Should Variation Be Encoded Explicitly in Databases?

Parisa Ataei
ataeip@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

ABSTRACT

Variation occurs in databases in many different forms and contexts.
For example, a single database schema evolves over time, data from
different sources may be combined, and the various configurations
of a software product line (SPL) may have different data needs.
While approaches have been developed to deal with many such
scenarios, particularly in the fields of database evolution and data
integration, there is no solution that treats variation as a general
and orthogonal concern in databases. This is a problem when vari-
ous kinds of variation intersect, such as during the evolution of a
SPL. Previously, we have proposed variational databases (VDB) as
a general way to represent variation in both the structure and con-
tent of databases. Although the model underlying VDB is simple,
encoding variation explicitly in databases introduces complexity
akin to using preprocessing directives in software. In this paper, we
explore the feasibility of VDB and its associated variational query
language for encoding different kinds of database variability. We
develop two use cases that illustrate how different kinds of variation
can be encoded and integrated in VDB, and how the corresponding
information needs can be expressed as variational queries. We then
use these use cases to discuss the benefits and drawbacks of such a
direct encoding of variation in data and queries.

KEYWORDS
Variational databases, variational queries, variability in data

ACM Reference Format:

Parisa Ataei, Qiaoran Li, and Eric Walkingshaw. 2021. Should Variation Be
Encoded Explicitly in Databases?. In 15th International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS’21), February
9-11, 2021, Krems, Austria. ACM, New York, NY, USA, 9 pages. https://doi.
org/10.1145/3442391.3442395

1 INTRODUCTION

Just as variation is ubiquitous in software, it is also ubiquitous in
the relational databases that software systems rely on. Database re-
searchers have long studied different kinds of variation in databases,
such as through work on database evolution [12, 36, 38], database
versioning [10, 28], and data integration [18]. However, work in
the databases community does not identify variation as a general,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

VaMoS’21, February 9-11, 2021, Krems, Austria

© 2021 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-8824-5/21/02...$15.00
https://doi.org/10.1145/3442391.3442395

Qiaoran Li
ligiao@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

Eric Walkingshaw
walkiner@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

orthogonal concern that arises in many different contexts. This is
a problem since it means that tools and techniques developed for
one kind of database variation cannot be easily reused for another.
More concretely for software developers, and especially software
product line (SPL) practitioners, the lack of a general representa-
tion of database variation means that many kinds of variation that
arise in software do not map cleanly onto corresponding variation
encodings in the databases they use.

In contrast, SPL researchers have invested significant effort in
studying variation (or variability) as a general phenomenon and
concern in software. Although many kinds of software variation are
possible, most can be roughly organized into variation in time or
space [47]. Variation in time refers to the evolution of a system and
is addressed by revision control systems and configuration man-
agement [17], while variation in space refers to the simultaneous
development and maintenance of related systems with different
feature sets and is the traditional focus of research on SPLs [4].
Multiple lines of work in the SPL community have sought to de-
velop general purpose representations of variation in software, such
as delta-oriented programming [40] and the choice calculus [19],
among others. These can be used to unify both kinds of variation
in software, enabling reuse of analyses across dimensions and en-
abling new kinds of analyses that consider variation in both time
and space simultaneously [47].

Variation in databases can also be organized into time and space
dimensions. Variation in time occurs as a database evolves while
variation in space occurs as different data needs arise due to differ-
ent variants of a software system or different information sources.
However, work on different dimensions of variation in databases
have remained much more separate than in SPLs. For example,
consider work on schema evolution, which addresses the fact that
database schemas change over time as business requirements evolve.
This problem has been studied extensively by the databases com-
munity [6, 12, 36, 38]. However, the solutions rely fundamentally
on the temporal nature of this kind of variation, using timestamps
or linear histories of changes. While addressing the schema evo-
lution problem as formulated, these solutions are unsuitable for
encoding other kinds of variation in schemas, such as occurs when
developing a database-backed SPL [42]. Similarly, work on database
versioning [10, 28], data integration [18], and data provenance [11]
are all closely tied to the particular kinds of data variation they
address, without addressing the general phenomenon.

Because the existing data variation models developed in the
databases community do not align with all of the variation sce-
narios that arise in software, SPL researchers have identified the
need for more general encodings of variation in data models and
database schema. To this end, they have developed encodings of
data models that allow for arbitrary variation by annotating differ-
ent elements of the model with features from the SPL [2, 41, 42].

https://doi.org/10.1145/3442391.3442395
https://doi.org/10.1145/3442391.3442395
https://doi.org/10.1145/3442391.3442395

VaMoS’21, February 9-11, 2021, Krems, Austria

However, these solutions address only variation in the data model
but do not extend to the level of the data or queries. The lack of
variation support in queries leads to unsafe techniques such as
encoding different variants of query through string munging, while
the lack of variation support in data precludes testing with multiple
variants of a database at once.

In previous work, we have developed variational databases (VDBs)
and variational queries [7, 8] to encode general variation in the rep-
resentation and use of relational databases. Our work extends ideas
developed in the SPL community to relational databases. Concep-
tually, a VDB represents potentially many different plain relational
databases at the same time. Similarly, a variational query represents
potentially many different queries, each one corresponding to a
variant of the VDB. Together, VDBs and variational queries enable
safely and efficiently working with many variants of a relational
database at once, and reliably integrating the variants of a database
with the corresponding variants of an SPL. We are currently im-
plementing these ideas in VDBMS, a practical implementation of
variational databases as a lightweight wrapper on top of a tradi-
tional relational database management system.

However, the generic and expressive approach of VDB in dealing
with database variation creates new complexity and costs which
raises the question: Is explicitly encoding variation in databases
actually a good idea? With this question in mind, in this paper, we:

e Show the feasibility of VDB by systematically generating
two VDBs from realistic scenarios of database variation in
time and space (Section 3).

o Tllustrate the applicability of variational queries by encoding
information needs for the developed VDBs using scenarios
described in the literature (Section 4).

e Discuss the tradeoffs of explicitly encoding variation in
databases (Section 5).

We distribute the VDBs, SQL scripts for generating them, and
queries of our use cases.! We distribute the VDBs in both MySQL
and Postgres in two forms, one intended for use with our VDBMS
tool, and one intended for more general-purpose research on varia-
tion in databases. We distribute the variational queries as simple
#ifdef-annotated SQL files to promote their broad reuse in the
design and evaluation of other systems for managing variational
relational data.

2 BACKGROUND

In this section, we provide background and notation needed in the
rest of the paper. A variational database (VDB) conceptually repre-
sents multiple database variants that represent the same database,
but, slightly differ in their structure (i.e. schema) and/or content. A
variational query (v-query) conceptually represents multiple queries
written over different database variants.

The variation space of a VDB is organized into boolean variables
called features, similar to many SPLs. A propositional formula of
features is called a feature expression. Feature expressions are used
to annotate elements of the database and queries. Such annotations
are called presence conditions because they determine the conditions
under which each element is present, that is, which configurations

! Available at: https://zenodo.org/record/4321921

Parisa Ataei, Qiaoran Li, and Eric Walkingshaw

of the VDB or variational query contain those elements. A configu-
ration is a mapping from features to boolean values and is used to
configure a VDB into a plain relational database variant.

