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Chapter 1: Introduction

Computer systems and human users have differing and often complementary sets of skills
that pertain to problem solving. One potential way to harness these skills to the benefit
of program execution is to create mixed-initiative programs in which both the computer
system and human user are involved in the execution of programs. These mixed-initiative
programs are designed to meet some goal or set of goals through the completion of a plan
that can be easily modified during execution. Often the computer system includes the
use of an Artificial Intelligence (AI) component that has its own set of motivations for
completing the task or tasks given to it.

Success in mixed-initiative programming is punctuated by the ability to assist the
programmer—as well as the computer system and human user—in taking advantage of
these differing strengths. At the same time, mixed-initiative programs are responsible for
mitigating the weaknesses that are presented by both types of participants.

A side effect of mixed-initiative programming is the relationship to human-computer
symbiosis—owing to its natural affinity to the promotion of cooperation between humans
and other intelligent systems [38]. In order to achieve the eventual outcome of symbiosis,
there must be an extraordinarily close mapping between computer systems and human
users that also needs to occur as natural—as opposed to overtly scripted—interactions
between all systems concerned. The long-term goals of such closeness are: to (1) allow
computer systems to assist humans in understanding formulative thinking in much the
same way computers already solve formulative problems; (2) similarly to facilitate the
understanding of natural language input and nonverbal communication by the computer
system in much the same way humans communicate naturally with each other; as well as
(3) to facilitate the flexible exchange of control when executing complex decision-based
programs, without relying on programmers to provide rigid pre-conditions.

Chapter 2 contains a review of related work in the area of mixed-initiative program-
ming. We examine work on collaborative planning systems that involve both AI and
human components in the design and modification of program plans. In addition we
review work done in mixed-initiative computing as it relates to multi-agent systems, and
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functional reactive programming (FRP) which is a well-known method for programming
event-driven processes. We discuss some of the issues in the use of AI systems, and pro-
vide a framework for the application of these ideas of collaboration to a mixed-initiative
programming language.

Specifically we outline the concerns presented in early work by Licklider [39], which
are later re-examined by Lesh et al. [36] to understand where challenges still exist in
achieving the closeness Licklider deems necessary for true human-computer symbiosis.
These concerns can be viewed through the lens of work done in mixed-initiative planning
for drone control [7], robotic systems [21], and planning assistants [19,20].

While advances in software and hardware design have directly led to increases in sym-
biosis, some of the longstanding barriers to true symbiosis—the free exchange of initiative
and goal-setting during execution—still exist [37]. Traditional programming languages
instruct the computer system in a mixed-initiative system, but we still don’t fully under-
stand how we should instruct human users. To explore this problem, in Chapter 3 we
develop strategies for implementing design decisions that address problems traditionally
encountered when people write programs for other people [1]. These strategies can be
adapted for use in systems where humans and computers must interact with one another.

Protocols are instruction sets written for people by some “expert” in a process or
procedure that is of interest in some similar context. In a very simple way, they can
be interpreted as programs to be executed by a human. The difference between these
programs, and those written for computer systems, is the amount of flexibility inherent in
such instruction sets. Writers of protocols understand that people executing them often
see them as “guidelines” [43,61] rather than as rigid step-by-step documents.

Protocols are often not explicit enough for just anyone to follow them. It takes ex-
perience to know how to carry out a protocol. Lynch notes that protocols often omit
“substeps and contingent repairs”, and describe activities using vague adverbs like “ex-
actly”, “gently”, “approximately”, that require experience to interpret. Timmermans and
Berg [62] also found that it takes not just field-specialist knowledge, but actual previous
experience with the specific protocol itself; for example nurses asked to follow a new
experimental treatment protocol might not know if a fever at a particular stage of the
protocol was expected or exceptional, and so not know whether to carry out the hospital’s
existing fever protocol in addition to the new protocol.

These attitudes toward the interpretation and execution of protocols can be seen in
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some common design practices we identified in [1]. Protocols are written in surprisingly
simple and rigid terms, so the intent from the writer’s perspective is to be more concrete
than would be typically expected. Surprisingly, the concrete nature of these protocols,
actually makes them more easily adaptable for specific situations. Because the low-level
instructions for protocol users are handled by the protocol writer, the user is freed to
focus efforts on more complex tasks like error handling and instruction set modifications
based on the execution environment. These higher-level functions often require domain
expertise.

From the perspective of human users of protocols this freedom from low-level rea-
soning allows them the option to interleave or integrate their own plans. These plans
could include additional instruction sets, or other procedures developed separately from
the main protocol, but having some bearing on the situation or process. We learned
that much of this behavior is expected—or at least anticipated—and protocol writers
write intermediary checks to ensure protocol users have a means to remain on course
throughout execution.

To maintain a simple interface, protocol writers employ a very linear model. This
may play a role in the acceptance, and modification of protocols by users. The simplified
“path” view of protocols allows users to parse the document in a large chunk, as well as
anticipate future consequences for making modifications or deviating from the protocol
as written.

Ultimately we define the design elements necessary for the formulation of a mixed-
initiative programming language in Chapter 4. The language must support: (1) nego-
tiation of initiative control; (2) adaptable autonomy in the execution of tasks; and (3)
natural communication between the computer system and human user. In order to ac-
complish this, we use the design implications gleaned from the work in Chapter 3. We
maintain the simplified “path” view familiar to human users, and in doing so provide
ridged instruction sets that can easily be adapted.

The ideas represented by this initial work on a mixed-initiative programming language
are applied to a real-world problem in Chapter 4 as well. We propose the steps necessary
to create a mixed-initiative programming language for drone control. The advantage of
a domain-specific language (DSL) like this lies in its ability to minimize the “planned”
contingencies, and instead rely on the human user to provide troubleshooting during
execution. This allows the programmer to exploit the strengths of the human users, while
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minimizing their weaknesses by allowing the computer system to perform the mundane
or repetitive tasks for which they are best suited.
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Chapter 2: Literature Review of Human-Computer Collaboration

2.1 Introduction

As early as 1960 Licklider [39] acknowledged the importance of delegating tasks to both
computer systems and humans, as well as the management of their interaction. These
concepts have been a point of consideration in the creation of languages, libraries, and
design patterns. The emphasis placed on how to meet these needs, as well as the ultimate
goal in meeting them has paved many divergent paths leading to a broad assortment of
fields in which similar work is being done. Each of these fields attempts to address
the common concerns in their own way, representing the solutions as varying degrees of
human and/or computer system control.

Although the variety of approaches across fields does not represent a major concern,
it does highlight the issue that while much has been done to address the primary aims of
Licklider [39] such as: (1) allowing computers to assist users in formulative thinking as
much as they already provide solutions in this format; and to (2) enable a collaborative
framework on which computers and users can each contribute to decision-making and
control processes. For Licklider the intent was a balance between the extreme view of
extending the human [47], and that of complete management by an artificially intelligent
system.

Lesh et al. [36] examined these aims 40 years after their introduction, and while some
portions of each have been addressed, true symbiosis has yet to be realized. Echoing
Lickilder, they suggest that there are three major components needed to achieve true
symbiotic interaction: (1) the segregation of duties between the computer system and
the human user need to be complementary and effective; (2) computer systems require a
concrete representation of the human user—the domain knowledge they represent; and
(3) the inclusion of forms of nonverbal communication modalities—like gesture-based
communications.
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Of particular importance when discussing the development of a mixed-initiative pro-
gramming language are the need to create effective and complementary divisions of com-
puter system and human duties, which requires the inclusion of an accurate rendition
of the human user’s intentions, ideals, and beliefs. By extension this entails an efficient
method for reconciling changes to goals and plans made during execution.

As a way of examining these concerns from a broader perspective we have been
working on ways to model interactions not as systems which delegate control to the human
or computer agent dominantly, but rather as a spectrum with varying degrees of control
throughout execution. Our work on understanding human programs [1] has led to some
insights about the ways in which humans interact with one another through programs that
have led to an understanding of how interactions might be represented more satisfactorily
from the human’s standpoint—thereby creating a more natural interaction.

While developing more natural interactions between human and computer systems
is a fundamental piece of our research, a base knowledge of efforts that have previously
been made and the gaps still present in achieving true human-computer symbiosis is a
crucial component. This thesis attempts to catalog and analyze such efforts in order to
explicate the various goals of such attempts into a single thread of work focused on the
unification of human and computer system tasks into negotiated programs capable of
adapting to a variety of situations and environments.

In the remainder of this chapter we present work in the areas of concern for the
design of a mixed-initiative programming language (Sections 2.2—2.5). In addition, we
examine work using Artificial Intelligence (AI) in designing collaborative plans with
human users (Section 2.6). We also explore a logical framework that could be leveraged
to develop a semantic basis for a mixed-initiative programming language (Section 2.7).
Finally, we synthesize design concepts for a mixed-initiative programming language from
the information collected in Section 2.2—2.5 (Section 2.8), and provide a path for the
implementation of these design concepts (Section 2.9).

2.2 Symbiosis

The main thrust of the work done by Lesh et al. is to recognize areas in which symbiosis
is still evasive. They suggest much of the work in human-computer interaction focuses on
providing more efficient forms of interaction (i.e. text-to-speech, novel display technolo-
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gies, verbal command input, etc.), as opposed to changes in human-computer interaction
styles. As such, when designing systems adept at optimization problems the approach
has been to fully automate rather than providing segregated and complementary duties
to both the computer system and human.

Nonverbal communication is often intertwined with verbal communication [44] when
humans communicate with one another. Gestures in particular indicate much about
the person making the gestures, such as their intentions or beliefs. These unspoken
indications of our meaning can be as subtle as facial muscle movements or as explicit
as large hand gestures. In particular, hand gestures are a way of augmenting verbal
communication in a tactile way.

