≈ M2, then ∀δ .bM1cδ ∈ G ∧ bM2cδ ∈ G ⇒ bM1cδ ∼ bM2cδ .

Theorem 4.3. ∀δ bM1cδ ≡ bM2cδ ∨ bM1cδ ∼ bM2cδ ⇒ M1 ≈ M2

Proof. All theorems can be proved by structural induction over these three relations. �

With ≈, we can formalize the application rule as follows.

Γ ` e1 : M1 Γ ` e2 : M2 dom (M1) ≈ M2

Γ ` e1 e2 : cod (M1)
Based on this rule and ≈, we can calculate the type B〈Dyn, Int〉 for widthFunc 5.

4.3 Pa�ern-Constrained Judgments
The goal in this subsection is to type the application widthFunc fixed in widthV, thus solving

challenge C2 for migrational typing. According to the type annotation of widthV, widthFunc has type

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:12 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

π ::= ⊥ | > | d 〈π ,π 〉

∀δ .bπ cδ = > ⇒ bM1cδ ≈ bM2cδ
M1 ≈π M2

∀δ .bπ cδ = > ⇒ bΓcδ ` becδ : bMcδ
π ; Γ ` e : M

∀δ .bπ cδ = > ⇒ op (bM1cδ) is de�ned
opπ (M1) is de�ned

∀δ .bπ cδ = > ⇒ bM1cδ op bM2cδ is de�ned

M1 opπ M2 is de�ned

Fig. 5. Pa�erns and pa�ern-constrained relations and operations. op can be any unary or binary operation
on types. The is defined stipulations in the premise mean that the operations are defined on their input types,
as specified in Figure 2. The is defined in the conclusion indicates that the operation can be safely carried out
on the migrational type when constricted by π .

B〈Dyn, Int→ Int〉, and fixed has type A〈Dyn, Bool〉. Since it is impossible to derive B〈Dyn, Int〉 ≈
A〈Dyn, Bool〉 (where the former is the domain of the function type and the latter is the type of the

argument), the application rule from Section 4.2 fails to assign a type to widthFunc fixed. If we

terminate the typing process, we will not be able to compute any type for widthV, failing to provide

support for program migration.

While the compatibility check between A〈Dyn, Int〉 and B〈Dyn, Bool〉 fails, we observe that Dyn,

the �rst alternative of A, is compatible with B〈Dyn, Bool〉 and Int, the second alternative of A is

compatible with Dyn, the �rst alternative of B. This suggests that we should describe compatibility

at a more �ne-grained level than simply saying whether two migrational types are compatible or

not. We employ the idea of typing pattern (π) (Chen et al. 2012) to formalize this idea (see Figure 5).

The patterns > and ⊥ denote that the compatibility check succeeds and fails, respectively, and the

choice pattern d 〈π1,π2〉 describes the success or failure of compatibility checking within the context

of choice d . We can now express the partial compatibility between A〈Dyn, Int〉 and B〈Dyn, Bool〉 by

the typing pattern A〈>,B〈>,⊥〉〉.
In Figure 5 we de�ne M1 ≈π M2 such that M1 and M2 are compatible for all variants of π

that are >. In contrast, there is no requirement between M1 and M2 at other places. For example,

Int ≈A 〈⊥,>〉 A〈Bool, Int〉, since Int ≈ Int at A.2 (and since we don’t care that Int and Bool are

incompatible at A.1).

The idea of constraining compatibility with patterns is quite powerful. We can even generalize it

to typing judgments. Speci�cally, the typing relation π ; Γ ` e : M holds if bΓcδ ` becδ : bMcδ for all

δ such that bπ cδ = >. The advantage is that we don’t need to worry about the typing in variants

where π has ⊥s. That also means that we should not use (or trust) the typing result at variants

where π has ⊥s. We formally de�ne this relation in Figure 5. For example, since Γ ` 1 : Int we have

A〈>,⊥〉; Γ ` A〈1, True〉 : Int, even though True does not have the type Int. We can also generalize

this idea to other operations, such as dom and cod, again de�ned in Figure 5.

Based on the idea of pattern-constrained judgments, we can de�ne the following rule for typing

function applications (where dom and cod will be formally de�ned in Figure 6):

π ; Γ ` e1 : M1 π ; Γ ` e2 : M2 domπ (M1) ≈π M2

π ; Γ ` e1 e2 : codπ (M1)
With this new rule, which accounts for migrational types with type errors, we can revisit the

problem of typing widthFunc fixed. Let π = A〈>,B〈>,⊥〉〉. Since widthFunc 7→ A〈Dyn, Int→ Int〉
belongs to Γ, we have π ; Γ ` widthFunc : M , where M = A〈Dyn, Int→ Int〉. Similarly, we have

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:13

π ; Γ ` e : M | Ω
Con

c is of type γ

π ; Γ ` c : γ | �
Var

x 7→ M ∈ Γ
π ; Γ ` x : M | �

Abs

π ; Γ,x 7→ V ` e : M | Ω
π ; Γ ` λx .e : V →M | Ω

AbsDyn

π ; Γ,x 7→ d 〈Dyn,V 〉 ` e : M | Ω d fresh

π ; Γ ` λx : Dyn.e : d 〈Dyn,V 〉→M | Ω ∪ {x 7→ V }

App

π ; Γ ` e1 : M1 | Ω1 π ; Γ ` e2 : M2 | Ω2 domπ (M1) ≈π M2

π ; Γ ` e1 e2 : codπ (M1) | Ω1 ∪ Ω2

If

(π ; Γ ` ej : Mj | Ωj)j :1..3 Bool ≈π M1 M2 ≈π M3

π ; Γ ` if e1 then e2 else e3 : M2 uπ M3 | Ω1 ∪ Ω2 ∪ Ω3

Weaken

π ; Γ ` e : M | Ω π1 ≤ π M =π1 M1

π1; Γ ` e : M1 | Ω
dom (M1→M2) = M1 cod (M1→M2) = M2

dom (Dyn) = Dyn cod (Dyn) = Dyn

dom (d 〈M1,M2〉) = d 〈dom (M1), dom (M2)〉 cod (d 〈M1,M2〉) = d 〈cod (M1), cod (M2)〉

M uM = M M11→M12 uM21→M22 = (M11 uM21)→(M12 uM22)
Dyn uM = M d 〈M1,M2〉 uM = d 〈M1 uM,M2 uM〉
M u Dyn = M G u d 〈M1,M2〉 = d 〈G uM1,G uM2〉

π ≤ > ⊥ ≤ π
π1 ≤ π2 π2 ≤ π3

π1 ≤ π3
π1 ≤ π2

π [π1] ≤ π [π2]
π1 ≈ π2
π1 ≤ π2

Fig. 6. Typing rules. The operations dom, cod, and u are undefined for cases that are not listed here. The
operations domπ , codπ , and uπ can be obtained from Figure 5.

π ; Γ ` fixed : B〈Dyn, Bool〉. Next, domπ (M) = A〈Dyn, Int〉. As we have seen earlier, A〈Dyn, Int〉 ≈π
B〈Dyn, Bool〉. Thus, all the premises of the application rule are satis�ed, and we can derive

π ; Γ ` widthFunc fixed : A〈Dyn, Int〉. Based on the result pattern, we should not trust the typing

information at the variant {A.2,B.2} since bπ c{A.2,B .2} = ⊥.

While pattern-constrained judgments simplify the presentation, there is still the challenge of

how to �nd appropriate patterns, which are inputs to the typing relation. However, the pattern

is determined by the typing constraints among the subexpressions. For example, the type of the

argument must match the argument type of the function. The reason we use A〈>,B〈>,⊥〉〉 in

typing widthFunc fixed is that the application is ill typed at {A.2,B.2}. Therefore, in a language

with type inference, the pattern will be computed during the inference process (Sections 6 and 7).

4.4 Typing Rules
The typing rules are shown in Figure 6. They are based on the compatibility relation (Section 4.2)

and pattern-constrained judgments (Section 4.3). The typing judgment has the form π ; Γ ` e : M | Ω
and expresses that e has type M under environment Γ constrained by the pattern π . The mapping

Ω collects the types that will be assigned to parameters if their Dyns are removed. We assume that

parameter names from di�erent functions are uniquely identi�ed in the domain of Ω. The goal

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:14 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

of Ω is to connect the typing rules here with those from Figure 2. We discuss this aspect in more

detail in Section 4.5 where we investigate the properties of the type system.