The structure of a VDB is defined by a variational schema (v-
schema) and its content consists of a set of variational tables. A
variational schema is a set of relation schemas, where each relation
and each attribute in each relation is also annotated by a presence
condition. The overall variational schema is also annotated by a
presence condition called a feature model, denoted by m. A vari-
ational table corresponds to a relation in the schema and is a set
of annotated tuples. Due to the hierarchical structure of a VDB, m
implicitly annotates all of the relations in the schema, and each
relation’s annotation implicitly annotates each of its attributes and
each of the tuples in its corresponding table. Since not all attributes
of a relation are present in all configurations, we use NULL values in
tuples for attributes that are not present in any configurations that
the tuple is present. Example 2.1 illustrates these concepts.

Example 2.1. Assume a VDB has two features fi and f, one re-
lation r, and a trivial feature model m = true (i.e. all configurations
of fi and f, are valid). The relation schema of r is r(ay, az_‘fz)fl,
where annotated elements are indicated by superscripts. The out-
ermost fi annotation indicates that r is present only when fi is
enabled, while the annotation — f attached to attribute ay indicates
that attribute ay is present only when f; is disabled (and when
its relation r is present). The attribute a; is unannotated, which
indicates a presence condition of true, which we omit for brevity.
We use pc (+) to refer to the presence condition attached to a given
element within a VDB. For example, the fully-expanded presence
condition of ay, taking the hierarchy of the variational schema into
account, is m A pc (r) A pc(az) = true A fi A = fa.

The content of the VDB consists of a single table corresponding
to relation r: {(1, 2), (3, NULLY2 }. The second element of the second
tuple is NULL since the tuple is only present when f; is enabled
but the corresponding attribute ay is present only when f; is dis-
abled. There are two non-empty configurations of this VDB: (1)
For configuration fi = true, fa = true, the resulting plain database
has the schema {r(a;)} and content {(1),(3)}. (2) For configura-
tion fi = true, fo = false, the resulting plain database has the
schema {r(ai,a2)} and content {(1,2)}. The other two possible
configurations of the VDB, where f; = false, contain no relations.

To query a VDB, we need a query language that explicitly ac-
counts for variation. We use variational relational algebra (VRA) for
this purpose, whose syntax is defined in Figure 1. VRA is a combina-
tion of relational algebra [1] with the formula choice calculus [29],
which is a formal language for representing variation. The first five
constructs are adapted from relational algebra: A query may simply
reference a relation r in the schema. Renaming allows giving a name
to an intermediate query to be referenced later. A projection enables
selecting a subset of attributes from the results of a subquery, for
example, 74, r would return only attribute a; from r; we extend the
standard project operator to work with annotated lists of attributes,
for example, Tay,ag” would include a; for all configurations and
also ay for configurations where e is true. A selection enables filter
the tuples returned by a subquery based on a given condition 6,
for example, 0,4, >3 would return all tuples from r where the value

https://zenodo.org/record/4321921

Should Variation Be Encoded Explicitly in Databases?

ecE = true | false | f | =f | eAne | eVe
0e® === true | false | aek | aea | =0 | OV O
| 6A0 | €0,6)
qeEQ = r Relation reference
| prg Renaming
| maq Projection
| opq Selection
| gpq Join
| e{(q,q) Choice
| € Empty relation

Figure 1: Syntax of variational relational algebra, where o
ranges over comparison operators (<, <=, %>, 2), k over
cosntant values, a over attribute names, and A over lists of
annotated attributes. The syntactic category e represents fea-
ture expressions, 0 is variational conditions, and q is varia-
tional relational algebra terms.

for a is greater than 3; these conditions may be variational to en-
able returning different tuples for different configurations of the
VDB. The join operation is the standard relational join operation
and omitting its condition implies it is a natural join (i.e. a join
on the shared attribute of the two subqueries). A choice encodes
a variation point between two subquery alternatives based on a
given feature expression, e.g., fi A f2{(q, qr) yields the results of ¢,
alternative for configurations where f; and f; are enabled, and in
other configurations yields the results of g, alternative. Note that
the conditions 0 used by selections and joins also contain choices,
and these behave similarly. Finally, the empty relation returns a
trivial empty query. It is mostly used as an alternative in choices
when a query is only relevant in some configurations.

A v-query can be configured into a set of plain relational queries.
The unique non-empty plain relational queries that a v-query can
be configured to are called its variants. For example, the query
Tq,,ayfa T OVEr the VDB given in Example 2.1 has two variants: 74, r
for configuration f; = true, fo = true and 74, 4,7 for configuration
fi = true, fo = false.

3 VARIATIONAL DATABASES

In this section, we show how to encode the variation of two realistic
database variation scenarios as VDBs. The use cases presented in
Section 3.1 and Section 3.2 illustrate the effects of variation in space
and time, respectively. For each use case, we show how all variants
of the database can be captured in a single VDB. Finally, Section 3.3
discusses properties of well-formed VDBs that we use to validate
our use cases.

3.1 Variation in Space: Email SPL Use Case

Our first use case focuses on variation in space. It shows the use
of VDB to encode the variational information needs of a database-
backed SPL. We consider an email SPL that has been used in several
previous SPL research projects (e.g. [3, 5]). Our use case is formed by
systematically combining two pre-existing works: (1) We use Hall’s
decomposition of an email system into its component features [25]
as high-level specification of a SPL. (2) We use the Enron email

VaMoS’21, February 9-11, 2021, Krems, Austria

Table 1: Original Enron email dataset schema.

employeelist(eid, firstname, lastname, email_id, email2,
email3, emaild, folder, status)

messages(mid, sender, date, message_id, subject, body, folder)

recipientinfo(rid, mid, rtype, rvalue)

referenceinfo(rid, mid, reference)

dataset? as a realistic email database. In combining these works, we
show how variation in space in an email SPL requires corresponding
variation in a supporting database, how we can link the variation
in the software to variation in the database, and how all of these
variants can be encoded in a single VDB.

3.1.1 Variation Scenario: An Email SPL. The email SPL consists
of the following features from Hall [25]: addressbook, users can
maintain lists of known email addresses with corresponding aliases,
which may be used in place of recipient addresses; signature, mes-
sages may be digitally signed and verified using cryptographic
keys; encryption, messages may be encrypted before sending and
decrypted upon receipt using cryptographic keys; autoresponder,
users can enable automatically generated email responses to in-
coming messages; forwardmessages, users can forward all incoming
messages automatically to another address; remailmessage, users
may send messages anonymously; filtermessages, incoming mes-
sages can be filtered according to a provided white list of known
sender address suffixes; and mailhost, a list of known users is main-
tained and known users may retrieve messages on demand while
messages sent to unknown users are rejected.

Hall’s decomposition separates signature and encryption into
two features each (corresponding to signing and verifying, encrypt-
ing and decrypting). Since these pairs of features must always be
enabled together, we reduce them to one feature each for simplicity.

The listed features are used in presence conditions within the
v-schema for the email VDB, linking the software variation to
variation in the database. In the email SPL, each feature is optional
and independent, resulting in the simple feature model me, = true.