In the time between the work of Licklider and that of Lesh et al. there has been
an abundance of work done to accumulate an understanding of and theory about the
ways humans work together. COLLAGEN [55, 56] applies this understanding of human
communication and collaboration—particularly work on SharedPlan theory [25,26,42]—
to human-computer interaction. The collaboration represented by COLLAGEN essentially
extends what might commonly be called a “dialogue manager” with a representation of
goals and plans developed by both the computer system and the human.

One of the tenets of Lickilder’s work suggests that in order to achieve symbiosis we
must be able to assist users in formulative thinking. In a very general way attempts to
allow computer systems to assist humans in understanding formulative thinking entail
the inclusion of human input in setting goals, generating hypotheses about outcomes,
determining operating criteria, and analyzing outcomes. Computer systems are then
freed to complete the tasks they are best suited for—namely performing routine work
and mundane calculations—in order to support the human in focusing on the insight and
decision-based operations for which they are better suited. However, unlike systems in
which the computers are merely extensions of the human, symbiosis requires a level of
initiative sharing that keeps the computer agent at the forefront of the decision-making
process.

The effect of initiative sharing can be thought of in terms of a similar paradigm,
pair-programming [11], where programmers complete programming tasks collaboratively.
There are ways in which both can benefit from initiative sharing—as is true in traditional
pair-programming where both participants are humans—where each participant provides
its own set of skills and specialized knowledge. The goal of pair-programming draws
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parallels to initiative sharing in that it combines the strengths of each participant involved
in the decision-making processes by allowing them to interject goals and criteria where
they have insight not originally considered by the programmer.

These specialized skills and knowledge can be particularly useful when execution must
occur in real time, and systems are required to adapt to updated information and changes
in the environment as execution occurs. For example, in the operation of unmanned aerial
vehicles (UAVs), where unexpected flight conditions or changes in flight goals can occur
long after a program has been written for the vehicle to execute. Maintaining human
involvement in these cases can be beneficial, where the decision-making and problem-
solving abilities of humans can be fully utilized by allowing them to participate in the
problem-solving process in things like error handling where they excel.

2.3 Mixed-Initiative Planning

The explicit interleaving of human and computer tasks through hardwiring (e.g. [35]),
allowing machine learning searches to be interactively shaped by human users through
the addition of constraints (e.g. [32,36]), and discourse-based techniques (e.g. [45,59]) are
all mechanisms for trading initiative that have been explored in the past. These design
strategies have all been employed to implement or improve mixed-initiative programs.

Mixed-initiative planning systems provide an avenue for designing and developing
systems in which both computer systems and humans collaborate to develop execution
plans. In such systems the “initiative” can be shared between the computer and human
to conceive of, produce, and make changes in order to manage plans as they unfold. This
allows for plan development that takes place naturally, where neither of the participants
are “asked” explicitly to take initiative. Intuitively, the ultimate goal of these types
of systems is to develop interaction techniques where both computer and human can
influence the course of actions and adjust goals in a computational environment where
activity planning is ongoing throughout state changes.

Research around mixed-initiative planning focuses on exploring various ways to pro-
duce reliable synthesis of the strengths of both computer systems and humans in order
to construct reliable and flexible plans. Humans require intelligent and active prob-
lem solving support, and computer systems including AI planning systems need support
from human counterparts to define problem scope, in some information interpretation
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tasks, and any computations involving spatial or perspective reasoning (particularly in
real-world applications like the UAV example above).

From a pragmatic standpoint, it is important to frame an understanding of how to
achieve the optimum information sharing strategy as it applies to both computer systems
and humans. To approach this we need to understand: (1) how to ensure computer
systems and humans each focus on the areas of computation they are best suited for;
(2) how to facilitate different styles of communication between computer systems and
humans where each represents a different set of computational strengths or functionality;
and (3) ensure that both computer systems and humans have the ability to transfer
initiative authority in all planning related tasks.

2.4 Mixed-Initiative Computing

Researchers have called for more flexible flows of control between people and comput-
ers [39] as early as 1960. The explicit interleaving of human and computer tasks through
hardwiring (e.g. [35]), allowing machine learning searches to be interactively shaped by
human users through the addition of constraints (e.g. [36], [32]), and discourse-based tech-
niques (e.g. [59], [45]) are all mechanisms for trading initiative that have been explored in
the past. This prior work has focused on implementing or improving mixed-initiative pro-
grams, however our work focuses on applying language features behind programs written
for people to mixed-initiative programming.

Human agents have been used to identify visual patterns as well as in aerial search
activities in the form of crowd-sourcing applications [53]. Often these tasks come in the
form of games, or provide some monetary compensation for the user’s time in classifying
or searching images for data. Frameworks for distributing these tasks to the crowd have
also been developed to assist programmers in developing their queries and honing them
through successive collections of data obtained from the crowd [41].

One difficulty that is often encountered when using crowd-sourcing for the purposes
of surveying or search and rescue, is that the queries often take a long time to return
results. Which can degrade the chances of a successful outcome, and can result in the
use of outdated information when reacting to data collected from participants. To some
extent this can be mitigated by the use of increased monetary incentives to the crowd
participants. In addition to timing issues, crowd-sourcing applications often treat humans
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as monetized data processing labor, and fail to take advantage of the crowd’s facilities
beyond visual pattern matching.

In a mixed-initiative DSL, the goal would be to allow the human user to directly
interact with and manipulate the flow of control and the expected outcomes in real time.
This provides the benefit of making new information gathered by the human user’s visual
pattern matching skills more readily available in addition to allowing us to take advantage
of the human user’s skills and knowledge that may supersede that of the original goals
or written program.

Another area of research with potential applicability to the design and implementation
of a mixed-initiative DSL is agent communication language (ACL) [46,48] or multi-agent
systems (MAS) [22]. In such systems, a complicated network of channels is used to
coordinate the work of multiple autonomous vehicles in the completion of a task or tasks.
The reason there is applicability to a mixed-initiative DSL is that in a way we are dealing
with multiple intelligent agents “competing” for control in order to complete shared goals.

However, unlike most of the systems that employ these frameworks, a mixed-initiative
DSL needs to have a more simply defined communication network. We cannot expect a
human user to receive, process, and respond to system-generated messages in the same
way an autonomous intelligent system would. Messaging systems need to accommo-
date messages that can be quickly and easily interpreted by the human. The principles
presented by ACL and MAS are helpful in formulating ways to prevent deadlock when
multiple agents are attempting to control the flow of the program at the same time. For
the purposes of a mixed-initiative DLS though, much less complex forms of these controls
are required owing to the inclusion of a human user.

2.5 Functional Reactive Programming (FRP)

Applications of FRP like Frob [50] are also instructive in implementing mixed-initiative
programs in the area of controlling autonomous vehicles by providing a basis for un-
derstanding the implementation of event-driven programatic reactions. However, unlike
Frob, a mixed-initiative DSL would not be concerned strictly with the execution of code
from the standpoint of the computer system. Having to take a human user into consid-
eration adds an additional perspective and necessitates some fundamental differences in
the way a mixed-initiative DSL implementation utilizes the FRP framework. In order to
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accomplish the integration of both types of input, it would have to concurrently monitor
behaviors and events in constant time as they relate to the program input, as well as
manual key inputs from the user.

The fusion of these two types of inputs could result in errors from a deadlock in
the system if control is not adequately delineated at the time a negotiation command is
received by either participant. In other words, any FRP that would meet the purposes of a
mixed-initiative DSL implementation must remain decidable, but at the same time allow
for an interpretation of the plan that may be unanticipated by the programmer. Which
makes it difficult to directly implement the core intent of such a DSL in a traditional way
even when using an event-driven programming language library like FRP.

2.6 Collaboration in Planning

In the work in the area of collaborative planning, much of the focus is placed on de-
signing “stand-alone” planning systems, where collaboration of efforts and resolution of
differing communication styles are not concerns. To achieve the necessary closeness of
computer system and human it becomes incumbent upon developers to place these issues
at the center of design considerations. In order to develop this further, consider a sys-
tem in which multiple “actors” of both human and computer system origins are actively
cooperating with one another. From that perspective we will examine aspects of current
planning systems theory and its practice to define potential changes.

From an AI perspective, much of the current understanding relies on the search
through and negotiation of spaces of partial plans to arrive at some acceptable work
plan [69]. Classically, this involves refining goals incrementally using a back-tracking
search algorithm. The issue in using this view to represent collaboration is in the search
algorithm, where the introduction of multiple “actors” undermines the reliability of such
methods. This is because the fundamental understanding of this process requires the
systematic exploration of programatically controlled refinement alternatives based on the
plan. This results in a search for a “satisfactory” plan, not necessarily and optimal plan.
We know from [1] that users don’t behave in such a systematic way of approaching plans,
and often decisions about what to explore are based on personal notions of the information
provided or some previous experience that relates. Where plans are concerned, if it is a
particularly important objective a human may explore many different avenues leading to



12

similar (or the same) result before they implement a more detailed version of the plan.
Therefore, in a mixed-initiative approach, we have to take into account not only

computer systems that have been given authority to search the problem space, but also
humans that may want to refine or change the search area or define the search breadth in
some other way. This may result in some necessary (and ultimately essential) redundancy
of efforts, because to the extent where the search results and parameters overlap between
computer systems and humans they can each reinforce and refine each others collaborative
efforts.

Another necessary argument in the discussion of mixed-initiative planning is the need
to support differing communication styles during planning in the form of dialogues be-
tween computer systems and humans. Such communication has been accomplished using
multimodal interaction [4–6], as in [7].

Multimodal interface development is at the crux of several areas of research that
include vision, psychology, and AI. The thrust of multimodal interface research is to
create computer technology that is more usable by humans. To be successful in designing
such systems requires knowledge of the human interacting with the system, and the
computer systems—including AI agents—that are being interacted with. Collaboration
is supported by having an understanding of the interactions that take place during the
course of execution.