The rules for constants (Con) and variables (Var) are straightforward. They hold for arbitrary

patterns π because constants and bound variables are always well typed. Moreover, since the types

remain unchanged, Ω is always�. The rule Abs for an abstraction whose parameter is not annotated

with Dyn is conventional. In rule AbsDyn for an abstraction whose parameter is annotated with Dyn,

we assign the parameter a choice type where the �rst alternative is Dyn implying that the Dyn is kept

and the second alternative can be any type for the body to be well typed. This change information

is recorded by extending the Ω returned from typing the body of the abstraction.

The App rule for applications is similar to the one in Section 4.3 except that we must combine the

variational stati�ers from typing the two subexpressions. The rule If types conditionals; it relies on

an extended version of the meet operation (u) from Figure 2 that also handles choices.

The Weaken rule states that if a typing pattern can be used to derive a typing, then we can use a

less-de�ned pattern to derive the same typing. The operation =π1 in the premise speci�es that its

arguments must be the same for places where π1 has >s. A typing pattern π1 is less de�ned than π2
if it contains ⊥ values at least everywhere π2 does. The purpose of Weaken is to make the typing

process compositional. Without this rule, the whole typing derivation must use the same π . With

this rule, we can use di�erent patterns for typing the children of a construct but adjust them to use

the same pattern when typing the construct itself.

The less-de�ned relation on patterns, written as π1 ≤ π2, is formally de�ned in Figure 6. The �rst

two rules de�nes that any pattern is less de�ned than > and more de�ned than ⊥. The third rule

de�nes that the relation is transitive. In the last two rules, we reuse the machineries de�ned for

types to simplify the de�nition of the relation. The fourth rule states that the less-de�ned relation

is a congruence. The �fth rule states that two compatible patterns satisfy the less-de�ned relation.

Since a pattern cannot contain Dyn, π1 ≈ π2 implies that π1 and π2 are equivalent.

4.5 Properties
This subsection investigates the properties of the type system. Speci�cally, we consider the rela-

tionship of the rules for migrational typing in Figure 6 and the original rules for gradual typing in

Figure 2. We also consider the relation between di�erent typing derivations π ; Γ ` e : M | Ω when

di�erent πs and Ms are used for the same Γ and e , which addresses challenge C3 from Section 3.

We start by introducing some notation. We say a decision δ is complete for an expression e if it

contains d .1 or d .2 for each d created while typing e . For π , a decision δ is complete if bπ cδ yields

> or ⊥. Note that a complete decision for π may not be complete for the expression since patterns

compactly represent where typing succeeds and where it fails. For instance, while typing rowAtI,

we created �ve choices A, B, D, E, and F for the dynamic parameters from left to right, respectively.

Thus, each complete decision for rowAtI contains �ve selectors. One typing pattern for rowAtI is:

πa = A〈E〈>,⊥〉,B〈E〈>,⊥〉,⊥〉〉

Both {A.1,E.1} and {A.2,B.2} are complete decisions for πa but not for rowAtI. In the case that

the whole migration space for an expression is well typed, then the pattern is simply > and the

complete decision is { }. We use the notation δ |2 to collect all of choice names d such that d .2 ∈ δ .

There is a close relation among δ , Ω (variational stati�er), and ω (stati�er). Speci�cally, during

typing, for each dynamic parameter x , Ω includes a mapping x 7→ V , where V is the type that will

be assigned to the parameter once its Dyn annotation is removed. Therefore, given Ω and δ , we can

generate a stati�er as follows, where chc(x) returns the name of the choice created for x.

Ω(δ) = {x 7→ bV cδ | x 7→ V ∈ Ω ∧ chc(x) ∈ δ |2}

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:15

For example, let

Ωa = {fixed 7→ Bool, widthFunc 7→ Int→ Int} δa = {A.2,B.1}
then Ωa(δa) = {fixed 7→ Bool}.

The notation G1 v G2 means that G2 is more static than G1; it is de�ned as follows.

T1 v T2 Dyn v G
G1 v G3 G2 v G4

G1→G2 v G3→G4

We further say that G2 is better than G1, written as G1 � G2, if G2 is strictly more static than G1

or they are equally static but G2 is more general than G1. For example, Dyn→α � Int→ Int and

Int→ Int � Int→α .

We next demonstrate the correctness of our type system by showing that, at the places where

the typing pattern is valid, it assigns the same types to all the programs in the migration space as

the brute-force approach does.

Theorem 4.4 (Dyn removal soundess). If π ; Γ ` e : M | Ω, then ∀δ .bπ cδ = > ⇒ Ω(δ); Γ `GC e :
bMcδ .

This theorem states that, for any removal of Dyn annotations, the typing result encoded in migra-

tional typing is the same as by typing the program with ITGL. For example, for π ′a = A〈>,B〈>,⊥〉〉
we get π ′a ; Γ ` width : Ma | Ωa , where Ma = A〈Dyn, Bool〉→B〈Dyn, Int→ Int〉→B〈Dyn, Int〉 and

Ωa is as de�ned earlier. We can verify Ωa(δa); Γ `GC width : Bool→ Dyn→ Dyn and bMacδa =
Bool→ Dyn→ Dyn, where δa is as de�ned earlier.

Conversely, any removal of Dyn that yields a well-typed program is encoded in some typing

derivation in migrational typing, as expressed in the following theorem.

Theorem 4.5 (Dyn removal completeness). If ω; Γ `GC e : G, then there exists some typing
π ; Γ ` e : M | Ω such that bMcδ = G and Ω(δ) = ω for some δ .

Theorem 4.4 can be proved by structural induction over the rules in Figure 6, and Theorem 4.5

can be proved by induction over the rules in Figure 2.

Next, we investigate the relation between di�erent typings that can be derived for the same

expression and environment. We observe that di�erent typings can be combined to make the result

as correct as possible (that is, to minimize ⊥s in the result pattern) and as good as possible (that

is, to make types more static and more general). Note that the typing process records all dynamic

parameters and corresponding variational types in Ω. As a result, the domain of Ωs in di�erent

typings are the same.

Lemma 4.6. If π1; Γ ` e : M | Ω and π2; Γ ` e : M | Ω, then there is some typing π ; Γ ` e : M | Ω such
that π1 ≤ π and π2 ≤ π .

Lemma 4.7. If π ; Γ ` e : M1 | Ω1 and π ; Γ ` e : M2 | Ω2, then there is some typing π ; Γ ` e : M | Ω
such that ∀δ .bπ cδ = > ⇒ bM1cδ � bMcδ ∧ bM2cδ � bMcδ ∧ Ω1(δ) � Ω(δ) ∧ Ω2(δ) � Ω(δ).

In Lemma 4.7, we write ω1 � ω2 if they share the same domain and for any x in the domain

ω1(x) � ω2(x). The properties captured by the previous two lemmas can be combined to show that

for any expression there exists a typing that has the most de�ned pattern and the most static and

general result type. We refer to this typing as the most general static migrational typing, abbreviated

as the MGSM typing.

Theorem 4.8 (MGSM Typing). For any e and Γ, there is a MGSM typing π ; Γ ` e : M | Ω such that
for any π1; Γ ` e : M1 | Ω1, ∀δ .bπ1cδ = > ⇒ bπ cδ = > ∧ bM1cδ � bMcδ .

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:16 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Lemmas 4.6 and 4.7 and Theorem 4.8 can be proved by structural induction over the typing rules in

Figure 6. To illustrate the use of Theorem 4.8, the MGSM typing for width is πb ; Γ ` width : Mb | Ωb ,

where

Ωb = {fixed 7→ Bool, widthFunc 7→ Int→ β} πb = A〈>,B〈>,⊥〉〉
Mb = A〈Dyn, Bool〉→B〈Dyn, Int→ β〉→B〈Dyn, β〉.

Theorem 4.8 implies that while an in�nite number of typings may be derived (due to the ⊥ pattern),

we need only care about the MGSM typing since it encodes all the typings for the whole migration

space. Sections 6 and 7 investigate the problem of computing the MGSM typing.

5 FINDING THE BEST MIGRATION
This section addresses challenge C4 from Section 3, that is, given the MGSM typing, how can we

�nd the most static migrations? We address it by investigating the relationship between di�erent

migrations in Section 5.1 and developing an algorithm for extracting the most static migration from

the typing pattern of a MGSM typing in Section 5.2.