3.1.2 Generating V-Schema of the Email SPL VDB. To produce
a v-schema for the email VDB, we start from plain schema of the
Enron email dataset shown in Table 1, then systematically adjust
its schema to align with the information needs of the email SPL
described by Hall [25]. The employeelist table contains information
about the employees of the company. The messages table contains
information about the email messages. The recipientinfo table con-
tains information about the recipient of a message. The referenceinfo
table contains messages that have been referenced in other email
messages. This table simply backs up the emails.

From this starting point, we introduce new attributes and rela-
tions that are needed to implement the features in the email SPL.
We attach presence conditions to new attributes and relations corre-
sponding to the features they are needed to support, which ensure
they will not be present in configurations that do not include the
relevant features. The resulting v-schema is given in Table 2.

For example, consider the signature feature. In the software, im-
plementing this feature requires new operations for signing an
email before sending it out and for verifying the signature of a
received email. These new operations suggest new information

2http://www.ahschulz.de/enron-email-data/

http://www.ahschulz.de/enron-email-data/

VaMoS’21, February 9-11, 2021, Krems, Austria Parisa Ataei, Qiaoran Li, and Eric Walkingshaw

Table 2: V-schema of the email VDB with feature model m,,. Presence conditions are colored blue for clarity.

signature encryption) - recipientinfo(rid, mid, rtype, rvalue)

)farwardmessages

employeelist(eid, firstname, lastname, email_id, folder, status, verification_key , public_key’

messages(mid, sender, date, message_id, subject, body, folder, is_system_notification, isfencryptede""ypﬁ”", forward_msg(eid, forwardaddr

autoresponder dsignature isjorward msgfarwardmessageS)
> —

is_autoresponse , Is_signe

filter_msg(eid, suffix)1ermessages yomail msg(eid, pseudonym)’emaimessage

auto_msg(eid, subject, body

mailhost(eid, username, mailhost)™*host

)auturesponder)addressbook

alias(eid, email, nickname

needs: we need a way to indicate that a message has been signed,
and we need access to each user’s public key to verify those sig-
natures (private keys used to sign a message would not be stored
in the database). These needs are reflected in the v-schema by the
new attributes verification_key and is_signed, added to the rela-
tions employeelist and messages, respectively. The new attributes
are annotated by the signature presence condition, indicating that
they correspond to the signature feature and are unused in con-
figurations that exclude this feature. Additionally, several features
require adding entirely new relations, e.g., when the forward_msg
feature is enabled, the system must keep track of which users have
forwarding enabled and the address to forward the messages to.
This need is reflected by the new forward_msg relation, which is
correspondingly annotated by the forward_msg presence condition.

A main focus of Hall’s decomposition [25] is on the many feature
interactions. Several of the features may interact in undesirable
ways if special precautions are not taken. For example, any combi-
nation of the forward_msg, remail_msg, and autoresponder features
can trigger an infinite messaging loop if users configure the features
in the wrong way; preventing this creates an information need to
identify auto-generated emails, which is realized in the variational
schema by attributes like is_forward_msg and is_autoresponse.

For brevity, we omit some attributes and relations from the orig-
inal schema that are irrelevant to the email SPL described by Hall.

We provide the v-schema both in the encoding used by our
VDBMS tool and also in plain SQL. The SQL encoding is given
by a “universal” schema containing the relations and attributes
of all variants, plus a relation vdb_pcs (element_id, pres_cond) that
captures all of the relevant presence conditions. The plain SQL
encoding of the v-schema supports the use of the use cases for
research on the effective management of variation in databases
independent of VDBMS.

3.2 Variation in Time: Employee Use Case

Our second use case focuses on variation in time by demonstrating
the use of a VDB to encode an employee database evolution scenario
systematically adapted from Moon et al. [38] and populated by a
dataset that is widely used in databases research.

3.2.1 Variation Scenario: An Evolving Employee Database. Moon
et al. [38] describe an evolution scenario in which the schema of
a company’s employee management system changes over time,
yielding the five versions of the schema shown in Table 3. In V7,
employees are split into two separate relations for engineer and
non-engineer personnel. In V3, these two tables are merged into
one relation, empacct. In V3, departments are factored out of the
empacct relation and into a new dept relation to reduce redundancy
in the database. In V4, the company decides to start collecting more
personal information about their employees and stores all personal

3https://github.com/datacharmer/test_db

Table 3: Evolution of an employee database schema [38].

[Version [Schema [

engineerpersonnel (empno, name, hiredate, title, deptname)
i otherpersonnel (empno, name, hiredate, title, deptname)
job (title, salary)

empacct (empno, name, hiredate, title, deptname)

Jjob (title, salary)

empacct (empno, name, hiredate, title, deptno)

Vs job (title, salary)

dept (deptname, deptno, managerno)

empacct (empno, hiredate, title, deptno)

job (title, salary)

dept (deptname, deptno, managerno)

empbio (empno, sex, birthdate, name)

empacct (empno, hiredate, title, deptno, salary)

Vs dept (deptname, deptno, managerno)

empbio (empno, sex, birthdate, firstname, lastname)

Vs,

Vy

Table 4: Employee v-schema with feature model mep,.

engineerpersonnel(empno, name, hiredate, title, aleptname)v1
otherpersonnel(empno, name, hiredate, title, depmame)v1
empacct(empno, nameV2VV3, hiredate, title,

deptname"?, deptno¥3¥V+VV5 | salaryVs)V2VVaVVaVVs
job(title, salary)¥2VV3VVa
dept(deptname, deptno, managerno)"3"VsVVs

empbio(empno, sex, birthdate, namev‘*,ﬁrstnamevi lastnameV5)V4VV5

information in the new relation empbio. Finally, in V5, the company
decides to decouple salaries from job titles and instead base salaries
on individual employee’s qualifications and performance; this leads
to dropping the job relation and adding a new salary attribute to
the empacct relation. This version also separates the name attribute
in empbio into firstname and lastname attributes.

We associate a feature with each version of the schema, named
V1 ... Vs. These features are mutually exclusive since only one ver-
sion of the schema is valid at a time. This yields the feature model:

Memp = (Vl A=Vo A=V3 A=V A —|V5)
V(=VEAVRA=VBASVE A=)V (=VE A=V AV3 A=V A=Vs)
VA=V A=VEAVEA —|V5) V(=VI A=V A=V3 A=V AVs)

3.2.2 Generating V-Schema of the Employee VDB. The v-schema
for this scenario is given in Table 4. It encodes all five of the schema
versions in Table 3 and was systematically generated by the follow-
ing process. First, generate a universal schema from all of the plain
schema versions; the universal schema contains every relation and
attribute appearing in any of the five versions. Then, annotate the
attributes and relations in the universal schema according to the
versions they are present in. For example, the empacct relation is
present in versions V2—Vs, so it will be annotated by the feature

https://github.com/datacharmer/test_db

Should Variation Be Encoded Explicitly in Databases?

expression Vo V V3 V Vy V V5, while the salary attribute within the
empacct relation is present only in version Vs, so it will be anno-
tated by simply V5. Since the presence conditions of attributes are
implicitly conjuncted with the presence condition of their relation,
we can avoid redundant annotations when an attribute is present in
all instances of its parent relation. For example, the empbio relation
is present in V4 V Vs, and the birthdate attribute is present in the
same versions, so we do not need to redundantly annotate it.