In [7], multimodal interaction is accomplished by employing several overlapping av-
enues for operators to interface with planning—including speech, gesture, joypad, and
tablet interfaces. The intent of providing diverse modalities for communication is to
foster pliable communication that won’t break easily, and feels less artificial to the hu-
man. These methods of control are of course tailored to the problem space of controlling
multiple UAVs in executing a search and rescue operation.

Managing multimodal inputs and coalescing them into a single stream requires the
implementation of a framework like the late fusion approach used in [57]. This framework
integrates information from individual modalities once the input has been deciphered by
an interpreter. The strength of this approach lies in the focus on the beneficial attributes
of each of the modalities being introduced into the analysis. That being said, the expense
comes in the form of learning effort required for this type of multimodal fusion, where
each of the modalities is provided a “learner” to score the data provided in addition to
the final analysis and scoring of the collated data [60].
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2.7 Semantics of Negotiation

The logical framework presented by KARO [63] is a potential semantic basis for a mixed-
initiative programming language that supports active exchange of initiative between com-
puter systems and human users. KARO has been used in other mixed-initiative applica-
tions like [13,64] where multi-agent systems are concerned. KARO is a framework for logic
that combines dynamic and epsitemic/doxastic logic including modal operators to deal
with computer system or human user motivation. In KARO these motivational modalities
include, beliefs, abilities, desires, and commitment.

• belief: expressing an agent’s belief about some state that leads to an action.

• able: expressing that an agent has the capability to perform an action or determine
some result.

• desire: expressing that an agent has a desire for some given state.

• commit: expressing an agents commitment to an action.

In this way, we can think of the meaning behind programs as the act of two agents
resolving the course of action through the negotiation of their motivational desires in
order to arrive at a goal. This goal is accomplished through the execution of plans—
or a series of tasks. Alternatively we can think of this as a plan and the goal to be
achieved in executing that plan. The resolution achieved can be roughly approximated
by the idea that agents have some beliefs, desires, and intentions in reaching the stated
goal [10, 18]. From a social perspective, this is the idea that agents are entering into a
sort of “social contract” where each of their decisions are considered in order to effectively
achieve the goal.

2.8 Design Concepts and Plans

From the literature we have identified three fundamental interdependent conceptual issues
in the creation of a mixed-initiative programming language that takes advantage of both
the computer system and human user capabilities: flexible yet well defined negotiation
of initiative, adaptable autonomy for the computer system, and natural communication.
This triad of conceptual issues can be used as a foundation for developing a well-defined
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and principled set of design concepts for mixed-initiative interaction that can be used
to clarify, validate and verify different kinds of interaction between computer systems
and human users. The concept of initiative handling is particularly important to our
framework, providing a bridge between natural communication and adaptable autonomy.

Pragmatically and conceptually there is an issue central to these three concepts along
with their theoretical and pragmatic integration—that of plan representations and se-
mantics in practical application. Any representation of a plan needs to be flexible and
dynamic. Each plan representation needs to be able to be delegated at differing levels of
abstraction and also must be able to be expanded and/or modified as portions of plans
are recursively delegated between the computer system and the human user. This plan
structure is a representation of compromise between a wholesale compiled plan and a
plan generated by a self-contained planning system [33].

Because a plan is essentially a linear model of the program that embodies the “ideal”
execution of a series of actions. This is important, because it supports the design insights
provided by [1] regarding how humans use and relate to protocols. Although there are
some uses of looping and branching within human written protocols, for the most part
they are flattened programs. They represent the intent of the protocol writer, and provide
markers to indicate important or necessary steps along the way, but leave a great deal of
the ordering of steps and error recovery up to the human executing them.

A plan consists of multiple kinds of tasks. A program task implements a procedure
for execution by the computer system, and also provides a brief explanation of the task
for the human user. These tasks represent an atomic unit of control the human has over
re-ordering and executing aspects of the computer plan.

Other kinds of tasks include guideposts (e.g. expected outcomes) that support error
detection. Guideposts also help the human user recover from errors by providing infor-
mation about where and how to successfully return the system to the original protocol.

The structure of these tasks into plans provides the human user with freedom to
execute the individual components of the plan in an arbitrary order (provided there are
no existing unmet requirements from the standpoint of the block being called). Similarly
it supports the concept of adjustable autonomy. It also frees the program writer from
having to conceive of necessarily complex and obfuscatory error handling procedures,
but rather relegates this to the discretion of the human agent—who is naturally better
at reacting to unforeseen events compared to a computer system.
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2.9 Conclusions and Future Work

We have described the challenges presented in using AI systems for collaborating to
generate and manage plans. We have also described a set of concepts and a logical
semantic basis that could be used to create a mixed-initiative programming language
that will allow for the inclusion of both computer system and human user initiative in
negotiating plan execution. Ultimately it is our intent to use this framework to design
and implement a DSL that will allow for a real-world application of these concepts.

One of the primary applications for such a language would be in controlling drones—
or swarms of drones—for search and rescue or surveying operations, where contingencies
for changes in operating environment or parameters would require plan modification
during execution. Such contingencies cannot necessarily be completely enumerated or
anticipated by the programmer, and reliance on the human user’s ability to adapt to and
solve such problems is a beneficial effect of our language design concepts. The ability
to rely on the collaboration between the computer system and the human user not only
relieves the programmer of such thinking—and creating the error handling mechanisms
behind them—but also allows the human to contribute to the plan in more meaningful
ways.

In addition the lack of need for error handling frees the programmer to focus on
the more necessary aspects of programming the plans—as well as the subgoals/tasks
involved—and opens mixed-initiative programming to interactions that go beyond simple
give and take by the computer system and human user. Programmers still have the option
of providing the human user relevant “check points” in the style of protocols, as well as
creating a “path” for both parties to follow. At the same time, these design concepts are
flexible in their execution.

By exposing the programmer to a small set of negotiation primitives that allow the
exchange of control between the computer system and the human user, the flow of the
program can be synchronous or asynchronous depending on the context and can adapt
during execution. This simplified view also translates to the human user view, where
the human user has access to an explicit interpretation of the plan as a whole that can
have additional plans or tasks interleaved with or inserted into pre-existing plans. This
high-level view also makes the plans easily understandable and negotiable by the human
user.
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Chapter 3: Protocols: Programs for People

3.1 Introduction

A growing number of end-user programming scenarios such as workflows and interactive
notebooks serve the dual purpose of being how-to documents for humans to learn from, as
well as mixed-initiative execution and programming environments for the accomplishment
of real tasks. Minimalist learning theory [9] labels these situations “active learning”:
learning skills in the context of one’s work. Although research on the cognitive aspects
of active learning continues, less is known about what programming language features are
needed to support this interplay between: (1) the designer-specified sequence of activities
and explanatory examples, and (2) the user-specified sequences that emerge as the user
transitions from learning to doing.

This interplay is a form of mixed-initiative execution [28] in which human and com-
puter activities are interleaved. But unlike the carefully scripted interaction of, say, a
wizard, in these active learning tools it is not always clear which party, computer or
human, is leading the way. How can the same program not only communicate a fixed
example but also continue to help the learner understand the hows and whys of general-
izing that example to some real application? How can a mixed-initiative programming
environment be designed to allow the user to take the reigns when necessary, without
altogether abandoning the computer’s guidance?

Like workflows and interactive notebooks, biological laboratory protocols also have
this same dual purpose: they teach a process by example, while also serving as a template
for applying the process to a real-world goal. However, there are many differences in how
protocols are executed compared to computer programs. Correspondingly, there are also
many differences in how protocols are written compared to computer programs. Much
of the existing work with protocols has been sociological work focusing on their role
in human activity. In this thesis, however, we focus on the distinctive language features
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necessary to support humans executing protocols, as contrasted with computers executing
programs.

Understanding protocols can lead us to discover new models for creating or improving
current designs for mixed-initiative programs. If the language features found in protocols
can be translated into design insights for mixed-initiative execution (Section 3.1.1), they
could potentially be integrated into existing programs for active learning, where human
participants already play an active role in execution.

Furthermore, the design insights extracted from the language features found in proto-
cols can inform the design of a mixed-initiative domain-specific language. This could be
used to build a new class of flexible mixed-initiative execution programs, in which control
of process and workflow would not be “dominated” by either the human or machine, but
rather shifted along a continuum of control. This could allow both human and computer
to work in concert to achieve a goal, using the best of each of their abilities.

3.1.1 Mixed-initiative execution

There are many programs that involve a mix of work between human and computer
actors that can be construed as part of the broader spectrum of mixed-initiativity: dis-
tributed human computation [54] in which a computer organizes and integrates feedback
from many people; wizards and interactive forms in which a human supplies information
in between processing steps; computational notebooks like IPython [49] in which com-
puters fill in intermediate results as humans edit programs; and the familiar interactive
computing scenario where subprograms are offered to users as tools to use freely in the
course of the their work.

In all these cases, however, either the computer or the human maintains primary
control of the process. In computer-led mixed-initiative programs the wizard or form
mostly forces the user along a particular path, and the distributed computing paradigm
parcels out small tasks to humans at its own convenience. Conversely, in human-led
mixed-initiative programs, the interactive tool paradigm puts the computer’s services
completely at the user’s disposal.

However there are tasks for which a more flexible exchange of initiative would be
useful; none of these paradigms suit such situations. Computer-led mixed-initiative pro-
grams, for example, do not easily allow the human actor to interleave or integrate their
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own plans, goals, and constraints with the actions the computer needs them to perform.
They also do not take advantage of resources or capabilities the human has beyond the
program designer’s expected audience. This might make the decision to submit them-
selves to the computer’s guidance an unnecessarily significant time investment, both in
carrying out the human tasks the computer might assign, and in tailoring the results the
combined task ends up producing.