We use the term eliminator to refer to complete decisions. We say that an eliminator δ2 is stricter
than an eliminator δ1, written δ1 � δ2, if δ2 does not select the left alternative (corresponding to

Dyn) in more choices than δ1. Formally,

δ1 � δ2 :⇔ ∀d .d .1 ∈ δ2 ⇒ d .1 ∈ δ1
We say an eliminator δ is valid if bπ cδ = > where π should be clear from the context. We will

use δv to denote valid eliminators. For example, let

δva = {A.1,B.1} δvb = {A.1,B.2} δvc = {A.2,B.1} δd = {A.2,B.2}

then δva � δvb and δvb � δd , but δvb 6� δvc . The eliminators δva , δvb , and δvc are valid, while δd is not,

with respect to πb from Section 4.5.

5.1 Relationships Between Migrations
Since every migration can be identi�ed by an eliminator for the MGSM typing, and since stricter

eliminators correspond to more static migrations, the problem of �nding the most static migrations

can be reduced to the problem of �nding the strictest valid eliminators.

Instead of considering all valid eliminators for an expression (which is exponential in the number

of dynamic parameters), we instead consider the valid eliminators of the typing pattern for the

MGSM typing of the expression. The reason is that typing patterns are usually small, yielding fewer

eliminators that we have to consider (in fact, later results will show that we don’t have to consider

even all of these). For example, the pattern πa from Section 4.5 for rowAtI has only 5 eliminators

while the expression itself has 32. As another example, from the pattern πb , also from Section 4.5,

we can see that δvab = {A.1} compactly represents δva and δvb for width.

Our �rst question is whether any eliminator that is stricter than an invalid eliminator could be

valid. This question seems irrelevant for this example because the invalid eliminator δd is already

the strictest for πb . However, this is not the case in general, and knowing the answer to this question

helps us to prune the search space. For example, the eliminator {A.1,B.1,E.2} is invalid for πa ,

and we want to know whether any of the stricter eliminators—{A.1,B.2,E.2}, {A.2,B.1,E.2}, and

{A.2,B.2,E.2}—are valid. The following theorem addresses our question.

Theorem 5.1 (Error Irrecoverability). Let π ; Γ ` e : M | Ω be an MGSM typing for e and Γ. If
bπ cδ = ⊥, then ∀δ1.δ � δ1 ⇒ bπ cδ1 = ⊥.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:17

This theorem implies that we can simply ignore invalid eliminators, and focus on valid ones,

since all invalid eliminators lead to ill-typed expressions. The theorem can be proved by structural

induction over the typing rules in Figure 6.

A valid eliminator for the typing pattern corresponds to potentially many valid eliminators for

the expression. We say that a valid pattern eliminator δ1 covers a valid expression eliminator δ2 if

δ1 ⊆ δ2. Among all the expression eliminators covered by a pattern eliminator, one is the strictest.

For example, the eliminator δvab for pattern πb covers the eliminators δva and δvb for typing width,

and δvb is the strictest. As another example, the valid eliminator δvae = {A.1,E.1} for pattern πa
covers eight valid eliminators (two options for each of the three choice names that do not appear

in the pattern) for typing rowAtI, and {A.1,E.1,B.2,D.2, F .2} is the strictest among them.

Among all expression eliminators covered by a pattern eliminator, stricter ones yield better result

types. This is expressed by the following theorem.

Theorem 5.2. If π ; Γ ` e : M | Ω is the MGSM typing for e and Γ, then δv
1
� δv

2
⇒ bMcδv

1

�
bMcδv

2

.

Based on Theorem 4.4, the result stated in Theorem 5.2 can be transformed into a property of

the original ITGL type system in Figure 2. The theorem can thus be proved through a structural

induction of the typing rules in Figure 2.

As an example illustrating Theorem 5.2, consider δva , δvb , and Mb , introduced in Section 4.5.

We can verify that both δva � δvb and bMb cδva � bMb cδvb , where bMb cδva = Dyn→ Dyn→ Dyn, and

bMb cδvb = Bool→ Dyn→ Dyn.

Theorem 5.2 provides a way to order the eliminators covered by a single pattern eliminator,

but how about ordering di�erent valid eliminators of the typing pattern? Considering pattern πb ,

neither of the valid eliminators δvb or δvc is stricter than the other. Similarly, for pattern πa , neither

of the valid eliminators is stricter than the other. In fact, this property holds not only for these two

examples, but also for a class of typing patterns that are in pattern normal form. We say a pattern is

in normal form if it does not contain idempotent choices (choices with identical alternatives) and

does not nest a choice in another choice with the same name (no dead alternatives). We capture

this property in the following theorem.

Theorem 5.3 (Eliminator Incomparability). Let π ; Γ ` e : M | Ω be MGSM typing for e and Γ
and π1 be a normal form for π . Then for any δv

1
and δv

2
for π1, δv1 6� δv

2
, δv

2
6� δv

1
, and �δv .δv

1
�

δv ∧ δv
2
� δv .

Two eliminators that are incomparable with respect to� will remove Dyns for di�erent parame-

ters for the same expression, leading to types that are incomparable by v (de�ned in Section 4),

and thus incomparable by �. For example, since δvb 6� δvc and δvc 6� δvb , we have Gb 6� Gc and

Gc 6� Gb , where Gb = bMb cδvb = Dyn→(Int→ β)→ β and Gc = bMb cδvc = Bool→ Dyn→ Dyn.

Combining Theorems 5.2 and 5.3, yields the following result about �nding most static migrations.

We develop an algorithm for extracting such migrations in Section 5.2.

Theorem 5.4 (Uniqeness of most static migrations). Let π ; Γ ` e : M | Ω be the MGSM typing
for e and Γ, and π1 be the normal form for π , then e has a unique most static migration if π1 has only
one valid eliminator. More generally, the number of most static migrations for e equals the number of
valid eliminators for π1.

5.2 Extracting Most Static Migrations
The most static migrations for a program are identi�ed by valid eliminators that describe whether to

pick the Dyn annotation or the inferred type for each parameter. We compute this set of eliminators

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:18 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

from an MGSM typing in three steps: (1) simplify the typing pattern to its normal form, (2) collect

the valid eliminators for the normal form, and (3) expand each valid eliminator into a strictest

eliminator for the corresponding expression.

Simplifying a typing pattern to its normal form has two advantages. First, the valid eliminators

are fewer and smaller. Second, we can use the result of Theorem 5.4 to �nd most static migrations.

We use the following rules to simplify patterns to normal forms.

d 〈π ,π 〉 { π d 〈π1,π2〉 { d 〈bπ1cd .1, bπ2cd .2〉
π1 { π2

π [π1] { π [π2]

The �rst two rules remove idempotent choices and dead alternatives. The third rule enables

simplifying parts of a larger pattern. For example, we can use the third and the �rst rule to simplify

the pattern πc = A〈E〈B〈>,>〉,⊥〉,B〈E〈>,⊥〉,⊥〉〉 to pattern πa from Section 4.5.

We use the function ve (π) to build the set of valid eliminators for a pattern π in normal form.

ve (>) = {�} ve (⊥) = � ve (d 〈π1,π2〉) = {{d .1} ∪ l | l ∈ ve (π1)} ∪ {{d .2} ∪ r | r ∈ ve (π2)}

For example, ve (πa) yields {δvo ,δvp }, where δvo = {A.1,E.1} and δvp = {A.2,B.1,E.1}.
Finally, we use the following function expand (δ ,D) to compute the strictest expression eliminator

from the given pattern eliminator δ and the set D of all choice names in the expression.

expand (δ ,D) = δ ∪ {d .2 | d ∈ D ∧ d .1 < δ }

For example, the set of choice names D for typing rowAtI is {A,B,D,E, F }, and expand (δvo ,D)
yields {A.1,E.1,B.2,D.2, F .2} and expand (δvp ,D) yields {A.2,B.1,E.1,D.2, F .2}.

Each expanded valid eliminator is a best eliminator that speci�es how to migrate the program.

For example, the �rst best eliminator for rowAtI above removes the Dyn annotation for widthFunc,

table, and i, while the other best eliminator removes the Dyn annotation for fixed, table, and i.

Overall, these three steps provide a simple and e�cient way to extract the most static migration

from an MGSM typing. Usually the normal form of a typing pattern is small, and so has only a few

valid eliminators. For example, if the program is still well typed after removing all Dyn annotations,

then the pattern will be >, which has only one valid eliminator (the empty set). Similarly, if the

program is ill typed if any Dyn annotation is removed, then there is again just one valid eliminator.

Since normal forms are ideal, in Section 7, we will show how we can e�ciently maintain patterns

to be in normal form throughout the type inference process.