3.3 Properties of Well-Formed VDBs

In this section, we describe a set of basic properties that a well-
formed VDB should satisfy. These checks ensure that presence
conditions are consistent and satisfiable, which ensures that each
element is present in at least one variant. In the following, sat (e) de-
notes a satisfiability check that returns true if the feature expression
e is satisfiable and false otherwise.

A well-formed v-schema should have the following properties:

(1) There is at least one valid configuration of the feature model
m: sat (m)

(2) Every relation r is present in at least one configuration of
the variational schema: Vr € S, sat (m A pc (r))

(3) Every attribute a in every relation r is present in at least
one configuration of the variational schema: Va € r,Vr €
S, sat (m A pc (r) A pe(a))

(4) If S¢ denotes the expected plain relational schema for con-
figuration c of the variational schema S, then configuring
the variational schema with that configuration, written [[S]] c»
actually yields that variant: Ve € C, [S]¢ = S¢

At the data level, a well-formed VDB should have these properties:

(1) Every tuple u in relation r is present in at least one variant:
Yu e r,Vr € S,sat(m A pc(r) A pc(uw))

(2) For every tuple u in relation r, if an attribute a in r is not
present in any variants of the tuple, then the value of that
attribute in the tuple, written value,(a), should be NULL:
Yu € r,V¥a € r,Vr € S,=sat (m A pc(r) A pc(a) A pc(u)) =
value,(a) = NULL

We implemented these checks in our VDBMS tool and verified
that both use cases described in this paper satisfy all of them. De-
pending on the context of the VDB, more specialized properties
can be checked too. For example, if temporal variability in a data-
base is accumulated over variants (i.e. old data is included in more
recent variants in addition to newly added data), it is desirable
to ensure that older variants are subsets of newer variants. This
property should hold for our employee data set. To check this,
assume that configurations cq, ¢z, - - - represent time-ordered con-
figurations, then check Vej,¢j € C,i < j, [D]e; < [Dlc;, where
[D]c denotes configuring the VDB instance D for configuration c.

4 VARIATIONAL QUERIES

Variation in software affects not only databases but also how devel-
opers and database administrators interact with databases. Since
different software variants have different information needs, devel-
opers must often write and maintain different queries for different
software variants. Moreover, even if a particular information need
is similar across variants, different variants of a query may need

VaMoS’21, February 9-11, 2021, Krems, Austria

to be created and maintained to account for structural differences
in the schema for each variant. Creating and maintaining different
queries for each variant is tedious and error-prone, and potentially
even intractable for large and open-ended configuration spaces,
such as most open-source projects [43].

In this section, we illustrate how variation in software leads to
variation in information needs and the queries that realize those
information needs. We also show how variational information needs
can be captured by v-queries written in VRA. For each use case, we
provide a set of v-queries and we present a sample of them here.

We distribute the v-queries in two formats: (1) VRA, encoded in
the format used by our VDBMS tool, and (2) plain SQL queries with
embedded #ifdef annotations to capture variation points.* The SQL
format provides queries for studying variational data independently
of VDBMS tool, but we use VRA in this paper for its brevity.

4.1 Email Query Set

To produce a set of queries for the email SPL use case, we collected
all of the information needs that we could identify in the descrip-
tion of the email SPL by Hall [25]. In order to make the information
needs more concrete, we viewed the requirements of the email
SPL mostly through the lens of constructing an email header. An
email header includes all of the relevant information needed to
send an email and is used by email systems and clients to ensure
that an email is sent to the right place and interpreted correctly.
Although there is obviously other infrastructure involved, the fun-
damental information needs of an email system can be understood
by considering how to construct email headers.

Hall’s decomposition focuses on enumerating the features of
the email SPL and enumerating the potential interactions of those
features. We deduce the information need for each feature by asking:
“what information is needed to modify the email header in a way that
incorporates the new functionality?”. We deduce the information
need for each interaction by asking: “what information is needed
to modify the email header in a way that avoids the undesirable
feature interaction?”. We can then translate these information needs
into queries on the underlying variational database.

In total, we provide 27 queries for the email SPL. This consists
of 1 query for constructing the basic email header, 8 queries for
realizing the information needs corresponding to each feature, and
18 queries for realizing the information needs to correctly handle
the feature interactions described by Hall.

We start by presenting the query to assemble the basic email
header, Qp;;c- This corresponds to the information need of a system
with no features enabled. We use X to stand for the specific message
ID (mid) of the email whose header we want to construct.

Obasic = T sender, rvalue, subject, body Tes_rec
mes_rec < (Oy,id—x messages) > recipientinfo
Taking Qpqsic as our starting point, we next construct our set of
8 single-feature queries that capture the information needs specific
to each feature. When a feature is enabled in the SPL, more infor-
mation is needed to construct the header of email X. For example, if
the feature filtermessages is enabled, then the query Qpjpe, extends
Qpasic With the suffix attribute used in filtering. This additional

4Complete sets of queries in both formats are available at: https://zenodo.org/record/
4321921

https://zenodo.org/record/4321921
https://zenodo.org/record/4321921

VaMoS’21, February 9-11, 2021, Krems, Austria

information allows the system to filter a message if its address
contains any of the suffixes set by the receiver.

Qﬁlter = Tsender, rvalue, suffix, subject, body LemMpP
temp < mes_rec_emp < filter_msg
mes_rec_emp «— Mes_rec ™yyqlye=email_id employeelist

We can construct a query that retrieves the required header in-
formation whether filtermessages is enabled or not by combining
Obasic and Qpprer in a choice, as Qpr = ﬁltermessages<Qﬁlterv Obasic)-
Although we do not show the process in this paper, we can use
equivalence laws from the choice calculus [19, 29] to factor com-
monalities out of choices and reduce redundancy in queries like
Qpy- The other single-feature queries are written similarly.

Besides single-feature queries, we also provide queries that gather
information needed to identify and address the undesirable feature
interactions described by Hall [25]. Out of Hall’s 27 feature interac-
tions, we determined 16 of them to have corresponding information
needs related to the database; 2 of the interactions require 2 sepa-
rate queries to resolve. Therefore, we define and provide 18 queries
addressing all 16 of the relevant feature interactions. As before, we
deduced the information needs through the lens of constructing an
email header; in these cases, the header would correspond to an
email produced after successfully resolving the interaction. How-
ever, some interactions can only be detected but not automatically
resolved. In these cases, we constructed a query that would retrieve
the relevant information to detect and report the issue.

One undesirable feature interaction occurs between the signature
and forwardmessages features: if Philippe signs a message and sends
it to Sarah, and Sarah forwards the message to an alternate address
Sarah-2, then signature verification may incorrectly interpret Sarah
as the sender rather than Philippe and fail to verify the message
(Hall’s interaction #4). A solution to this interaction is to embed the
original sender’s verification information into the email header of
the forwarded message so that it can be used to verify the message,
rather than relying solely on the message’s “from” field.