Conversely, human-led mixed-initiative programs may not provide enough guidance
for a user without the experience to carry out the task at the macro level. For example,
de Souza and Leitão [14] describe the plight of a Microsoft Word user trying to make page
numbers appear consistently in a document where some pages are oriented vertically and
some horizontally. In their example, the computer provided the pieces of functionality
needed to complete the task, but did not succeed in communicating to the human which
pieces and in what sequence the pieces should be applied.

3.1.2 Research questions and contributions

Although there has been research on the flexible relationship between human action and
human plans, less is known at a granular level about the features and properties of written
protocols that accommodate such flexibility. Thus the high-level goal of this research is to
understand how people write detailed, reusable processes (that is, programs) to be carried
out (executed) by other people, in a way that manages to convey both constraints and
degrees of freedom for the protocol user. We look specifically at biological protocols, which
are used to describe step-by-step how to accomplish tasks in a lab.

Protocols are written at different levels of formality for different purposes. At the
least formal extreme, a scientist might create a protocol in their own lab notebook for
personal use as a way to recall the process between iterations or when writing up results.
Slightly more formal are protocols developed for specific internal or institutional use,
which may address safety or quality standards specific to the organization, or may be
employed to ensure consistency between actors. At the most formal extreme, there exist
fully elaborated and highly refined protocols used to communicate novel techniques to
other scientists around the world.

We focus on the formal extreme in this study. Specifically, we analyze peer-reviewed
protocols published in Cold Spring Harbor Protocols. Unlike personal or internal proto-
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cols, these represent programs written for people unknown to the author(s) of the pro-
gram. This aligns with our long-term goal of developing a language for mixed-initiative
programming. Additionally, the protocols are more consistently formatted, and similar
protocols contain similar visual and organization features, which makes them easier to
analyze.

We have the following research questions:

RQ1. How are individual instructions expressed, and what is the granularity of an in-
struction? What balance of constraint and freedom do they allow, and how do
they accomplish this?

RQ2. In what ways do protocol writers control and manage the factors that contribute
to imprecise execution of protocols? Are there any distinguishing features that
highlight the importance of steps within the protocol, and when there can be
variance, how do protocol authors clue users in to this?

RQ3. How are relationships among protocols expressed in ways that constrain or allow
flexibility in composing them? Is there any inter-protocol structure, and if so, what
does it look like? Are large protocols separated into multiple smaller protocols?
Do protocols refer to external protocols?

In answering these questions, we make these contributions:

C1. A protocol coding scheme, summarized in Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7.

C2. Descriptions and examples of how protocols specify instructions in terms of simple
actions, goals, tasks, and open-ended tasks (RQ1; Subsections 3.4.2,3.4.4).

C3. Characterizations of constraints and allowable variability within instructions (RQ2;
Subsection 3.4.1).

C4. Characterizations of control flow, error handling, and references to external protocols
are specified in a lightweight fashion that relies on human adaptability and the
flexibility of the instructions (RQ2 & 3; Subsections 3.4.3).

C5. Design implications for workflow tools (Section 3.6).
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3.2 Related Work

As early as 1960 [38], researchers have noticed the differences between human instruc-
tions and computer programs, and called for more flexible flows of control between people
and computers. Mechanisms for trading off initiative have been explored, for example
discourse-based techniques (e.g. [59], [45]), allowing humans to shape machine learning
searches by interactively adding constraints (e.g. [37], [32]), or simply explicitly hard-
wiring the interleaving of human and computer tasks (e.g. [35]). That prior work has
been more about how to implement or improve mixed-initiative programs; in this thesis
we are investigating what role the written language behind mixed-initiative programs
needs to play.

While programs and protocols seem superficially similar, the pragmatics1 around their
use are quite different. Researchers have noted that people use plans [61] and protocols
[43] as resources, not as rigid instructions to be followed mechanically. Timmermans and
Berg [62] argue that:

“subordination and rearticulation of the protocol to meet the primary goals of
the actors involved is a sine qua non for the functioning of the protocol in the
first place. [...] Tinkering is a prerequisite for the protocols functioning.”

Their claim is that people simply would refuse to adopt an overly inflexible protocol,
because it would be so unlikely to precisely fit their goals, expertise, and resources.

Suchman [61] argues that human plans are more like descriptions or predictions than
prescriptions of what actions a person will take given the most likely sequence of future
actions; they are resources for anticipating likely future events. In programming lan-
guage terms, perhaps, they are more declarative than imperative in that people draw on
knowledge of the whole plan rather than blindly following each step.

Different actors adapt protocols to their own purposes. Timmermans and Berg em-
phasize that actors following a protocol have their own “trajectories”, that is their own
goals and priorities; they stray from the protocol to various extents, in various ways, for
a variety of reasons. For example, a cancer patient may be careful to take medications

1Horn and Ward [68] define pragmatics, a subfield of linguistics, as “the study of those context-
dependent aspects of meaning a which are systematically abstracted away from the construction of
content or logical form.” Pragmatics explains how context can turn “it’s getting late” from a literal
observation about time to a hint for guests to leave after a party.
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prescribed in a research protocol, but might skip some measurement steps, since their
priority is getting better, not furthering the research. Timmermans and Berg also cite
the example of emergency personnel choosing to follow the CPR protocol even when the
patient is not likely to be saved, using the time and visible activity as a way to soften
the blow to a family coping with a sudden death. Lynch [43] describes protocols as being
“situated in other procedures”: they are not executed in a vacuum, but are meant to apply
in situations where appropriate actors, goals, materials, and values are already present.

Protocols simplify coordination because, they “contain explicit criteria on whether,
when and how next steps are to be taken. Personnel delegate some of their coordinating
tasks to it, and the protocol appoints specific tasks to them.” [62]. Sidner [59] et al. have
shown one way this simplification can have practical benefit in human-computer interac-
tion: knowledge about task state can help a computer guess the correct interpretation of
an otherwise ambiguous human action.

Some existing software tools play a similar role to protocols as tailorable process
descriptions. For example the Bioconductor project [23] uses literate [31] R programs,
called “workflows” and “vignettes”, to describe how various packages can be marshalled to
perform tasks. In these programs the data file and task are merely illustrative examples;
the program does not differ semantically from any other R program, but it is meant
pragmatically to be used primarily as a resource for copy/paste creation of a new program
to do a similar task.

Process description tools like CoScripter [40], and Automator [2] provide platforms
for designing and annotating scripts for repetitive tasks. In the case of CoScripter,
these scripts are limited to parameterized web-based tasks, where the parameters are
instantiated from a database of local values. The “You” construct in CoScripter presents
an opportunity for mixed-initiative execution by pausing the script and providing the
user an opportunity to respond to a prompt [8]. Like CoScripter, Automator provides
similar functionality for turning control over to the user, but these are more structured
than CoScripter’s open-ended “You” construct.

3.3 Methodology

We (me and the co-authors of the paper this chapter is based on [1])performed a qual-
itative analysis of lab protocols using open-ended coding. In this section, we describe
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the coding scheme we used and discuss how it was developed and applied. We present
the coding scheme in two parts. In the first, we describe the coding scheme applied to
each step of a protocol. These codes provided the data needed to address RQ1 and RQ2.
In the second, we describe the coding scheme applied to each external reference in a
protocol. These codes provided the data needed to address RQ3.

3.3.1 Coding scheme for protocol steps

To start, the researchers reviewed a set of 2–3 protocols and independently developed a
coding scheme to categorize each protocol step and to note features in each step relevant
to our research questions. By comparing and discussing our individual efforts, and by
working through each of the annotated protocols together, we developed a single coding
scheme by consensus to use throughout the protocol analysis.

Within this scheme, each step of the protocol is assigned (1) a kind, which describes
the primary action of the step (e.g. physical, measurement, monitoring); (2) a preci-
sion, which describes how the step is stated (e.g. as an instruction, as a goal); and
(3) zero or more additional features relevant to our research questions (e.g. gives ad-
ditional advice, describes contingencies). The complete coding scheme is described in
Tables 3.1, 3.2, and 3.3. For each kind, precision, and feature, we provide an example
from the protocols assigned that code. We reference protocols using the notation [ID; Step],
where ID is the protocol ID number, and Step is the step or section number.2

Next, two of the researchers coded the same protocol using the established coding
scheme to establish agreement in the use of the scheme. We used Cohen’s Kappa [34]
to measure the agreement on each of the three components (kind, precision, features) of
the coding scheme. We chose Cohen’s Kappa as a conservative measure that corrects for
coincidental agreements since we checked agreement on a small sample. The results of
the analysis are listed below.

• Kind : 52 coding assignments, of which 50 were identically coded by both researchers
(Kappa=0.868).

• Precision: 52 coding assignments, of which 47 were identically coded by both re-
2To retrieve a protocol, click its ID number in the PDF version of the thesis, or append the ID number

to the url “http://dx.doi.org/10.1101/pdb.prot”.



23

Kind Example
physical

Manipulate physical objects

“Slowly pour 14 mL of lysis buffer . . . ”
[5384; 3]

virtual

Manipulate virtual objects

“Using NimbleScan software, open the
scanned image . . . ” [5385; 56]

cognitive

Evaluate or analyze

“. . . check the quality of the amplifica-
tion.” [4974; 12]

measurement

Take a measurement

“Quantify the DNA yield . . . ” [4974; 14]

non-human

No required human action

“This method was adapted from an orig-
inal protocol . . . ” [4918; pg. 3]

selection

Make a selection decision

“Select a gene/genomic locus . . . ”
[5491; 1]

monitoring

Watch or monitor

“. . . monitor wet slides . . . ” [4706; 12]

branching

Perform parallel actions

“This step can be performed during . . .
(Step 12).” [5237; 17]

looping

Repeat a process or step

“Repeat Step 10.” [5385; 12]

Table 3.1: Kind of action described in the step.