6 CONSTRAINT GENERATION
A subset of the constraint generation rules is presented in Figure 7. The judgment Γ `C e : M | C | π
states that under Γ, the expression e has type M when the constraint C is solved. Moreover, the

type M is valid only for the variants described the > values of the typing pattern π . Accordingly, e
and Γ are inputs, while π , M , andC are outputs. Note that we now omit the stati�er Ω in constraint

judgments since it is not needed for type inference. The syntax of constraints are as follows:

C ::= M1 ≈?π M2 | C ∧C | d 〈C,C〉 | ε

The �rst form represents type compatibility constraints. Often it is the case that two types are

only partially compatible. The pattern π in the constraint allows this fact to be recorded when

di�erent constraints are combined. In some rules, the notation ≈?> is used to denote that a generated

constraint will be solved successfully everywhere. The constraint α ≈?> κ1→κ2 that forces α to be

a function type is such an example, where κ1 and κ2 are fresh type variables. The constraintC1 ∧C2

de�nes the conjunction of two constraintsC1 andC2, while the constraint d 〈C1,C2〉 de�nes a choice

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:19

ConC

c is of type γ

Γ `C c : γ | ε | >
VarC

x : M ∈ Γ
Γ `C x : M | ε | >

AbsC

Γ `C e : M | C | π α fresh

Γ `C λx .e : α→M | C | π

AbsDynC

Γ,x 7→ d 〈Dyn,α〉 `C e : M | C | π α fresh d fresh

Γ `C λx : Dyn.e : d 〈Dyn,α〉→M | C | π

DynAnnC

Γ `C e : M | C | π d fresh

Γ `C e :: Dyn : d 〈Dyn,M〉 | C | π

AppC

Γ `C e1 : M1 | C1 | π1 Γ `C e2 : M2 | C2 | π2 cod(M1) ↪→ (M3,C3,π3)
dom(M1,M2) ↪→ (C4,π4) π = π1 ⊗ π2 ⊗ π3 ⊗ π4 C = C1 ∧C2 ∧C3 ∧C4

Γ `C e1 e2 : M3 | C | π

Fig. 7. Constraint generation rules.

dom (Dyn,M) ↪→ (ε ,>) dom (α ,M) ↪→ (α ≈?> κ1→κ2 ∧ κ1 ≈?π M2,π)
dom (M11→M12,M) ↪→ (M11 ≈?π M ,π) dom (d 〈M1,M2〉,M) ↪→ d 〈dom (M1,M), dom (M2,M)〉

dom (_, _) ↪→ (ε , ⊥)

cod (Dyn) ↪→ (Dyn, ε,>) cod (α) ↪→ (κ2,α ≈?> κ1→κ2,π)
cod (M1→M2) ↪→ (M2, ε,>) cod (d 〈M1,M2〉) ↪→ d 〈cod (M1), cod (M2)〉

cod (_) ↪→ (κ, ε,⊥)

Fig. 8. Auxiliary constraint generation functions. The notation d 〈(C1,π1), (C2,π2)〉 is expanded to (d 〈C1,C2〉,
d 〈π1,π2〉). Default cases are indicated by _ parameters and define behavior when no other case applies.

between two constraints. Finally, ε represents an empty constraint. This is needed to represent a

judgment where no constraints are generated.

The rule AbsDynC generates constraints for abstractions with dynamic parameters. It helps

facilitate migration by creating a fresh choice type with a left alternative containing Dyn and a right

alternative containing a fresh type variable. The type variable is used to infer a new static type for

the parameter, if possible. The rule AppC is more involved because both constraints and patterns

from premises have to be combined. The typing pattern in the conclusion must be restricted enough

to create a valid judgment but well de�ned enough to give useful information about where the

judgment succeeds. The operation ⊗, de�ned below, can be viewed as a meet operation over the

less de�ned partial order on typing patterns in Figure 6. It creates the greatest lower bound of two

patterns, ensuring that the most de�ned pattern is used for an entire rule.

> ⊗ π = π ⊥ ⊗ π = ⊥ d 〈π1,π2〉 ⊗ d 〈π3,π4〉 = d 〈π1 ⊗ π3,π2 ⊗ π4〉

d 〈π1,π2〉 ⊗ π = d 〈π1 ⊗ π ,π2 ⊗ π 〉

We defer the rule for conditionals to the long version of this paper
2

since it can be derived

systematically from the If rule in Figure 6, similarly as AppC is derived from App.

The rule AppC uses several auxiliary functions to generate constraints. These are de�ned in

Figure 8 and take the form: dom (M1,M2) ↪→ (C,π) and cod (M1) ↪→ (M2,C,π), where ↪→ de�nes

2
http://www.ucs.louisiana.edu/~sxc2311/ws/techreport/fullcgrules.pdf

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

http://www.ucs.louisiana.edu/~sxc2311/ws/techreport/fullcgrules.pdf

15:20 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

a mapping from inputs to outputs. These functions implement the dom and cod operations de�ned

for the declarative type system in Figure 6.

We illustrate dom by considering the example dom (A〈Dyn,α〉, Int). Since the �rst argument

is a choice type, dom is recursively called on each alternative of A, yielding two subproblems

dom (Dyn, Int) and dom (α , Int). The �rst subproblem is handled by the case for Dyn, which returns

(ε,>). The second subproblem is handled by the the case of dom for type variables. Since dom
expects a function type, the constraint α ≈?> κ1→κ2 is generated. The argument type of the

function is constrained with κ1 ≈?π Int to express that it must be compatible with Int. As a result,

this subproblem returns (α ≈?> κ1→κ2 ∧ κ1 ≈?π Int,π), where π is created to collect the pattern

from κ1 ≈?π Int. The constraints and patterns for the subproblems are combined with the choice A,

yielding the �nal constraint A〈ε,κ1→κ2 ∧ κ1 ≈?π Int〉 and pattern A〈>,π 〉.
During constraint generation, a large pattern connecting symbolic patterns by ⊗ is generated.

These symbolic patterns are placeholders that will be updated once the corresponding constraints

are solved. For example, if the pattern π1⊗π2 and the constraints Dyn ≈?π1 Bool∧A〈Int, Bool〉 ≈?π2 Int

are generated, then the pattern will be updated to > ⊗ π2 once the �rst constraint is solved. This

update occurs because Dyn and Bool are compatible so π1 will be updated to >.

The following soundness and completeness theorems state that the constraint generation rules

correspond to the declarative typing rules presented in Figure 6. In particular, Theorem 6.2 implies

that constraint generation �nds the MGSM typing. Following the spirit of Vytiniotis et al. (2011), we

use the idea of sound and most-general solutions (θ) for constraints (C) in the following theorems

(Vytiniotis et al. (2011) used the term guess-free). In Section 7, we provide a uni�cation algorithm

that generates solutions with these desired properties.

Theorem 6.1 (Soundness of Constraint Generation). If Γ `C e : M | C | π , then
π ;θ (Γ) ` e : θ (M) | Ω for some Ω, where θ is a sound and most-general solution for C .

Theorem 6.2 (Completeness of Constraint Generation). If π1;θ1(Γ) ` e : M1 | Ω then
Γ `C e : M | C | π such that π1 ≤ π , ∀δ .bπ1cδ = > ⇒ bπ cδ = > ∧ bM1cδ � bθ (M)cδ , and
θ1 = θ

′ ◦ θ form some θ ′, where θ is a sound and most-general solution for C .

Both theorems can be proved by structural induction over the rules in Figures 6 and 7. Intuitively,

the rules in Figure 7 don’t forget any constraints and no extra constraints are generated with

respect to the declarative type system Figure 6.

7 UNIFICATION
This section presents a uni�cation algorithm for solving the constraints generated in Section 6,

thus completing the roadmap presented in Section 3.

7.1 Solving Compatibility Constraints
We �rst motivate the structure and design of the algorithm by using the following examples.

(i) α ≈?π Dyn→ Int

(ii) A〈Dyn, Bool〉 ≈?π Int

Our solver must adhere to certain rules to ensure the correctness of type inference, including:

(I) Dyn is compatible with any type (Section 2.1).

(II) Type variables only substitute for static types (Section 4).

(III) The typing pattern produced must be as de�ned as possible (Section 4).