Below, we show a variational query Qyf that includes four vari-
ants corresponding to whether signature and forwardmessages are
enabled or not independently. The information need for resolving
the interaction is satisfied by the first alternative of the outermost
choice with condition signatureA forwardmessages. The alternatives
of the choices nested to the right satisfy the information needs for
when only signature is enabled, only forwardmessages is enabled,
or neither is enabled (Qpqgic). We don’t show the single-feature Qgig
query, but it is similar to other single-feature queries shown above.

Qs = signature A forwardmessages

rvalue, forwardaddr,emp1.is_signed, emp]1. verification_ke >
{Trval daddr, empl.is_signed, emp keyt€mp.
Signature<Qsigvforwardmessages<Qforward» Obasic)))
temp «— ((((oyi4=x messages) > recipientinfo)

>sender=emp1.email_id (pemplemployeeliSt))
>rvalue=emp2.email_id (pEmPZemployee”St)) > forward_msg

Some feature interactions require more than one query to satisfy

their information need. For example, assume both encryption and

forwardmessages are enabled. Philippe sends an encrypted email X

to Sarah; upon receiving it the message is decrypted and forwarded
it to Sarah-2 (Hall’s interaction #9). This violates the intention

Parisa Ataei, Qiaoran Li, and Eric Walkingshaw

of encrypting the message and the system should warn the user.
Queries Qg and Qé f satisfy the information need for this interaction

when a message is encrypted or unencrypted, respectively.

Qe = encryption A forwardmessages

(Trvatue(Tmid=xn is_encrypted messages), encryption{Qencrypt.
forwardmessages<Qforwardv Obasic))
Qéf = encryption A forwardmessages(temp, encryption{Qencrypt,

forwardmessages(Qforward> Obasic)))

temp Trvalue, forwardaddr, subject, body(Umid:X/\—vis_encrypted

(mES_rEC_emp Pemployeelist. eid=forward_msg.eid forward_msg))
However, managing feature interactions is not necessarily compli-
cated. Some interactions simply require projecting more attributes
from the corresponding single-feature queries. For example, assume
both filtermessages and mailhost features are enabled. Philippe
sends a message to a non-existant user in a mailhost that he has fil-
tered. The mailhost generates a non-delivery notification and sends
it to Philippe, but he never receives it since it is filtered out (Hall’s
interaction #26). The system can check the is_system_notification
attribute for the Qfjzer query and decide whether to filter a message
or not. Therefore, we can resolve this interaction by extending the
single-feature query for filtermessages to Q],‘ther'

/ —
Qﬁlter = Tsender, rvalue, suffix, is_system_notification, subject, body temp

temp < mes_rec_emp employeelist. eid=filter_msg. eid filter_msg
Overall, for the 18 interaction queries we provide, 12 have 4 variants,
3 have 3 variants, 2 have 2 variants, and 1 has 1 variant.

4.2 Employee Query Set

For this use case, we have a set of existing plain queries to start from.
Moon et al. [38] provides 12 queries to evaluate the Prima schema
evolution system. We adapt these queries to fit our encoding of the
employee VDB described in Section 3.2. 9 of these queries have one
variant, 2 have two variants, and 1 has three variants.

Moon’s queries are of two types: 6 retrieve data valid on a par-
ticular date (corresponding to V3 in our encoding), while 6 retrieve
data valid on or after that date (V3-V5 in our encoding). For exam-
ple, one query expresses the intent “return the salary of employee
number 10004” at a time corresponding to V3, which we encode:

Q1= Tsalarys (O'empno=10004empa“t) Pempacct.title=job. title job.
We encode the same intent, but for all times at or after V3 as follows:

Q2=V3V VgV V5<7Tsalary(v3 v Vy(

((gempno=10004empacct)) > job, Gempno=10004empacct)), €)
There are a variety of ways we could have encoded both Q; and
Q2. For Q1 we could equivalently have embedded the projection in
a choice, V3(7siqry(. -), €), however attaching the presence condi-
tion to the only projected attribute determines the presence con-
dition of the resulting table and so achieves the same effect. In Q;
we use choices to structure the query since we have to project on a
different intermediate result for V5 than for V3 and Vj.

As another example, the following query realizes the intent to
“return the name of the manager of department d001” during the
time frame of V3-V5: Q3 = V3 vV Vg v VS(”name,ﬁrstname, lastname

(Vs{empacct, empbio) >empno=managerno (Udeptno=“d001” dept)),).

Should Variation Be Encoded Explicitly in Databases?

Note that even though the attributes name, firstname, and lastname
are not present in all three of the variants corresponding to V3-Vs,
the VRA encoding permits omitting presence conditions that can
be completely determined by the presence conditions of the corre-
sponding relations or attributes in the variational schema. So, Qs is
equivalent to the following query in which the presence conditions
of the attributes from the variational schema are listed explicitly in
the projection: Q?: =BV Vs <ﬂnameV3VV4,ﬁrstnameV5,lastnamev5
(Vs(empacct, empbio) >empno=managerno (Udeptno:“d()of’ dept)),).
Allowing developers to encode variation in v-queries based on their
preference makes VRA more flexible and easy to use. Also, v-queries
are statically type-checked to ensure that the variation encoded in
them does not conflict the variation encoded in the v-schema.

5 DISCUSSION

In this section we discuss the use cases and our encodings of VDB
and v-queries in the context of the question posed in the title of
this paper: Should variation be encoded explicitly in databases?

Expressiveness of explicit variation. The use cases in Section 3 and
Section 4 show that by treating variation as an orthogonal concern
and embedding it directly in databases and queries (via presence
conditions and choices), one can encode data variation scenarios
in both time and space. In fact, VDBs and v-queries are maximally
expressive in the sense that any set of plain relational databases can
be encoded as a single VDB and any set of plain queries over the
variants of a VDB can be encoded as a v-query.

The expressiveness of our approach is its main advantage over
other ways to manage database variation. When working with a
form of variation that already has its own specialized solution (e.g.
schema evolution, data integration), the expressiveness of explicit
variation is probably not worth the additional complexity. The
expressiveness of explicit variation is most useful when working
with a form of variation that is not well supported (e.g. query-level
variation in SPLs), or when combining multiple forms of variation
in one database (e.g. during SPL evolution).

We expect that ill-supported forms of variation are common in
industry and justify the expressiveness of explicit variation. For
example, the following is a scenario we recently discussed with
an industry contact: A software company develops software for
different networking companies and analyzes data from its clients
to advise them accordingly. The company records information from
each of its clients’ networks in databases customized to the partic-
ular hardware, operating systems, etc. that each client uses. The
company analysts need to query information from all clients who
agreed to share their information, but the same information need
will be represented differently for each client. This problem is es-
sentially a combination of the SPL variation problem (the company
develops and maintains many databases that vary in structure and
content) and the data integration problem (querying over many
databases that vary in structure and content). However, neither

5The expressiveness of VDBs and v-queries can be proved by construction. For VDB,
one can simply take the union of all relations, attributes, and tuples across all variants,
then attach presence conditions corresponding to which variants each is present in. For
v-queries, all variants can be organized under a tree of choices that similarly organizes
the variants in the appropriate way.