Precision Example
instruction

Straightforward instruction

“Anesthetize the animal by inject-
ing intraperitoneally with 16 μL
ketamine/xylazine per gram of body
weight.” [5410; 1]

goal-directed

Describes goal, not action

“Reduce the volume to a 15-μL concen-
trate using . . . ” [4974; 20]

task-directed

Describes task, not goal/action

“Examine the ruffled morphology charac-
teristic of mats by . . . ” [085076; 3.ii]

open-ended

Requires creativity or ingenuity

“Determine the amount of MNase to
use for each cell type experimentally.”
[5237; 23]

Table 3.2: Precision of the description of the step.
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Features Example
advice

Suggested method or process

“For best results . . . ” [4918; 8]

constraints

Avoid this method or process

“Do not use syringe needles to load the
pipettes . . . ” [5201; 1]

expected outcomes

Expected result or outcome

“This provides a final effective dilution of
10–6 viable cells per milliliter . . . ” [5492; 7]

optionality

Optional process

“(Optional) Remove cells for additional
analysis.” [085076; 4.iii]

wiggle room

Alternative method or process

“This mixture can be stored for up to 6
mo at -20◦C.” [4974; 8]

contingencies

In-line troubleshooting

“If the density of cells and chromosome
spreads is insufficient, pellet the cells, re-
suspend in a smaller volume of fixative,
and repeat with fresh drops.” [4706; 8]

information

Background information

“The PCR product is denatured and the
nonbiotinylated strand is removed in this
step.” [5491; 37]

reference

Outside source

“. . . see Preparation of Fixed Xenopus
Embryos for Confocal Imaging (Walling-
ford 2010b).” [5427; 2.i]

mapping

Map instruction over a set

“Treat all reserved aliquots with 20 μg
of proteinase K for 30 min at 65◦C.”
[084848; 33]

visual pattern match

Human visual processing

“View whole-cell K+ currents and record
for further analysis (Fig. 3).” [5014; 35]

Table 3.3: Additional features that appear in the step.
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searchers. (Kappa=0.732).

• Features: 55 coding assignments, of which 51 were identically coded by both re-
searchers. (Kappa=0.815).

This demonstrates a “substantial” to “almost perfect” agreement [34] for each of the
components. Therefore, the author coded an additional 19 protocols, bringing the total
number of coded protocols to 20. The coded protocols include randomly chosen recent
free protocols from CSHP’s website where ten were from the Bioinformatics category, five
from the Neuroscience category, and five from the Laboratory Organisms category.

3.3.2 Coding scheme for references

To address RQ3, we developed a separate coding scheme for references to other instruc-
tions, protocols, papers, or policies. The coding scheme was developed through a similar
consensus-based approach as described in Section 3.3.1.

References in the analyzed protocols can be separated into two broad categories. The
first category includes references to other instructions, protocols, or policies that are
intended to be integrated into the execution of the current protocol. The second category
includes references to other documents that provide supplementary information, but are
not integrated into the execution of the protocol.

Within our coding scheme, each reference is assigned (1) a reference type, which in-
dicates the type of document referred to (e.g. manufacturer instructions, institutional
protocol); (2) either an integration strategy for integrated references (e.g. use concur-
rently), or alternatively the role of a non-integrated reference (e.g. background informa-
tion); (3) zero or more additional features. The complete coding scheme is described in
Tables 3.4, 3.5, 3.6, and 3.7.

To establish agreement in the use of the coding scheme, two researchers coded the
same two protocols. Again, we apply Cohen’s Kappa as a conservative measure of agree-
ment for each of the coding components. The results of this analysis are listed below.

• Reference Type: 57 coding assignments; 50 were identically coded by both re-
searchers (Kappa=0.748).
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Reference Type Example
manufacturer

Manufacturer instructions

“. . . according to the manufacturer’s rec-
ommendation . . . ” [4974; 4.i]

academic

Academic protocol or paper

“This can be accomplished in yeast
by overexpressing herpes simplex virus
thymidine kinase to phosphorylate nucle-
osides (Lengronne et al. 2001)” [5385; 2.ix]

laboratory

Institutional protocol or policy

“. . . using standard restriction digestion
protocols.” [5168; 7.iii]

equipment

Equipment instructions

“For other array platforms, perform
washes as directed by the microarray
supplier.” [5385; 8.ii]

Table 3.4: Type of document referred to.

Integration Strategy Example
before

Use reference before starting

“The double-stranded RNA needed for
RNAi is prepared as in Preparation of
Double-Stranded RNA for Drosophila
RNA Interference (RNAi).” [4918;Related

Information]

concurrent

Use reference in parallel

“Imaging can also be performed simulta-
neously with . . . ” [5427;Discussion]

splice

Use reference, then continue

“Combine PCR products of replicate
samples and purify them using the
QIAquick PCR Purification kit . . . ”
[4974; 4.i]

merge

Combine reference with protocol in an

unspecified way

“. . . the power of such a screening
method is further enhanced when it
is combined with the simple pyro-
screening enrichment protocol, another
pyrosequencing-based innovation we
have developed (Liu et al. 2009).”
[5491; 9.i]

Table 3.5: Strategy for integrating a reference into the protocol.
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Non-integration Role Example
derivation

Derived from reference

“The 6C assay combines three different
methodologies: chromosome conforma-
tion capture (3C) (Dekker et al. 2002),
chromatin immunoprecipitation (ChIP),
and cloning (Fig. 1).” [5168; 1.i]

comparison

Similarity to reference

“. . . it may be useful to employ other la-
beling methods, such as those described
in . . . ” [5460; 1.i]

background

Additional information

“. . . (for details, see CSH Protocols arti-
cles Embedding Mouse Embryos and Tis-
sues in Wax and Sectioning Mouse Em-
bryos).” [4820; 4.ii]

Table 3.6: Role of a non-integrated reference.

Features Example
modifications

Use reference with modification

“If another species is used, surgical con-
ditions and drug dosages should be opti-
mized for that species.” [5410; 2.iii]

link

Location/link to external source

“For imaging cleared embryos, see Prepa-
ration of Fixed Xenopus Embryos for
Confocal Imaging (Wallingford 2010b).”
[5427; 5.i]

Table 3.7: Additional features that appear in the reference.
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• Integration Strategy : 55 coding assignments; 50 were identically coded by both
researchers (Kappa=0.914).

• Non-integration Role: 57 coding assignments; 55 were identically coded by both
researchers (Kappa=0.737).

• Features: 58 coding assignments; 51 were identically coded by both researchers
(Kappa=0.611).

This shows “substantial” to “almost perfect” agreement [34] for three of the four com-
ponents. We observed only “moderate” agreement on the features component. Since
this category has a small number of possibilities, and a high frequency for one of them
(the link reference type), it is more difficult to distinguish the raw agreement rate we
observed (88%) from chance. Since the accuracy of this component is not central to our
results, we did not perform another iteration. Therefore, the author coded the remaining
18 protocols included in our data set.

3.4 Results

In this section we summarize and interpret the results of the study in response to the
research questions listed in Section 3.1.2. In the spirit of open science, our raw results
(coding data and calculations) are published in-full online.3

3.4.1 Precision of protocol steps

In contrast to Licklider’s claim that “instructions directed to computers specify courses;
instructions directed to human beings specify goals” [38], we found a surprising number
of steps in the form of straightforward instructions (Table 3.2). These are expressed
as directives to the user that contain little to no ambiguity about the task the user is to
complete:

• “Wash the cells with 5 mL of ice-cold PBS containing protease inhibitor cocktail.”
[5168; 4]

3https://github.com/lambda-land/ProtocolStudy-Data
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• “The moment that the slide lightly taps the tip and the tip breaks, a small amount
of the dye will leak from the needle tip. Release the ‘clean’ button.” [4918; 7.ii]

• “Remove the Schneider’s insect medium from the samples.” [5460; 6]

Overall, we observed 777 examples of direct instructions out of 833 total coded steps
(93.3%).

The next most precise kind of step was also the second most frequent. A goal-directed

step describes an expected goal, but leaves a degree of ambiguity about how the user is to
achieve it. Most examples of goal-directed steps we observed involve bringing materials
to a particular physical state such as temperature or concentration:

“Add BrdU to a final concentration of 400 μg/mL and incubate for the desired
period.” [5385; 2]

Others instruct the actor to produce a measurement or calculation without spelling out
a procedure:

“Calculate the percentage of the total responses.” [5453; 12]

Overall, we observed 33 examples of goal-directed steps, across 11 of 20 protocols.
Moving further from straightforward instructions, a task-directed step describes

a task where the goal itself is ambiguous or depends on the higher-level goals of the
person carrying out the protocol. Many of the examples we observed instruct the actor
to perform an evaluation without providing an explicit indication of what the actor should
be evaluating or looking for:

• “Analyze 10 μL of the PCR products on a 1.5% agarose gel to check the quality of
the amplification.” [4974; 12]

• “Using a microscope (100X and 400X total magnification), evaluate the degree of
digestion.” [5014; 13.ii]

We observed 21 examples of task-directed steps, across 12 of 20 protocols.
Finally, we observed open-ended steps in just two of the protocols. These steps are

the least precise. They provide only a general description of the intent of a step but leave
the goal and task unspecified.
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“DNase concentrations to achieve optimal smearing sizes may differ for each
cell line and therefore must be determined empirically for each cell type.”
[5384; 20]

This type of step seems to require more creativity or ingenuity by the user. As a collection
of concrete and highly-polished processes, it is not surprising that our data set provides
relatively few examples of such steps.

3.4.2 Linearity of protocols

Overall, the protocols we analyzed were surprisingly linear. That is, they consist mostly
of long sequences of instructions with very few branch or loop steps.4 The branches that
do exist are expressed by directing the actor to skip ahead or back to a particular step
(similar to a GOTO) depending on the result of a measurement or the task the actor is
trying to accomplish. Similarly, loops are expressed by directing the actor to repeat a
certain range of steps.