Problem (i) helps illustrate rule (II). Intuitively, α should substitute to a function type whose

codomain is Int, but what should the domain be? Essentially, the domain should be an unconstrained

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:21

U : C→θ × π
(a)U(Dyn ≈?π M) = (∅,>)
(a∗)U(M ≈?π Dyn) = U(Dyn ≈?π M)
(b)U(α ≈?π M)

| α < vars(M) ∧ ¬hasDyn(M) = ({α 7→ M,>)}
| d ∈ choices(M) = U(d 〈α ,α〉 ≈?π M)
| α < vars(M) ∧M is of form M1→M2 =

let (θ1,π1) = U(α ≈?> κ1→κ2); (θ2,π2) =U(κ1→κ2 ≈?π2 M1→M2) in (θ2 ◦ θ1,π2 ⊗ π1)
| otherwise = (∅,⊥)

(b∗)U(M ≈?π α) = U(α ≈?π M)
(c)U(d 〈M1,M2〉 ≈?π d 〈M3,M4〉) =

let (θ1,π1) = U(M1 ≈?π1 M3); (θ2,π2) = U(M2 ≈?π2 M4); θ ′ =merдe(d,θ1,θ2)
in (θ ′,d 〈π1,π2〉)

(d)U(d 〈M1,M2〉 ≈?π M) = U(d 〈M1,M2〉 ≈?π d 〈bMcd .1, bMcd .2〉)
(d∗)U(M ≈?π d 〈M1,M2〉) = U(d 〈M1,M2〉 ≈?π M)
(e)U(T1 ≈?π T2) = if robinson(T1,T2) = θ ′ then (θ ′,>) else (∅,⊥)
(f)U(M11→M12 ≈?π M21→M22) =

let (θ1,π1) = U(M11 ≈?π1 M21); (θ2,π2) = U(θ1(M12) ≈?π2 θ1(M22)) in (θ2 ◦ θ1,π1 ⊗ π2)
(g)U(ε) = (∅,>)
(h)U(d 〈C1,C2〉) = let (θ1,π1) = U(C1); (θ2,π2) = U(C2); θ ′ =merдe(d,θ1,θ2) in (θ ′,d 〈π1,π2〉)
(i)U(C1 ∧C2) = let (θ1,π1) = U(C1); (θ2,π2) = U(θ1(C2)) in (θ2 ◦ θ1,π2 ⊗ π1)

Fig. 9. A unification algorithm.

type variable so that it can unify with a static type later, if necessary. As a result, we generate the

substitutions {κ2 7→ Int} ◦ {α 7→ κ1→κ2}. Since κ1 is a fresh type variable that is not mapped

to anything, it is unconstrained. In contrast, κ2 is mapped to Int. This substitution satis�es both

rules (I) and (II).

Problem (ii) demonstrates the need for error tolerance in solving constraints. The natural way to

solve a choice constraint is to decompose it into two constraints. Doing this on constraint (ii) yields

two subconstraints, Dyn ≈?π1 Int and Bool ≈?π2 Int, where π = A〈π1,π2〉. According to rule (I), the

�rst constraint is solved successfully and π1 is updated to >. The second constraint, however, fails

to solve, since Bool cannot be made compatible with Int, so we update π2 to ⊥. Consequently, we

update π to A〈>,⊥〉 to re�ect that constraint solving fails in A.2. Choosing instead ⊥ for π would

yield a consistent result but would violate rule (III).

7.2 A Unification Algorithm
Figure 9 presents a uni�cation algorithmU, which takes in a constraint and produces a substitution

θ and a pattern π . As said in Section 6, constraint solving also updates the values of patterns that

are used as placeholders. The �gure uses the following helper functions. The function choices(M)

returns the set of choice names in M ; vars(M) returns the set of type variables in V . The predicate,

hasDyn(M), determines whether Dyn occurs anywhere in M . The function, merge, combines the

substitutions from solving the subproblems of a choice constraint. For example, given d , θ1 =
{α 7→ Int}, and θ2 = {α 7→ Bool}, we have merge(d,θ1,θ2)(α) = {α 7→ d 〈Int, Bool〉}. Formally,

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:22 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

the de�nition of merge (for each α in θ1 ∪ θ2) is:

merge(d,θ1,θ2)(α) = d 〈get(α ,θ1), get(α ,θ2)〉 where α ∈ dom (θ1) ∪ dom (θ2)

get(α ,θ) =
{
M α 7→ M ∈ θ
κ otherwise

We now brie�y walk through each case ofU. Case (a) handles the trivial constraints involving

Dyn. Such constraints are simply discarded without generating any mapping. We return > as the

pattern since Dyn is compatible with any type. More importantly for α ≈?π Dyn, case (a) takes

priority over (b), ensuring that the substitution {α 7→ Dyn} is not generated. Case (b) uni�es a

type variable α with a migrational type M . This case includes many subcases. First, if M does

not contain Dyn and α does not occur in M , then α is directly mapped to M . For example, given

α ≈?π A〈Int, Bool〉, the substitution {α 7→ A〈Int, Bool〉} is returned and the π is updated to >.

Second, if M contains variation, the result is computed via case (d). For example, the problem

α ≈?π A〈Dyn, Int〉 is transformed into A〈α ,α〉 ≈?π A〈Dyn, Int〉. Next, if M is a function type that

contains Dyn and α does not occur in M , then we transform α into a function type by using fresh

type variables and delegate the solving to case (f). The problem (i) in Section 7.1 falls in this case. If

all previous cases fail, ⊥ is returned, indicating that the constraint failed to solve.

Case (c) handles constraints involving two choice types that share an outer choice name. It

decomposes the constraint into two smaller problems and solves them individually. For instance,

consider the constraint A〈Dyn,α〉 ≈?π A〈Int, Bool〉. This constraint will be decomposed into Dyn ≈?π1
Int and α ≈?π2 Bool, which will be solved by (a) and (b), respectively. Case (d) uni�es a choice

type with another type not handled by case (c). This case is reduced to (c) but it turns the RHS

of the constraint into a choice type that shares the outer choice name with the LHS. One such

example is A〈Dyn, Int〉 ≈?π Int transforming into A〈Dyn, Int〉 ≈?π A〈Int, Int〉. Case (e) uni�es two

static types and is delegated to the traditional Robinson’s algorithm. Case (f) uni�es two function

types by unifying their respective argument and return types. Cases (g), (h), and (i) deal with

non-compatibility constraints.

To keep patterns in normal form, we also perform the following optimizations to prevent

idempotent choices patterns from being created. In cases (c) and (f) ofU, when creating the choice

pattern d 〈π1,π2〉, we check if π1 and π2 are the same; if so, the choice pattern is replaced by π1. In

the last two cases of ⊗ in Section 6, we perform the same optimization. After this, the algorithm

maintains patterns in normal forms since additionally the generated constraints do not contain

dead alternatives and the case (d) ofU prevents dead alternatives from being introduced.

7.3 Properties
We now investigate the properties ofU. First,U is terminating.

Theorem 7.1 (Termination). Given C ,U(C) terminates.

Next, we show thatU is correct by showing that it is both sound and complete. For simplicity, we

state the result for constraints of the formM1 ≈?π M2 only. In fact, we can transform other forms into

this form. For example,d 〈M11 ≈?π1 M12,M21 ≈?π2 M22〉 can be transformed intod 〈M11,M21〉 ≈?d 〈π1,π2 〉
d 〈M12,M22〉. Note that π in the constraint is just a placeholder and will be updated when the

constraint solving �nishes.

Theorem 7.2 (Soundness). IfU(M1 ≈?π M2) = (θ ,π ′), then θ (M1) ≈π ′ θ (M2).
Theorem 7.3 (Completeness). Given M1 ≈?π M2, if θ1(M1) ≈π1 θ1(M2), then U(M1 ≈?π M2) =
(θ2,π2) such that π1 ≤ π2 and θ1 = θ ◦ θ2 for some θ .

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:23

All theorems can be proved by going through the cases ofU in Figure 9.

8 EXTENSIONS
In the previous sections we focused on making a gradually typed program as static as possible

while preserving type correctness. This corresponds to Q1 from Section 1.1. In Section 8.1, we

describe how Q2 and Q3 can be addressed with small changes to our approach. Then, in Section 8.2,

we consider how to support additional language features in our migrational type system.

8.1 Flexible Migration of Gradual Programs
Question Q2 from Section 1.1 asks whether we can take user considerations into account when

migrating gradual programs. For example, the user should be able to indicate that a particular

parameter should remain dynamic even if it could be made static, or that a particular parameter

must be made static. This can be supported within our framework by using the user’s preferences

to override the inferred typing pattern before converting that typing pattern into a best migration

using the method in Section 5.2. Given an inferred pattern π , we override the typing pattern with

d1〈π ,⊥〉 to force the parameter associated with choice name d1 to be dynamic and override the

pattern with d2〈⊥,π 〉 to force the parameter associated with d2 to be static. Essentially, we take

the user’s preference into account by considering the alternative to be ill typed. After doing this

successively for each of the user’s preferences, we can renormalize the pattern and use the method

in Section 5.2 to compute the migration (i.e. determine which Dyn annotations to remove). Note

that forcing a parameter to be static could make a migration fail when otherwise it would not.