VaMoS’21, February 9-11, 2021, Krems, Austria

the existing solutions from the SPL community nor database inte-
gration address both sides of the problem. Currently the company
manually maintains variant schemas and queries, but this does
not take advantage of sharing and is a major maintenance chal-
lenge. With a database encoding that supports explicit variation
in schemas, content, and queries, the company could maintain a
single variational database that can be configured for each client,
import shared data into a VDB, and write v-queries over the VDB to
analyze the data, significantly reducing redundancy across clients.

Complexity of explicit variation. The generality of explicit vari-
ation comes at the cost of increased complexity. The complexity
introduced by presence conditions and choices is similar to the
complexity introduced by variation annotations in annotative ap-
proaches to SPL implementation [32]. There is widespread acknowl-
edgment that unrestricted use of variation annotations, such as the
C Preprocessor’s #ifdef notation [24], makes software difficult to un-
derstand [34] and is error prone [23]. However, so-called disciplined
use of variation annotations, where annotations are used in a way
that is consistent with the object language syntax of variants, may
suffer less from such issues [35]. In VDBs, and in the VRA notation
for v-queries, annotations are disciplined since presence conditions
and choices are integrated into the existing syntax of relational
database schemas and relational algebra. Note that annotation dis-
cipline is not enforced in the #ifdef-annotated SQL notation that
we use to distribute the v-queries associated with our use cases.

Subjectively, the development of our use cases suggests that the
impact of variation annotations on understandability is moderate
for v-schemas and VDBs, and significant for v-queries written in
VRA, despite the fact that such annotations are disciplined.

It is possible that a more restrictive and/or coarse-grained form
of variation in v-queries would make them easier to understand at
the cost of increased redundancy and (potentially) reduced expres-
siveness. This tradeoff is one we already made when considering
how to encode variation in the content of a VDB. Specifically, we
do not support cell-level variation in a VDB (e.g. choices within
individual cells). This does not reduce the expressiveness of content
variation in VDBs since cell-level variation can be simulated by
row variation, but it does increase redundancy since all non-varied
cells in the row must be duplicated. Similarly, variation in queries
could be restricted to expression-level choices, with no choices
or annotations in conditions or attribute lists. This would likely
make understanding individual query variants easier at the cost of
increasing redundancy among the alternatives of each choice.

Alternatively, the understandability of v-queries could be im-
proved through tooling, for example, using background colors [22],
virtual separation of concerns [31], or view-based editing [44, 49].
Future work should validate our subjective assessment of the un-
derstandability VDBs and v-queries, and explore techniques for
improving this concern.

Analyzability of explicit variation. The relationship of our work
to alternative approaches can be viewed through the lens of annota-
tive vs. compositional variation, familiar to the SPL community [32].
VDBs and v-queries rely on generic annotations embedded directly
in schemas and queries, respectively, while approaches from the
databases community often express variation through separate

VaMoS’21, February 9-11, 2021, Krems, Austria

artifacts, such as views [9]. Annotative vs. compositional represen-
tations often exhibit the same tradeoff between expressiveness and
complexity described above: annotative variation tends to be gen-
eral and expressive, while compositional variation tends to be more
restrictive but support modular reasoning [32]. Traditionally, an-
other advantage of compositional approaches is that they are more
analyzable thanks to the ability to analyze components separately
(i.e. feature-based analysis [45]), a benefit shared by database views.
However, in the last decade there has been a significant amount
of work in the SPL community to improve the analyzability of an-
notative variation by analyzing whole variational artifacts directly
(i.e. family-based analysis [45]). Although not presented here, we
build directly on this body of work, especially work on variational
typing [13, 14], to enable efficiently checking v-queries against all
variants of a VDB, among other properties. Thus, the increased
complexity of explicit variation annotations does not prevent us
from verifying its correctness.

6 RELATED WORK

We proposed encoding variation explicitly in database schemas and
queries in [7] and proposed applying this idea to database-backed
SPLs in [8]. Our previous work uses slightly different encodings;
the one presented here is the basis of our VDBMS implementation.
This is the first work that provides use cases for VDBs.

The SPL community has a tradition of developing and distribut-
ing use cases to support research on software variation. For example,
SPL2go [46] catalogs the source code and variability models of a
large number of SPLs. Additionally, specific projects, such as Apel
et al’s [5] work on SPL verification, often distribute use cases along
with study results. However, there are no existing datasets or use
cases that include corresponding relational databases and queries,
despite their ubiquity in modern software.

Many researchers have recognized the need to manage structural
variation in the databases that SPLs rely on. Abo Zaid and De Troyer
[2] argue for modeling data variability as part of a model-oriented
SPL process. Their variable data models link features to concepts in
a data model so that specialized data models can be generated for
different products. Khedri and Khosravi [33] address data model
variability in the context of delta-oriented programming. They de-
fine delta modules that can incrementally generate a relational
database schema, and so can be used to generate different schemas
for each variant of a SPL. Humblet et al. [30] present a tool to man-
age variation in the schema of a relational database used by a SPL.
Their tool enables linking features to elements of a schema, then
generating different variants of the schema for different products.
Schiler et al. [41] generate a variable database schema from a given
global schema and software configurations by mapping schema
element to features. Siegmund et al. [42] emphasize the need for
variable database schema in SPLs and propose two decomposition
approaches: (1) physical where database sub-schemas associated
with a feature are stored in physical files and (2) virtual where a
global entity-relation model of a schema is annotated with features.
All of these approaches address the issue of structural database
variation in SPLs and provide a way to derive a schema per vari-
ant, which is also achievable by configuring a VDB. The work of
Humblet et al. [30] is most similar to our notion of a variational

Parisa Ataei, Qiaoran Li, and Eric Walkingshaw

schema since it is an annotative approach [32] that directly asso-
ciates schema elements with features. Abo Zaid and De Troyer [2]
is also annotative, but operates at the higher level of a data model
that may only later be realized as a relational database. Khedri
and Khosravi [33] is a compositional approach [32] to generating
database schemas. None of these approaches consider content-level
variation, which is captured by VDBs and observable in our use
cases, nor do they consider how to express queries over databases
with structural variation, which is addressed by our v-queries.

While the previous approaches all address data variation in space,
Herrmann et al. [26] emphasize that as an SPL evolves over time, so
does its database. Their approach adapts work on database evolution
to SPLs, enabling the safe evolution of all deployed products.

Database researchers have studied several kinds of variation in
both time and space. There is a substantial body of work on schema
evolution and database migration [16, 27, 38, 39], which corresponds
to variation in time. Typically the goal of such work is to safely
migrate existing databases forward to new versions of the schema
as it evolves. Work on database versioning [10, 28] extends this idea
to a database’s content. In a versioned database, content changes
can be sent between different instances of a database, similar to
a distributed revision control system. All of this work is different
from variational databases because it encodes a less general notion
of variation and does not support querying multiple versions of
the database at once. Work on data integration can be viewed as
managing variation in space [18]. In data integration, the goal is to
combine data from disparate sources and provide a unified interface
for querying. This is different from VDBs, which make differences
between variants explicit.