• “Proceed with step 7 during centrifugation . . . ” [5384; 6]

• “Repeat this step with the upper phase . . . ” [5168; 41]

• “Repeat steps 25.iii–25.v.” [5168; 25.vi]

We observed that only 10 of 20 protocols include any form of branching or looping at
all, and among these non-linear protocols, they averaged just 2.3 branch/loop steps per
protocol. One protocol [5385] contained 8 loop steps, but no other protocol had more
than 3 branches and/or loops. When compared to all steps, branch and loop steps were
just 2.76% of the total coding instances.

In a few instances, instructions resemble higher-order functions [58], such as the
following map-like step that applies an instruction to every member of a set.

“Slowly pipette 120 μL of nuclei suspension into tubes #1–#7 . . . ” [5384; 9]

4However, we did observe many references to external protocols, which correspond roughly to sub-
routine calls and complicate the question of control flow somewhat. See Section 3.4.4.
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Higher-order functions may be used to “flatten” a non-linear portion of a protocol
to make it appear more linear. A single step that maps an instruction over multiple
physical elements (tubes, phases, beads) is structurally simpler than branch/loop steps
that reference other steps by name.

3.4.3 Accommodating imprecise execution

Previous research has shown that protocols are only loosely followed in practice (see
Section 3.2). A protocol describes an idealized course of action, but the person executing
it will frequently deviate from this course by modifying, reordering, adding, or even
skipping steps. By way of analogy, consider a program or protocol as describing a path.
In a computer program, the path specified is very narrow, like a tightrope, which the
computer follows precisely. In a human protocol, the path is much wider, and the person
following it may wander freely from side to side, “stop to smell the flowers”, and so on.

We observed six different features within the analyzed protocols that explicitly ac-
commodate this imprecise execution model by broadening or narrowing the path or by
helping the user find their way back when lost. These are the first six features listed in
Table 3.3. The frequency of each of these six features is summarized in Table 3.8.

Code No. of protocols No. of instances
advice 19 (95%) 108 (12.9%)
constraints 20 (100%) 108 (12.9%)
expected outcomes 9 (45%) 18 (2.04%)
optionality 10 (50%) 23 (2.76%)
wiggle room 14 (70%) 35 (4.20%)
contingencies 6 (30%) 6 (0.72%)

Table 3.8: Frequencies of features supporting the imprecise execution of protocols.

Broadening. The features optionality and wiggle room represent attempts by the
protocol writer to broaden the path. Quite different from anything found in computer
programs, steps that exhibit these features explicitly encourage actors to vary from the
narrowest interpretation of the step semantics and rely on their own judgment.

Steps with the optionality feature indicate explicitly that a step is optional. While
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people are free to use their judgment to skip steps at any point in a protocol, the option-
ality feature highlights to the actor that a particular step is not essential to the ultimate
goal of the protocol.

“At this point, the cell pellet can be snap-frozen in liquid nitrogen and stored
at -80◦C until use.” [5168; pg 5]

Similarly, steps with the wiggle room feature provide an explicit range of execution,
suggesting, for example, that a particular measurement can be estimated.

“Incubate the mixture for 15-30 min at 70◦C . . . ” [5491; 12.ii]

Narrowing. The features advice, constraints, and expected outcomes represent
attempts by the protocol writer to narrow the path. These features were much more
common. The presence of narrowing features makes it clear that protocol writers assumes
that actors will wander from the path they are describing. These features focus the actor’s
attention on important aspects and expectations of the protocol.

Steps with the advice feature provide additional tips to help the actor navigate the
most important sections of the protocol.

“For best results, inject the embryos with the needle at an angle slightly greater
than 45◦ relative to the embryo surface in the posterior quarter of the embryo
. . . ” [4918; 8]

Steps with constraints explicitly constrain the execution path to ensure that the
actor doesn’t deviate at an important point. For example, the following instruction about
a chamber is followed by a constraint about its positioning.

“Close the hybridization chamber tightly and incubate it in the dark for 16
h in a 60◦C water bath. The hybridization chamber should be submerged in
water, but direct contact with the bottom of the water bath should be avoided.”
[4974; 29]

Constraints provide a way to alert the actor that an extra level of care and precision
should be used on a particular step.

Finally, steps with the expected outcomes feature provide a sort of checkpoint after
an instruction to ensure that the actor can recognize that they are still on the right path.
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“This step typically takes 12 min at 14,000g.” [4974; 20.iii]

Expected outcomes are similar to assertions in computer programming languages.

Finding the way back. Steps with the contingencies feature provide an explicit way
to recover from errors, which might have been caused by deviating from the protocol.

“Use the markings on the 1.5-mL tube to provide an estimate of the pellet
volume. If the pellet is very small, resuspend it in 300 μL of cell lysis buffer.”
[084848; 19]

This feature was quite rare: only 6 instances in our data set. It seems that actors are
typically expected to recover from errors on their own.

3.4.4 Integrating other instructions and protocols

One of our research questions (RQ3) concerned relationships between protocols and other
instructions, whether protocols refer to each other and how they integrate. We observed
that protocols refer to other resources very often. We identified a total of 261 references
across all 20 protocols. The vast majority of these (246, 94.3%) were to explicitly named
instructions or protocols (e.g. cited academic protocols or specific manufacturer’s instruc-
tions), while the remainder were generic references to documents in the actor’s lab (e.g.
lab policies or ethics documents). We coded all 261 references using the coding scheme
summarized in Tables 3.4, 3.5, 3.6, and 3.7.

Recall from Section 3.3.2 that we can classify references according to whether they
affect the semantics of the current protocol, that is, whether they integrate with the
protocol or merely provide background or supplementary information. We observed that
220 (84.3%) of the references integrated with their protocol. The observed instances of
each integration strategy are summarized in Table 3.9.

The splice integration strategy most often occurred with manufacturer’s instructions
for lab “kits”, packages that include solutions and equipment needed to do a common lab
procedure. A spliced-in reference is similar to a subroutine call in a computer program-
ming language.

A large source of before and concurrent integrations was a list of “recipes” and
“warnings” given in the preamble of every protocol. Recipes are protocols or instruc-
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Code No. of protocols No. of instances
before 20 (100%) 99 (45.0%)
concurrent 16 (80%) 61 (27.7%)
splice 13 (65%) 39 (17.7%)
merge 8 (40%) 21 (9.5%)

Table 3.9: Frequency of integration strategies for references to other instructions and
protocols.

tions that must be followed before the current protocol can be executed. Warnings are
additional instructions that must be kept in mind during the execution of the protocol,
typically for safety reasons (coded as concurrent). For example:

“<!>DTT (Dithiothreitol; 0.1 M)” [5559;materials]

This warning refers to a brief appendix entry:

“DTT (Dithiothreitol) is a strong reducing agent that emits a foul odor. It
may be harmful by inhalation, ingestion, or skin absorption. When working
with the solid form or highly concentrated stocks, wear appropriate gloves and
safety glasses and use in a chemical fume hood.” [5559; cautions]

This DTT warning is typical of a concurrent integration; it alters the semantics of the
rest of the protocol by specifying how to handle DTT safely. In fact, DTT appears only
once in the protocol among a list of ingredients in step 5 [5559; 5]. While this step just says
to “prepare the mixture”, the warning is much more specific and demanding: the worker
must wear gloves and glasses and perform the action in a specialized workspace. Also,
unlike a spliced integration, a concurrent integration is applied implicitly throughout a
protocol, to be triggered when relevant. In this example, the reference appears at the
top of the protocol; the user must notice it and interleave it appropriately wherever DTT
appears later on. Sometimes the integration point(s) are left even more implicit:

“It is essential that you consult the appropriate Material Safety Data Sheets
and your institution’s Environmental Health and Safety Office for proper han-
dling of equipment and hazardous materials used in this protocol.” [085076;materials]
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In some ways, the concurrent strategy is similar to aspect-oriented programming [30].
It separates concerns related to specific materials or actions and the actor is responsible
for weaving those concerns into the execution of the protocol.

The modification feature captured 11 instances where a reference was integrated
with some explicit changes.

“Purify the eluate using a MinElute PCR Purification Kit according to the
manufacturer’s protocol with the following modifications: . . . ” [5385; 33-33.i]

Finally, we observed 21 instances of the merge integration strategy across 8 of the
protocols. In some cases, these references seemed intended to help the user know when to
choose this protocol by describing how the protocol might fit into a larger workflow and
combine with other processes. The 17 instances across 8 protocols of the comparison

role for non-integrated references also seemed tailored for this purpose, as illustrated by
the following example.

“Pei et al. (1997) describe an alternative method to isolate Arabidopsis guard
cell protoplasts suitable for patch clamping.” [5014; pg 6]

3.5 Discussion

Although the results in Section 3.4.1 show that protocols are written precisely, Section 3.2
discusses the substantial evidence that, in practice, protocols are not executed precisely.
Rather, a protocol describes an idealized path to follow in order to accomplish a task.
Protocol authors seem to be well aware of how protocols are used and tailor the pre-
sentation of protocols to support this execution strategy by alerting the protocol user
about which shortcuts and side-trips are dangerous and which might be useful. By call-
ing extra attention to especially important instructions, or providing checks to help the
executor determine whether they are still on track to accomplish their task, the protocol
author builds in checkpoints, redundancy, and safety measures to ensure the task will be
successfully accomplished.

These features demonstrate how differences between humans and computers motivate
differences between protocols and programs. On the one hand, the computer does exactly
what it is told, which is useful for predictability and repeatability. On the other hand,
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the human can use common sense, which supports flexible error handling and recovery.
Human common sense stands in sharp contrast to the commonly observed situation in
imperative programs where the computer blithely chugs away after an error, unless the
programmer has built in an explicit, complex system of fail-safes.