Question Q3 asks whether we can migrate an ill-typed program to a type-correct program by

adding as few Dyn annotations as possible. This can be supported in our framework by treating

both abstraction forms uniformly and typing all abstractions using the rule AbsDyn from Figure 6.

With this change, any parameter can be either dynamically or statically typed and our results from

Sections 4 and 5 ensure that we can migrate to a type correct result that is as static as possible.

The idea of adding Dyn annotations to remove static type errors is closely related to the idea of

deferring type errors by Vytiniotis et al. (2012). However, our approach works at a more �ne-grained

level since their approach does not allow type errors related to function parameters to be deferred.

8.2 Other Language Features
Our version of ITGL, given in Figure 6, restricts parameters to be either unannotated or annotated

by Dyn. The formulation of gradual typing by Garcia and Cimini (2015) allows arbitrary gradual

type annotations on parameters, and also supports type ascription, that is, asserting by e ::G that

expression e has type G.

We can extend our type system to support arbitrary gradual type annotations as follows. Given

an abstraction λx : G .e , ifG = Dyn orG is fully static, type the abstraction as usual; ifG is a complex

type containing Dyn types, replace G by a choice whose �rst alternative is G and whose second

alternative replaces all dynamic parts by arbitrary types. For example, if G = Int→ Dyn→ Dyn,

then the type of the parameter is d 〈Int→ Dyn→ Dyn, Int→V1→V2〉, where d is fresh. To generate

the corresponding constraint (Section 6), we replace V1 and V2 by fresh type variables.

We can extend our type system to support type ascription with the following typing rule.

π ; Γ ` e : M | Ω G ≈π V M ≈π d 〈G,V 〉
π ; Γ ` (e ::G) : d 〈G,V 〉 | Ω ∪ {e 7→ V }

The second premise ensures that the static parts of the ascribed type G are copied to the second

alternative of the choice. The third premise ensures that the type of the expression M is compatible

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:24 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

with the ascribed type and also a corresponding type V with all Dyn types removed. We can update

the the structure of Ω to accommodate this rule by de�ning its domain to be program locations

rather than parameter names. We use e here as shorthand for the location of e .

Finally, we can also add support for let-polymorphism. The approach is straightforward, but the

notations become heavier. We use α to denote a list of type variables and {α 7→ V } to denote a

set that includes α1 7→ V1, . . . , αn 7→ Vn . The function vars(·) returns the free type variables in its

argument. The typing rules are standard except that when typing variable references (Var) we can

only instantiate type schemas with variational types (V) and not migrational types (M).

Let

π ; Γ ` e1 : M1 | Ω1 α = vars(M1) − vars(Γ)
π ; Γ,x 7→ ∀α .M ` e2 : M2 | Ω2

π ; Γ ` let x = e1 in e2 : M2 | Ω1 ∪ Ω2

Var

x 7→ ∀α .M ∈ Γ
π ; Γ ` x : {α 7→ V }(M) | �

In support of all of these extensions, the other machinery of our approach, including constraint

generation, uni�cation, and extracting the most static migration, can be reused.

9 EVALUATION
This section evaluates the performance of migrational typing. For this purpose, we have imple-

mented a prototype in Haskell. The prototype implements the techniques developed in this paper.

Besides the features presented in Sections 4.1 and 8.2, the prototype also supports recursive functions

and a built-in list type, which is needed to encode the examples described below.

We have created a suite of programs for performance evaluation since no public benchmarks

exist in this domain. We �rst took 10 well-typed programs from the student program database (van

Keeken 2006), whose sizes range from 17 LOC to 80 LOC (not including blank lines). We then

randomly combined and duplicated these programs to create several programs of various sizes,

from 17 to 20,000 LOC. The created programs are all well-typed by construction, so we seed errors

in the programs by randomly applying between 2 and 100 changes in each. Each change replaces

one leaf of the AST (a variable reference or constant) with another leaf. The generated programs

are summarized in columns 2–5 of Figure 10, showing size in LOC, number of functions, number of

dynamic parameters, and the number of leaves that were changed. We generated 8 programs of

increasing size, then 100 programs each of 10,000 LOC and 20,000 LOC.

For each generated program, we compared the runtime of migrational typing with standard

gradual typing and with a brute-force strategy for most static migration for the program, shown in

the last three columns of the table. We also report the number of most static migrations in column

“# Best”, computed using the method in Section 5.2. The time for gradual typing can be considered

a baseline—this is the time to simply type the given program. The time for the brute-force strategy

represents a naive approach to migrational typing, generating 2
n

variants of a program with n
dynamic parameters, and gradually typing all of them. We omit the time for computing the most

static migrations from the �gure because the time is always within 0.05 seconds.

From the �gure, we observe that the brute force approach is exponentially slower than gradual

typing, as expected, successfully typing only the �rst four programs. On the other hand, migrational

typing scales linearly with the size of the program and exhibits only a 2–4 times overhead over

gradual typing. The �gure also shows that the number of changed locations and the number of

most static migrations have a minor impact on the performance of the migrational typing process.

For example, while the programs 6 and 7 have very di�erent values for these two columns, the

running times of migrational typing is almost the same.

It is interesting to note that the number of most static migrations seems to be independent of the

number of changes made to the program. For example, program 5 changes more leaves but has

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:25

ID Size # Func. # Para. # Chg. # Best Gradual Brute Migrational

1 7 1 5 2 2 1.6e−3 4.4e−2 2.3e−3

2 17 8 9 5 11 3.6e−3 1.6 1.2e−2

3 24 9 14 5 3 6.4e−3 79.5 1.7e−2

4 126 8 10 10 17 1.9e−2 20.1 3.5e−2

5 237 86 139 20 9 4.5e−2 – 0.1

6 2,110 420 576 5 7 0.38 – 0.77

7 2,110 420 576 100 743 0.39 – 0.75

8 8,460 2,750 2,946 50 83 2.7 – 4.5

9
?

10,000 2,392 4,923 50 379 4.2 – 13.3

10
?

20,000 7,630 9,364 100 894 12.0 – 24.3

?: 100 programs of this size were generated. Results are the average of all programs.

Fig. 10. Running time (in seconds) of migrational typing on various programs. Times are measured on a
ThinkPad with 2.4GHz i7-5500U 4-core processor and 8GB memory running GHC 8.0.2 on Ubuntu 16.04. Each
time is an average of 10 runs. The symbol – indicates that typing timed out a�er 1,000 seconds.

fewer most static migrations than program 4. In fact, the kind and number of changes matters much

more than the raw number. For example, scattered changes (vs. localized changes) and changes

that directly a�ect types (e.g. changing not to succ) tend to create more most static migrations.

Many programs in our dataset have a large number of most static migrations. In practice, this

would make migration di�cult since the user has to somehow compare them. However, examining

the results reveals that larger programs divide into clusters of interrelated functions, each with a

relatively small number of candidate migrations. The high number of migrations for the whole

program is caused by considering the product of possibilities for each cluster. For example, program

8 includes 3 clusters with 4, 4, and 5 most static migrations, respectively. The product of these three

decisions accounts for almost all of its 83 most static migrations. In a real programming language,

such clusters naturally correspond to modules, so migrating programs module-by-module is likely

to provide a much better user experience. We can also imagine other strategies for coping with large

numbers of potential migrations. Allowing the user to guide the migration process, as described in

Section 8.1, is one possibility. Or we can imagine querying the potential migrations to, say, �nd the

one that removes the largest number of Dyn annotations among all most static migrations.

10 RELATED WORK
10.1 Annotation Upgrading and Migratory Typing
Tansey and Tilevich (2008) studied the problem of automatically upgrading annotations (such as

types and access modi�ers in Java) in legacy applications in response to the upgrading of, for

example, testing frameworks and libraries. This is similar to our work in that it tackles the problem

of migrating programs to a new version by changing annotations in the program. Their methodology

is quite di�erent however, in that it needs two example programs illustrating how annotations

change between framework versions, so that their inference rules can learn the changes made in

the examples. In contrast our approach only needs to reason about how type annotations a�ect

the typing of the program, so migrating annotations requires only information attainable through

the type system. Moreover, the kind of migrations are orthogonal. Their goal is to upgrade an

entire codebase automatically to use a new framework, which means that they have one endpoint.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:26 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

Migrational typing presents all of the ways a programmer might want to change the types of their

program by adjusting Dyn annotations, meaning that there are multiple endpoints.