The representation of v-schemas and variational tables is based
on previous work on variational sets [21], which is part of a larger
effort toward developing safe and efficient variational data struc-
tures [37, 48]. The central motivation of work on variational data
structures is that many applications can benefit from maintaining
and computing with variation at runtime [15, 20]. The ability to
maintain and query several variants of a database at once extends
the idea of computing with variation to relational databases.

7 CONCLUSION

We provide two use cases that illustrate how software variation
leads to corresponding variation in relational databases. These
use cases demonstrate the feasibility of VDBs and v-queries to
capture the data needs of variational software systems. We argue
that effectively managing such variation is an open problem, and we
believe that these use cases will form a useful basis for evaluating
research that addresses it, such as our own VDBMS framework.
VDBs encode variation explicitly in the structure and content
of databases. This is a source of complexity that may impact un-
derstandability, as can be observed in our use cases. However, it
also has several advantages: it is general in the sense that any set
of variant databases and queries can be encoded as a VDB and v-
queries, and it enables directly associating variation in databases to
variation in software. By applying variational typing to variational
queries, this generality does not come at the cost of safety. Future
work can explore how tooling can mitigate the usability concerns
using techniques that have been developed in the SPL community.

Should Variation Be Encoded Explicitly in Databases?

REFERENCES

(1]

[2

—

=

[10]

[11]

[12

[13]

[14]

[16]

[17]
(18]

[19

[20]

[21]

Serge Abiteboul, Richard Hull, and Victor Vianu. 1994. Foundations of Databases:
The Logical Level. Addison-Wesley.

Lamia Abo Zaid and Olga De Troyer. 2011. Towards Modeling Data Variability in
Software Product Lines. In Enterprise, Business-Process and Information Systems
Modeling, Terry Halpin, Selmin Nurcan, John Krogstie, Pnina Soffer, Erik Proper,
Rainer Schmidt, and Ilia Bider (Eds.). Springer, Berlin, Heidelberg, 453-467.
Mustafa Al-Hajjaji, Thomas Thiim, Malte Lochau, Jens Meinicke, and Gunter
Saake. 2019. Effective Product-Line Testing Using Similarity-Based Product
Prioritization. Software & Systems Modeling 18, 1 (2019), 499-521.

Sven Apel, Don Batory, Christian Kistner, and Gunter Saake. 2016. Feature-
Oriented Software Product Lines. Springer-Verlag, Berlin.

Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Gréflinger, and Dirk
Beyer. 2013. Strategies for product-line verification: case studies and experiments.
In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 482—
491.

Gad Ariav. 1991. Temporally oriented data definitions: Managing schema evolu-
tion in temporally oriented databases. Data & Knowledge Engineering 6, 6 (1991),
451 - 467. https://doi.org/10.1016/0169-023X(91)90023-Q

Parisa Ataei, Arash Termehchy, and Eric Walkingshaw. 2017. Variational
Databases. In Int. Symp. on Database Programming Languages (DBPL). ACM,
11:1-11:4.

Parisa Ataei, Arash Termehchy, and Eric Walkingshaw. 2018. Managing Struc-
turally Heterogeneous Databases in Software Product Lines. In VLDB Workshop:
Polystores and Other Systems for Heterogeneous Data (Poly).

Francois Bancilhon and Nicolas Spyratos. 1981. Update Semantics of Relational
Views. ACM Transactions on Database Systems (TODS) 6, 4 (1981), 557-575.
Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya
Parameswaran. 2015. Principles of Dataset Versioning: Exploring the Recre-
ation/Storage Tradeoff. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1346-1357. https:
//doi.org/10.14778/2824032.2824035

Peter Buneman and Wang-Chiew Tan. 2007. Provenance in Databases. In Pro-
ceedings of the 2007 ACM SIGMOD International Conference on Management of
Data (Beijing, China) (SIGMOD ’07). Association for Computing Machinery, New
York, NY, USA, 1171?1173. https://doi.org/10.1145/1247480.1247646

Cristina De Castro, Fabio Grandi, and Maria Rita Scalas. 1997. Schema Versioning
for Multitemporal Relational Databases. Information Systems 22, 5 (1997), 249 -
290. https://doi.org/10.1016/S0306-4379(97)00017-3

Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2012. An Error-Tolerant
Type System for Variational Lambda Calculus. In ACM SIGPLAN Int. Conf. on
Functional Programming (ICFP). 29-40.

Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2014. Extending Type In-
ference to Variational Programs. ACM Trans. on Programming Languages and
Systems (TOPLAS) 36, 1 (2014), 1:1-1:54.

Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2016. A Calculus for Varia-
tional Programming. In European Conf. on Object-Oriented Programming (ECOOP)
(LIPIcs), Vol. 56. 6:1-6:26.

Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. 2008. Graceful Database
Schema Evolution: The PRISM Workbench. Proc. VLDB Endow. 1, 1 (Aug. 2008),
761-772. https://doi.org/10.14778/1453856.1453939

Susan Dart. 1991. Concepts in Configuration Management Systems. In Int. Work.
on Software Configuration Management. 1-18.

AnHai Doan, Alon Halevy, and Zachary Ives. 2012. Principles of Data Integration
(1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Martin Erwig and Eric Walkingshaw. 2011. The Choice Calculus: A Representa-
tion for Software Variation. ACM Trans. on Software Engineering and Methodology
(TOSEM) 21, 1 (2011), 6:1-6:27.

Martin Erwig and Eric Walkingshaw. 2013. Variation Programming with the
Choice Calculus. In Generative and Transformational Techniques in Software
Engineering IV (GTTSE 2011), Revised and Extended Papers (LNCS), Vol. 7680.
55-99.

Martin Erwig, Eric Walkingshaw, and Sheng Chen. 2013. An Abstract Representa-
tion of Variational Graphs. In Int. Work. on Feature-Oriented Software Development
(FOSD). ACM, 25-32.

[22] Janet Feigenspan, Christian Késtner, Sven Apel, Jérg Liebig, Michael Schulze,

[23

[24]

[25

[26]

Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake. 2013.
Do Background Colors Improve Program Comprehension in the #ifdef Hell?
Empirical Software Engineering 18, 4 (2013), 699-745.

Gabriel Ferreira, Momin Malik, Christian Késtner, Juergen Pfeffer, and Sven Apel.
2016. Do #ifdefs Influence the Occurrence of Vulnerabilities? An Empirical Study
of the Linux Kernel. In Int. Software Product Line Conf.

GNU Project. 2009. The C Preprocessor. Free Software Foundation. http://gcc.
gnu.org/onlinedocs/cpp/.

Robert J. Hall. 2005. Fundamental Nonmodularity in Electronic Mail. Automated
Software Engineering 12, 1 (2005), 414AS79.

Kai Herrmann, Jan Reimann, Hannes Voigt, Birgit Demuth, Stefan Fromm, Robert
Stelzmann, and Wolfgang Lehner. 2015. Database Evolution for Software Product

[27]

[28

[29

(30]

[31

[32

[33

(34]

[36

[37

(38]

(39]

=
2

[41

[42

[43

[44

[45

[46

[47

[48

[49

VaMoS’21, February 9-11, 2021, Krems, Austria

Lines. In DATA.