Similarly, the ambiguity and allowance for variation written into protocols are ad-
vantageous by allowing the user to interleave or integrate other plans: their own plans,
goals, and constraints, and the auxiliary recipes, warnings, and procedures suggested by
the protocol’s author. Since protocol writers provide explicit allowances for variation,
and explicit constraints and checks to reign in the variation they expect their users to
make on their own, this suggests they know these features are important and must be
supported if they want users to adopt their protocols.

The linearity that we observed in protocols may also play a role in supporting the
integration of user goals and outside plans. Since protocol authors describe the path as
a straight line rather than a garden of forking paths, they make it easier for users of
the protocol to understand the document as a whole, and reason about the consequences
of skipping, adding, or varying steps. That is, linearity allows the user a greater “field
of view” when it comes to execution of the protocol. Rather than seeing a small slice
of the process, they have access to many steps in advance, allowing them to plan and
incorporate outside information in a more interactive way.

3.6 Implications for design

The design of literate “workflow” tools may benefit from our findings. Workflows, such as
those provided by Bioconductor [23] or Galaxy [24], and interactive computation tools,
such as IPython [49], are like protocols in that they describe a complex sequence of activ-
ities that a user may need to adapt to their own purposes, but the user is manipulating
code and program entities instead of beakers and solutions. These tools could borrow
the following features from protocols:

Path width. Authors of workflow tools could include explicit ways to add and
execute invariants and tests that constrain a user’s modifications to a workflow step.
Or even without such changes, authors of workflows could add assertions and tests in
locations where users are most likely to tinker with the script. Workflow users presumably
use trial-and-error to adapt scripts and could benefit from such hints about the expected
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scope of the exploration process.
Connection to original. Workflow tools could preserve and make visible the rela-

tionship between an original demonstration protocol and any script the user creates by
adapting it. When users edit example code to meet their own needs, the original becomes
harder to recover and relate to the tailored script. This forfeits some of the benefits that
protocols provide, since they no longer communicate adherence to a normative process,
and their hints about the path and its width may be lost or damaged due to the user’s
experimentation.

Composition. Some workflow tools do not really allow for composition the way
protocols do: IPython for example can only call plain Python code, and Bioconductor
workflows can only call ordinary R packages. Perhaps auxiliary workflows could be
referenced in some of the ways protocols are (Table 3.5) by adding facilities to help
the user interleave the workflows’ actions or using the assertions and tests mentioned
above to check that their actions interleave correctly.

Previous work on variation languages is relevant for the design and implementation
of these features. Potential techniques for adding variation points to programs and other
data structures exist which could be used to explicitly broaden execution paths [16,65,66];
and we have identified potential editing techniques that could be used for maintaining a
history of explicit variations which could also be used to maintain a connection to the
original example as well as previously explored alternatives [67].

3.7 Conclusion

At the start of this study, we wanted to know how to improve the state of the art in
mixed-initiative execution, to help people and computers collaborate more flexibly and
effectively on tasks. This is important because in many cases, such as active learning
scenarios, neither the computer nor the user alone have complete information about the
sequence of tasks that need to be completed. To that end we investigated biological
protocols, to mine them for ideas about what the human side of a human-computer
program should look like. What we found embedded in these documents was a toolbox
of ways to specify tasks, that take advantage of human capabilities:

• Ways of communicating both limits and liberties from the central activity sequence
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• A simplified, linear structure, perhaps aimed at lowering the perceived risk of adop-
tion, and cost of tailoring

• Simple statements of expected intermediate results in lieu of elaborate error-handling
mechanisms

These tools seem immediately applicable to the design of workflow tools that help end-
user programmers learn a complex task while adapting it to a real application. Beyond
that, we have used these results to inform the design of more effective mixed-initiative
features in programming languages in Chapter 4, in which human-computer interaction
is a continuum of control, rather than as a function of “domination” by one or the other.
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Chapter 4: Mixed-Initiative Drone Control

4.1 Introduction

The consumer and industrial market for unmanned aircraft systems (drones) has exploded
in recent years, with the Federal Aviation Administration estimating that 2.5 million
drones will be sold in 2016 in the United States alone [17]. These vehicles have a wide
range of commercial, industrial, and scientific applications.

Drones are also an ideal platform for exploring mixed-initiative computing [29]—a
model of computation in which human agents and software agents negotiate control
of a process and collaborate to solve a problem. Current consumer drone software is
already mixed-initiative (usually called semi-autonomous, in this context) since aspects
of a single flight might be controlled remotely by a human pilot and others by an on-board
computer. For example, a pilot might use a remote control to move a drone around and
take pictures, while the on-board computer makes stability adjustments, implements a
stationary hover, and automatically returns to its starting point if it loses contact with
the pilot.

Unfortunately, the majority of programs written for drones are written in low-level
languages like C. This makes it difficult to express more sophisticated interactions between
the human pilot and the on-board computer, and also limits potential drone programmers
to experts in embedded systems.

In this thesis, we present the early design of a domain-specific language embedded in
Haskell for writing mixed-initiative flight control programs for drones. The practical goal
of this language is to raise the level of abstraction for drone programming, increasing
its accessibility and making feasible new kinds of drone programs that better exploit the
strengths of both the human and computer agents in this mixed-initiative setting.

We are also interested in mixed-initiative computing in general. In Chapter 3, we
describe a formative study of how people write programs (in the form of lab protocols)
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for other people to execute. From this study, we extracted design insights to best support
the human agent in a mixed-initiative setting [1]. Therefore, a higher-level goal of this
work is to put these design insights to practice, evaluating whether they are actionable
and lead to a useful language design. In addition, we utilize design concepts gleaned from
work being done in the area of mixed-initiative computing (Chapter 2).

In putting these design insights and concepts to practice we discuss some of the rele-
vant background work done on drone languages (Section 4.2) and how they relate to the
implementation of our proposed DSL. By way of explanation we provide small examples
of our proposed DSL that highlight some of its interesting aspects (Section 4.3), and
provide additional detail on the primitives and our interpretation of the agents involved
in managing the control flow within the proposed DSL (Section 4.5).

We also provide extended examples that harness the power of our proposed DSL to
manage control flows between human and computer agents (Section 4.6), and explain how
our work relates to previous efforts made in managing interactions between agents (sec-
tion 4.2). Lastly, we reflect on the effectiveness of integrating our design insights within
the DSL implementation, and postulate on the direction of future efforts in managing
human and computer interactions (Section 4.7).

The specific contributions of this work are therefore both: (1) the beginning work
of the DSL itself, a high-level declarative language for a rapidly emerging application
domain, and (2) a new programming model for mixed-initiative computing that supports
sophisticated negotiation of control flow between human and computer agents.

The fundamental promise of mixed-initiative computing is that humans and com-
puters have complementary strengths and weaknesses, and so together can solve prob-
lems more effectively than either could alone. Within the application domain of semi-
automated drones (and also more generally), computers excel at executing repetitive
strategies, performing rapid calculations, monitoring many sensors at once, and execut-
ing precise adjustments. Meanwhile, humans excel at visual recognition, recovering from
errors, providing high-level oversight, and revising plans in in the presence of unforeseen
events.

The goal of our proposed DSL is to allow programmers to take advantage of these
complementary strengths. For example, in fully autonomous situations, planning for
contingencies is a tedious, error-prone, and often incomplete process. A mixed-initiative
program can instead simply transfer control to the human in such an event, relying on
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their judgment and creativity to recover. In Chapter 3 we discussed the fact that people
write instruction sets (programs) for other people to execute. In these protocols the
authors often provide only high-level error checks to ensure the program remains on the
correct path. Much of the detail about how to recover from these errors is left to the
protocol user.

At a higher level, consider a program for either surveying territory or conducting
search-and-rescue operations, which are real-world tasks that employ drones and exem-
plify how the strengths of human and computer actors can complement each other in a
mixed-initiative program. Such a program might have the drone automatically traverse
an area while the human monitors camera output for potential objects of interest, taking
over manual control when one is found. If, upon closer investigation, the object is not of
interest, the human can return control to the auto-pilot to resume traversing the area.
The computer can monitor other sensors (such as proximity and battery), and notify the
human of significant events. The human can help the drone react to unforeseen circum-
stances and also adjust the high-level parameters of the search (e.g. expand or shrink the
search area) to incorporate new external information as needed.

In Chapter 3, we identified several unique aspects of programs written for people and
have used additional related work on how humans use plans and protocols [43, 61] to
argue that these differences make sense given the respective strengths and weaknesses
of humans and computers. We believe that a mixed-initiative programming language
will be most useful if it takes both kinds of agents into account. A distinguishing fea-
tures of programs for people is that they achieve flexibility, reusability, and robustness
through simplicity and rigidity. The idea is that, to execute a plan and adapt it to new
situations, a person should be able to understand how it works in its entirety. From
this perspective, explicit error handling actually detracts from the utility of a program
since it makes it more difficult to understand; it is better to rely on human judgment
for robustness. Similarly, programs for people are mostly linear with minimal branching,
looping, or other complex control flow. However, human protocols support a rather so-
phisticated form of composition by using common sense to interleave multiple protocols.
This can be used in many scenarios where a computer program would use conditionals,
for example, to interleave certain safety measures only when handling certain kinds of
dangerous materials.
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4.2 Related Work on Drone Languages

In Section 4.1, we mentioned that the majority of programs for drones are written in
low-level languages like C. There is language support for writing safe-C code available,
however there has not been much work on providing support for expressing sophisticated
interactions between the human pilot and the on-board computer. The closeness of
mapping between many of the libraries available and the C language they compile to also
limits the pool of available drone programmers to those who are either experts in the
domain, or those who have invested time in specializing their programming knowledge.