Migratory typing (Tobin-Hochstadt et al. 2017) provides another approach to migrating dynami-

cally typed code to statically typed code by creating a statically-typed sister language that interfaces

seamlessly with the dynamically-typed language. While migration in migratory typing is manual,

migrational typing supports systematically typing the whole migration space and automatically

�nding the best migrations. Migratory typing de�ned ideal migration units as parts of a system that

are small enough for easy migration but also large enough to be separately typed and to interface

with untyped code without excessive runtime type checks. The idea of migration units could be

integrated into migrational typing as discussed at the end of Section 9.

10.2 Relation to Gradual Typing
Work on gradual typing can be broadly de�ned along three dimensions. The �rst investigates the

integration of gradual typing with advanced typing features, such as objects (Siek and Taha 2007),

ownership types (Sergey and Clarke 2012), re�nement types (Jafery and Dun�eld 2017; Lehmann

and Tanter 2017), session types (Igarashi et al. 2017), and union and intersection types (Castagna

and Lanvin 2017). From this perspective, our type system studies the combination of variational

types and gradual types. Gradual languages with type inference (Garcia and Cimini 2015; Rastogi

et al. 2012; Siek and Vachharajani 2008) were a large in�uence on migrational typing. While ITGL

was used as the basis for formalizing our type system, we expect that our approach can be extended

to handle other features in this line of work. The reason is that the idea and manipulation of

variation is orthogonal to other type system features. In particular, the idea of type compatibility in

Section 4.2 and the handling of type errors in Section 4.3 can be easily extended.

The second dimension studies runtime error localization and performance issues with sound

gradual typing. The blame calculus (Wadler and Findler 2009) adapts a contract system that can

blame less precise parts of a program when cast errors occur in a gradually typed language. Ahmed

et al. (2011, 2017) extended that work to further handle polymorphic types. Takikawa et al. (2016)

showed that sound gradually typed languages su�er from performance issues as more interactions

between static code and dynamic code leads to frequent value casts. Con�ned Gradual Typing

(Allende et al. 2014) provides constructs to control the �ow of values between static and dynamic

code, mitigating performance issues and making gradual typing more predictable.

Gradual type inference with �ow-based typing (Rastogi et al. 2012) has been explored to make

programs in dynamic object-oriented languages more performant. Since our work is formalized

on ITGL, our work inherits the relations between ITGL and the �ow-based inference (Garcia and

Cimini 2015). Additionally, while �ow-based inference ensures that inferred type annotations do not

cause runtime errors, our current formalization does not have this property because the underlying

ITGL does not have it. In contrast, while our approach �nds the best way (according to many criteria,

such as adding as many annotations as possible) to add annotations, the �ow-based inference only

considers one way of inferring types. Thus, it would be an interesting future direction to combine

migrational typing and �ow-based inference to combine their bene�ts.

The �nal dimension studies the production of gradual type systems from speci�cations of static

type systems. For example, Garcia et al. (2016) presented a way to create gradual type systems from

static ones using techniques from abstract interpretation. The Gradualizer (Cimini and Siek 2016,

2017) can produce a gradual type system and dynamic semantics for a statically-typed language

given its formal semantics. It is thus interesting to investigate how these approaches interact with

variations in the future. Siek et al. (2015) discussed the criteria for gradual typing. We employed

the criteria of the underlying ITGL to prove Theorem 5.1.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

Migrating Gradual Types 15:27

10.3 Variational Typing
This work reuses much machinery from variational typing (Chen et al. 2012, 2014) to support

reuse when typing the whole migration space. Thus, migrational typing can be viewed as an

application of variational typing. Variational typing has been employed to improve type inference

of generalized algebraic data types (Chen and Erwig 2016), which uses variation types to represent

potentially many types for a single expression. Variational typing has also been used to improve

error locating in functional programs using counter-factual typing (CFT) (Chen and Erwig 2014a,b).

Both migrational typing and CFT use variational types to e�ciently explore a large number of

hypothetical situations. A technical di�erence between CFT and migrational typing is that CFT

tries to �nd a minimal change that would make an ill-typed program type correct. In contrast,

migrational typing tries to remove Dyn annotations from as many parameters as possible. The

process of extracting the maximum change for migrational typing (as described in Section 5.2) is

well de�ned while �nding the minimum change in CFT has to rely on heuristics due to the nature

of type error debugging. Another di�erence is that migrational typing considers the interaction

between variational types and gradual types. The idea of using pattern-constrained judgments in

Section 4.3 yields a declarative speci�cation for handling type errors, while previous applications

of variational typing have had to explicitly track the introduction and propagation of type errors.

Variational typing is de�ned in terms of the choice calculus (Erwig and Walkingshaw 2011). Other

applications of the choice calculus include the development of variational data structures (Meng

et al. 2017; Smeltzer and Erwig 2017; Walkingshaw et al. 2014) to support variational program

execution (Chen et al. 2016; Erwig and Walkingshaw 2013; Nguyen et al. 2014), and view-based

editing of variational programs (Stănciulescu et al. 2016; Walkingshaw and Ostermann 2014).

11 CONCLUSION
We have presented migrational typing, a type system that allows programs in an implicitly typed

gradual language to be assigned a new type based on the possible removals of dynamic type

annotations in the original program. Migrational typing conceptually types the whole migration

space, marking where type errors occur so that it can safely present the possible migrations for

the program. We have shown that the system can infer the most static possible types that can

be assigned to a program and that this process can be constrained according to user de�ned

criteria. Moreover, the migrational type system is sound and complete with respect to removing

dynamic annotations in ITGL, and its constraint generation and uni�cation algorithms are sound

and complete. We have also shown that this approach is scalable, performing nearly exponentially

better than the brute force approach of generating and typing the migration space separately.

Migrational typing solves an important unaddressed problem in gradual typing, namely having a

safe and e�cient way to move around in the possible dynamic-static typing space for a program.

In future work, we plan to investigate whether migrational typing can statically reason about

the number of dynamic casts that will be generated by di�erent points in the migration space so

that we can pick the program with the fewest generated casts to minimize performance overhead.

ACKNOWLEDGMENTS
We would like to thank Aseem Rastogi and the anonymous reviewers for many helpful comments

that improved the quality of this paper. This work is partially supported by the National Science

Foundation under the grants IIS-1314384 and CCF-1717300, and by AFRL Contract FA8750-16-C-

0044 (via Raytheon BBN Technologies) under the DARPA BRASS program.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

15:28 John Peter Campora III, Sheng Chen, Martin Erwig, and Eric Walkingshaw

REFERENCES
Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011. Blame for All. SIGPLAN Not. 46, 1 (Jan. 2011),

201–214. https://doi.org/10.1145/1925844.1926409

Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for Free for Free: Parametricity, with and

Without Types. Proc. ACM Program. Lang. 1, ICFP, Article 39 (Aug. 2017), 28 pages. https://doi.org/10.1145/3110283

Esteban Allende, Johan Fabry, Ronald Garcia, and Éric Tanter. 2014. Con�ned Gradual Typing. SIGPLAN Not. 49, 10 (Oct.

2014), 251–270. https://doi.org/10.1145/2714064.2660222

Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2016. Feature-Oriented Software Product Lines. Springer.

Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and Intersection Types. Proc. ACM Program. Lang.
1, ICFP, Article 41 (Aug. 2017), 28 pages. https://doi.org/10.1145/3110285

Sheng Chen and Martin Erwig. 2014a. Counter-factual Typing for Debugging Type Errors. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). ACM, New York, NY, USA, 583–594.

https://doi.org/10.1145/2535838.2535863

Sheng Chen and Martin Erwig. 2014b. Guided Type Debugging. In Int. Symp. on Functional and Logic Programming (LNCS
8475). 35–51. https://doi.org/10.1007/978-3-319-07151-0_3

Sheng Chen and Martin Erwig. 2016. Principal Type Inference for GADTs. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA, 416–428.

https://doi.org/10.1145/2837614.2837665

Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2012. An Error-tolerant Type System for Variational Lambda Calculus.

In Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming (ICFP ’12). ACM, New York,

NY, USA, 29–40. https://doi.org/10.1145/2364527.2364535

Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2014. Extending Type Inference to Variational Programs. ACM Trans.
Program. Lang. Syst. 36, 1, Article 1 (March 2014), 54 pages. https://doi.org/10.1145/2518190

Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2016. A Calculus for Variational Programming. In European Conf. on
Object-Oriented Programming (ECOOP). 6:1–6:26.