Jean-Marc Hick and Jean-Luc Hainaut. 2006. Database application evolution: A
transformational approach. Data & Knowledge Engineering 59, 3 (2006), 534 —
558. https://doi.org/10.1016/j.datak.2005.10.003 Including: ER 2003.

Silu Huang, Liqi Xu, Jialin Liu, Aaron J. Elmore, and Aditya Parameswaran. 2017.
OrpheusDB: Bolt-on Versioning for Relational Databases. Proc. VLDB Endow. 10,
10 (June 2017), 1130-1141. http://dl.acm.org/citation.cfm?id=3115404.3115417
Spencer Hubbard and Eric Walkingshaw. 2016. Formula Choice Calculus. In Int.
Work. on Feature-Oriented Software Development (FOSD). ACM, 49-57.

Mathieu Humblet, Dang Vinh Tran, Jens H. Weber, and Anthony Cleve. 2016.
Variability Management in Database Applications. In Proceedings of the 1st In-
ternational Workshop on Variability and Complexity in Software Design (Austin,
Texas) (VACE ’16). ACM, New York, NY, USA, 21-27. https://doi.org/10.1145/
2897045.2897050

Christian Késtner and Sven Apel. 2009. Virtual Separation of Concerns—A Second
Chance for Preprocessors. Journal of Object Technology 8, 6 (2009), 59-78.
Christian Kéastner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in
Software Product Lines. In IEEE Int. Conf. on Software Engineering. 311-320.
Niloofar Khedri and Ramtin Khosravi. 2013. Handling Database Schema Variabil-
ity in Software Product Lines. In Asia-Pacific Software Engineering Conference
(APSEC). 331-338. https://doi.org/10.1109/APSEC.2013.52

Duc Le, Eric Walkingshaw, and Martin Erwig. 2011. #ifdef Confirmed Harm-
ful: Promoting Understandable Software Variation. In IEEE Int. Symp. on Visual
Languages and Human-Centric Computing (VL/HCC). 143-150.

Jorg Liebig, Christian Késtner, and Sven Apel. 2011. Analyzing the Discipline
of Preprocessor Annotations in 30 Million Lines of C Code. In Int. Conf. on
Aspect-Oriented Software Development. 191-202.

Edwin McKenzie and Richard Thomas Snodgrass. 1990. Schema Evolution and
the Relational Algebra. Inf. Syst. 15, 2 (May 1990), 207-232. https://doi.org/10.
1016/0306-4379(90)90036-0

Meng Meng, Jens Meinicke, Chu-Pan Wong, Eric Walkingshaw, and Christian
Kastner. 2017. A Choice of Variational Stacks: Exploring Variational Data Struc-
tures. In Int. Work. on Variability Modelling of Software-Intensive Systems (VaMoS).
ACM, 28-35.

Hyun J. Moon, Carlo A. Curino, Alin Deutsch, Chien-Yi Hou, and Carlo Zaniolo.
2008. Managing and Querying Transaction-time Databases Under Schema Evo-
lution. Proc. VLDB Endow. 1, 1 (Aug. 2008), 882-895. https://doi.org/10.14778/
1453856.1453952

Sudha Ram and Ganesan Shankaranarayanan. 2003. Research Issues in Database
Schema Evolution: the Road Not Taken.

Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. 2010. Delta-Oriented Programming of Software Product Lines. In Int.
Conf. on Software Product Lines. Springer, 77-91.

Martin Schiler, Thomas Leich, Marko Rosenmiiller, and Gunter Saake. 2012. Build-
ing Information System Variants with Tailored Database Schemas Using Features.
In Advanced Information Systems Engineering, Jolita Ralyté, Xavier Franch, Sjaak
Brinkkemper, and Stanislaw Wrycza (Eds.). Springer, Berlin, Heidelberg, 597-612.
Norbert Siegmund, Christian Késtner, Marko Rosenmiiller, Florian Heidenreich,
Sven Apel, and Gunter Saake. 2009. Bridging the Gap Between Variability in
Client Application and Database Schema. In 13. GI-Fachtagung Datenbanksysteme
fiir Business, Technologie und Web (BTW). Gesellschaft fir Informatik (GI), 297—
306.

Micheal Stonebraker, Dong Deng, and Micheal L. Brodie. 2016. Database Decay
and How to Avoid It. In Big Data (Big Data), 2016 IEEE International Conference.
IEEE. https://doi.org/10.1109/BigData.2016.7840584

Stefan Stanciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wasowski.
2016. Concepts, Operations, and Feasibility of a Projection-Based Variation
Control System. In IEEE Int. Conf. on Software Maintenance and Evolution (ICSME).
323-333.

Thomas Thiim, Sven Apel, Christian Késtner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. ACM Computing Surveys (CSUR) 47, 1 (2014), 6.

Thomas Thiim and Fabian Benduhn. 2011. SPL2go: An Online Repository for
Open-Source Software Product Lines. http://spl2go.cs.ovgu.de.

Thomas Thiim, Leopoldo Teixeira, Klaus Schmid, Eric Walkingshaw, Mukelabai
Mukelabai, Mahsa Varshosaz, Goetz Botterweck, Ina Schaefer, and Timo Kehrer.
2019. Toward Efficient Analysis of Variation in Time and Space. In Int. Work. on
Variability and Evolution of Software Intensive Systems (VariVolution).

Eric Walkingshaw, Christian Kastner, Martin Erwig, Sven Apel, and Eric Bodden.
2014. Variational Data Structures: Exploring Trade-Offs in Computing with
Variability. In ACM SIGPLAN Symp. on New Ideas in Programming and Reflections
on Software (Onward!). 213-226.

Eric Walkingshaw and Klaus Ostermann. 2014. Projectional Editing of Variational
Software. In ACM SIGPLAN Int. Conf. on Generative Programming: Concepts and
Experiences (GPCE). 29-38.

https://doi.org/10.1016/0169-023X(91)90023-Q
https://doi.org/10.14778/2824032.2824035
https://doi.org/10.14778/2824032.2824035
https://doi.org/10.1145/1247480.1247646
https://doi.org/10.1016/S0306-4379(97)00017-3
https://doi.org/10.14778/1453856.1453939
http://gcc.gnu.org/onlinedocs/cpp/
http://gcc.gnu.org/onlinedocs/cpp/
https://doi.org/10.1016/j.datak.2005.10.003
http://dl.acm.org/citation.cfm?id=3115404.3115417
https://doi.org/10.1145/2897045.2897050
https://doi.org/10.1145/2897045.2897050
https://doi.org/10.1109/APSEC.2013.52
https://doi.org/10.1016/0306-4379(90)90036-O
https://doi.org/10.1016/0306-4379(90)90036-O
https://doi.org/10.14778/1453856.1453952
https://doi.org/10.14778/1453856.1453952
https://doi.org/10.1109/BigData.2016.7840584
http://spl2go.cs.ovgu.de

	Abstract
	1 Introduction
	2 Background
	3 Variational Databases
	3.1 Variation in Space: Email SPL Use Case
	3.2 Variation in Time: Employee Use Case
	3.3 Properties of Well-Formed VDBs

	4 Variational Queries
	4.1 Email Query Set
	4.2 Employee Query Set

	5 Discussion
	6 Related Work
	7 Conclusion
	References