Matteo Cimini and Jeremy G. Siek. 2016. The Gradualizer: A Methodology and Algorithm for Generating Gradual Type

Systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). ACM, New York, NY, USA, 443–455. https://doi.org/10.1145/2837614.2837632

Matteo Cimini and Jeremy G. Siek. 2017. Automatically Generating the Dynamic Semantics of Gradually Typed Languages.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New

York, NY, USA, 789–803. https://doi.org/10.1145/3009837.3009863

Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A Representation for Software Variation. ACM Trans.
Softw. Eng. Methodol. 21, 1, Article 6 (Dec. 2011), 27 pages. https://doi.org/10.1145/2063239.2063245

Martin Erwig and Eric Walkingshaw. 2013. Variation Programming with the Choice Calculus. In Generative and Transfor-
mational Techniques in Software Engineering (LNCS 7680). 55–99.

Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In Proceedings of the 42Nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New York, NY, USA,

303–315. https://doi.org/10.1145/2676726.2676992

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA, 429–442.

https://doi.org/10.1145/2837614.2837670

Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, and Philip Wadler. 2017. Gradual Session Types. Proc. ACM
Program. Lang. 1, ICFP, Article 38 (Aug. 2017), 28 pages. https://doi.org/10.1145/3110282

Khurram A. Jafery and Joshua Dun�eld. 2017. Sums of Uncertainty: Re�nements Go Gradual. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 804–817.

https://doi.org/10.1145/3009837.3009865

Nico Lehmann and Éric Tanter. 2017. Gradual Re�nement Types. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 775–788. https://doi.org/10.1145/3009837.

3009856

Meng Meng, Jens Meinicke, Chu-Pan Wong, Eric Walkingshaw, and Christian Kästner. 2017. A Choice of Variational Stacks:

Exploring Variational Data Structures. In Int. Work. on Variability Modelling of Software-Intensive Systems (VaMoS). ACM,

28–35.

Hung Viet Nguyen, Christian Kästner, and Tien N Nguyen. 2014. Exploring Variability-Aware Execution for Testing

Plugin-Based Web Applications. In Int. Conf. on Software Engineering. ACM, 907–918.

Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. The Ins and Outs of Gradual Type Inference. SIGPLAN Not. 47, 1

(Jan. 2012), 481–494. https://doi.org/10.1145/2103621.2103714

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

https://doi.org/10.1145/1925844.1926409
https://doi.org/10.1145/3110283
https://doi.org/10.1145/2714064.2660222
https://doi.org/10.1145/3110285
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1007/978-3-319-07151-0_3
https://doi.org/10.1145/2837614.2837665
https://doi.org/10.1145/2364527.2364535
https://doi.org/10.1145/2518190
https://doi.org/10.1145/2837614.2837632
https://doi.org/10.1145/3009837.3009863
https://doi.org/10.1145/2063239.2063245
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/3110282
https://doi.org/10.1145/3009837.3009865
https://doi.org/10.1145/3009837.3009856
https://doi.org/10.1145/3009837.3009856
https://doi.org/10.1145/2103621.2103714

Migrating Gradual Types 15:29

Ilya Sergey and Dave Clarke. 2012. Gradual Ownership Types. In Proceedings of the 21st European Conference on Pro-
gramming Languages and Systems (ESOP’12). Springer-Verlag, Berlin, Heidelberg, 579–599. https://doi.org/10.1007/

978-3-642-28869-2_29

Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In Proceedings of the 21st European Conference on ECOOP
2007: Object-Oriented Programming (ECOOP ’07). Springer-Verlag, Berlin, Heidelberg, 2–27. https://doi.org/10.1007/

978-3-540-73589-2_2

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In IN SCHEME AND FUNCTIONAL
PROGRAMMING WORKSHOP. 81–92.

Jeremy G. Siek and Manish Vachharajani. 2008. Gradual Typing with Uni�cation-based Inference. In Proceedings of the 2008
Symposium on Dynamic Languages (DLS ’08). ACM, New York, NY, USA, Article 7, 12 pages. https://doi.org/10.1145/

1408681.1408688

Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Re�ned criteria for gradual typing. In

LIPIcs-Leibniz International Proceedings in Informatics, Vol. 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Karl Smeltzer and Martin Erwig. 2017. Variational Lists: Comparisons and Design Guidelines. In Int. Work. on Feature-Oriented
Software Development (FOSD). ACM, 31–40.

Ştefan Stănciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wąsowski. 2016. Concepts, Operations, and Feasibility

of a Projection-Based Variation Control System. In IEEE Int. Conf. on Software Maintenance and Evolution (ICSME). IEEE,

323–333.

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual

Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). ACM, New York, NY, USA, 456–468. https://doi.org/10.1145/2837614.2837630

Wesley Tansey and Eli Tilevich. 2008. Annotation Refactoring: Inferring Upgrade Transformations for Legacy Applications.

In Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented Programming Systems Languages and Applications
(OOPSLA ’08). ACM, New York, NY, USA, 295–312. https://doi.org/10.1145/1449764.1449788

Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. 2014. A Classi�cation and Survey of Analysis

Strategies for Software Product Lines. 47, 1 (6 2014), 6:1–6:45.

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Findler, Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent St-Amour,

T. Stephen Strickland, and Asumu Takikawa. 2017. Migratory Typing: Ten Years Later. In 2nd Summit on Advances in
Programming Languages (SNAPL 2017) (Leibniz International Proceedings in Informatics (LIPIcs)), Benjamin S. Lerner,

Rastislav Bodík, and Shriram Krishnamurthi (Eds.), Vol. 71. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 17:1–17:17. https://doi.org/10.4230/LIPIcs.SNAPL.2017.17

Peter van Keeken. 2006. Analyzing Helium Programs Obtained Through Logging–The process of mining novice Haskell
programs. Master’s thesis. Department of Information and Computing Sciences, Utrecht University.

Dimitrios Vytiniotis, Simon Peyton Jones, and José Pedro Magalhães. 2012. Equality Proofs and Deferred Type Errors: A

Compiler Pearl. In Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming (ICFP ’12).
ACM, New York, NY, USA, 341–352. https://doi.org/10.1145/2364527.2364554

Dimitrios Vytiniotis, Simon Peyton jones, Tom Schrijvers, and Martin Sulzmann. 2011. Outsidein(x) Modular Type Inference

with Local Assumptions. J. Funct. Program. 21, 4-5 (Sept. 2011), 333–412. https://doi.org/10.1017/S0956796811000098

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’T Be Blamed. In Proceedings of the 18th European
Symposium on Programming Languages and Systems: Held As Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009 (ESOP ’09). Springer-Verlag, Berlin, Heidelberg, 1–16. https://doi.org/10.1007/978-3-642-00590-9_1

Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric Bodden. 2014. Variational Data Structures:

Exploring Tradeo�s in Computing with Variability. In Proceedings of the 2014 ACM International Symposium on New
Ideas, New Paradigms, and Re�ections on Programming & Software (Onward! 2014). ACM, New York, NY, USA, 213–226.

https://doi.org/10.1145/2661136.2661143

Eric Walkingshaw and Klaus Ostermann. 2014. Projectional Editing of Variational Software. In ACM SIGPLAN Int. Conf. on
Generative Programming: Concepts and Experiences (GPCE). ACM, 29–38.

Proc. ACM Program. Lang., Vol. 2, No. POPL, Article 15. Publication date: January 2018.

https://doi.org/10.1007/978-3-642-28869-2_29
https://doi.org/10.1007/978-3-642-28869-2_29
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/1449764.1449788
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.1145/2364527.2364554
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1145/2661136.2661143

	Abstract
	1 Introduction
	1.1 Challenges Applying Gradual Typing
	1.2 Migrating Gradual Types

	2 Background and Preparation
	2.1 Gradual Typing
	2.2 Variational Typing

	3 Road Map to Migrating Gradual Types
	4 Migrational Type System
	4.1 Syntax
	4.2 Type Compatibility
	4.3 Pattern-Constrained Judgments
	4.4 Typing Rules
	4.5 Properties

	5 Finding the Best Migration
	5.1 Relationships Between Migrations
	5.2 Extracting Most Static Migrations

	6 Constraint Generation
	7 Unification
	7.1 Solving Compatibility Constraints
	7.2 A Unification Algorithm
	7.3 Properties

	8 Extensions
	8.1 Flexible Migration of Gradual Programs
	8.2 Other Language Features

	9 Evaluation
	10 Related Work
	10.1 Annotation Upgrading and Migratory Typing
	10.2 Relation to Gradual Typing
	10.3 Variational Typing

	11 Conclusion
	References