Languages and libraries also exist within Haskell for compiling or writing safe-C

code, such as Ivory [15], CoPilot [52], Atom [27], and Feldspar [3] (the latter is a digital
signal processing DSL). These types of safe-C languages are designed to be used with
modern controllers and have been used to write drone programs by compiling safe-C

code from Haskell that can be run directly on current controller hardware.
The focus of languages that compile to safe-C is to provide a secure method of

producing low-level controller code. Being able to guarantee properties about a low-
level language can be useful, but for our purposes this approach doesn’t provide enough
abstraction to deal with interactions in a meaningful way for the human pilot, which is
the main focus of our implementation. The approaches presented by Ivory, its extension
Tower, and the SMACCMPilot project that both of these languages support, does provide
some useful information and groundwork for controlling drones in the physical world.

The SMACCMPilot project provides an excellent framework for understanding and
utilizing the facilities of the drone system in an autonomous way. The programming
model and design strategies supported by our proposed DSL provide the additional de-
sign principles necessary for supporting more flexible control flow for semi-autonomous
systems (systems where human and computer interaction is desired). While the SMAC-
CMPilot project has applicability in the implementation of our proposed DSL for real
world flight control, it fills a different need than we address.

Copilot [51] on the other hand is a runtime system that generates streams of small
constant-space and constant-time C programs that implement embedded monitoring. Be-
cause Copilot also generates its own scheduler, there isn’t any need to implement a real-
time operating system in conjunction with it.

CoPilot is another approach to dealing with safe-C programming. This stream-based
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dataflow language generates small constant-time and constant-space C programs that
implement embedded monitors. Constant-space programming means that no dynamic
memory allocations are needed. CoPilot periodically samples global variables of the
program or programs; following a sampling-based monitoring strategy. The language
itself provides mechanisms for controlling when to observe the variables.

By using the Atom compiler [27] for its back-end, CoPilot can also automatically
generate its own periodic schedule. This negates the need for a real-time operating
system in order to control scheduling and concurrency, allowing CoPilot to be easily
executed on embedded hardware with minimal system resource availability.

4.3 Language Overview

In this section we provide an overview of unique aspects of the proposed DSL, as well
as small examples that highlight these aspects. Our proposed DSL creates a flexible
exchange of flow control between human and computer actors during the execution of
programs written in our proposed DSL. Unique to our proposed DSL is the ability to
program “monitors” providing assistance, guidance, and additional information to the
human agent when some predetermined condition is met in the environment. In addition
these monitors call on the human actor to troubleshoot unexpected issues encountered
during execution.

One way to demonstrate the use of monitors in our proposed DSL, is through the
tracking of and reaction to a prescribed state or location. To demonstrate the tracking
of a waypoint—location in space where the drone is traveling—we use a changing integer
value as a stand in marker. This marker increments as the drone makes movements in
a three-dimensional plane, and once the desired value is reached an action is triggered.
Either control of the process is transferred to a specified agent, or some auxiliary process
is triggered.

4.4 Design Principles

The work presented on design principles in this section were originally implemented as
part of a course project in a minimal form. The formative work included below represents
a more in-depth representation of the intent of our proposed DSL. There has been some
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subsequent work done on the back end language features, and while we have explored
several ways of providing the logic and features behind the drone control DSL, this work
remains open.

4.4.1 Negotiation

The concept of negotiation of control can be seen as a way of managing collaboration
between computer and human agents. Creating an useful programming abstractions
makes it possible to free the programmer from the underlying detail of understanding
any specific AI or computer systems employed. It also creates a flexible design that
allows for different types of computer and intelligent systems to interact with human
agents fluidly.

The main goal of a mixed-initiative programming language would be to support a
flexible exchange of control between the computer and human agents. At a low-level
this can be attained through four basic primitive negotiating controls. Although both
the computer and human agents are always participating in parallel, one can imagine
“control” as a token that gets passed between agents; whichever one has the token has
exclusive access to certain functionality.

• give: Executed by the agent with the token to transfer it to another party.

• offer: Executed by the agent with the token to allow for the transfer of control to
another agent.

• request: Dual to offer; executed by an agent without the token to request if from
the agent with the token, which may be refused.

• take: Dual to give; executed by an agent without the token to immediately take it
from the agent with the token.

To minimize the overhead of control negotiation for the human (e.g. minimize annoy-
ing and obtrusive dialog boxes), offers and requests are asynchronous. That is, an offer of
control from A to B will succeed if B has made the request since A’s last offer, otherwise
the runtime system assumes the offer is declined. A synchronous offer can be made by
giving control and then optionally requesting control back.
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Because give and take are synchronous, the potential for deadlock exists (i.e. both
the computer and human agents attempting to gain ownership of the token at the same
time). Another way of expressing this is when A uses take to gain control from B, B
cannot use take to regain control until the current process being performed by A has
completed. Additionally A cannot use give to relinquish control to B until the current
process being performed by A has completed.

However, the ability to adequately manage or eliminate such deadlocks is an extremely
difficult and complicated issue. While we can minimize this effect by implementing a strict
view like the one above, the problem of deadlock remains at the forefront of our design
concerns.

An underpinning to the support of this flexible exchange of control between the com-
puter and human agents is the view of programs as plans. These plans are blocks of
executable code that contain a descriptive set of goal-directed tasks provided by the pro-
grammer. These blocks can either be executed in the synchronous order as provided by
the programmer, or in an asynchronous order specified by the human agent or dictated by
modifications to the plan by either the computer or human agents. The programmer can
intersperse plans with various offer commands to provide control or conversely request

can be used to interrupt synchronous execution.

4.4.2 Adaptable Autonomy

Plans are essentially a linear model of the program that embody the “ideal” execution
of a series of actions or tasks. These plans represent the intent of the programmer, and
provide necessary markers to indicate important or necessary steps along the way, but
leave some of the ordering and a great deal of the error handling tasks at the discretion
of the computer and human agents responsible for executing the plan.

In solving tasks or completing actions in a mixed-initiative program, the computer
agent involved will potentially exercise a large spectrum of autonomy, yet should be
limited to the level of autonomy necessary to complete a task. Additionally, this level
of autonomy should not violate any mandates from the programmer or the human user
involved unless there is some agreement reached between the computer and human agents.
We can represent these concepts using parameterized negotiation primitives, where we
have something like give(A,B,plan,constraint), where plan is a series of tasks.
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• task: An atomic representation of an action or calculation to be executed in the
context of a plan.

• plan: A linear model of the program that is made up of tasks defined to achieve a
given goal under the prescribed constraints.

• constraint: A mandate for the degree of autonomy being given during the negoti-
ation of control. When a computer agent gives control to a human agent, it should
provide a reason for the transfer and any information needed for the human to
decide and act. When a human agent gives control to a computer agent, it should
specify any constraints that must be followed—including if there is a desired point
in the program that control should be returned.

A task included in the negotiation of control that contains only a goal and no ad-
ditional plan, with few constraints, allows the computer agent to use a wider spectrum
of autonomy in solving the task, whereas tasks specified as a sequence of actions and
containing many constraints allows for more limited autonomy.

The idea of adaptable autonomy and decomposition go hand in hand. The ability to
break plans into their individual components allows agents and programmers to manage
the amount of autonomy exercised by the computer systems. Human agents are an inte-
gral part of execution and maintain this connection through selective access to processes
by the computer systems that require collaboration. Decomposition is also a mechanism
for supporting the interleaving and integration behaviors for adding or augmenting plans,
similar to behaviors examined in [1].

Decomposition of tasks can also support a more sophisticated means of “triggering”
action by computer systems. Such systems could be designed to provide triggering criteria
based on any or all of the human agent inputs, the current state of the plan being
executed, and any additional background data or contingencies represented by changes
in the environment in which the plan is being executed. The use of control tokens can
greatly simplify this by presenting cues about whether a computer or human agent is in
charge, allowing them to focus and avoid the impossible task of searching through and
processing the entire set of available data to determine which task or tasks are appropriate
for a given point in the execution.

Another reason why working in such explicit models of control for constructing and
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executing plans is that it may present a critical component for effective adaptive learning
by the computer and human agents. Since effective collaboration entails acting in a
coordinated fashion—which in turn often requires a learning curve—cues are needed to
guide expectations of which tasks meet the capabilities of either a computer or a human
agent in different contexts.

4.4.3 Natural Communication

As stated previously, natural communication is an essential component of collaboration,
and therefore of mixed-initiative interaction. We define mixed-initiative as the interac-
tion and negotiation between computer and human agents that exploits the skill sets,
capacities, and knowledge of each in developing a plan, executing that plan, and adapt-
ing to contingencies throughout execution. Mixed-initiative interaction involves a far
reaching set of theoretical and pragmatic issues. Central to this is the ability for the
human to give control to the computer systems—give(A,B,task,constraint)—and in
a symmetric manner the ability of the computer systems to give control to the human—
give(B,A,plan,constraint).

There are myriad issues pertaining to safety, system security, agreement (trust), etc
that have to be addressed throughout the execution of the program and can be formalized
as sets of constraints. These constraints are associated with a particular task or
set of tasks—plan—and are interpreted during the negotiation of control through the
exchange of the control token.

To support exchanges efficiently, we establish an ongoing “dialogue” between the com-
puter and human agents about how these exchanges will be organized. It is likely the
human agent will need to maintain primary control of setting major plan objectives, but
will want to relinquish control of more mundane plan formation and management. The
majority of these dialogues may not take place using natural language—indeed this may
not be the most efficient means of handling exchanges in some cases—though a variety
of interaction styles will need to be supported.
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4.4.4 Agency

Agency would necessarily take several forms in a DSL like this. At its core, the human and
computer pilots represent agents. In addition to plans, drone software contains several
programmed monitors (e.g. a battery level monitor, or an out-of-range monitor) that
would need to negotiate for control when they are trigged. These programmed modules
can also be seen as agents that vie for control of the system when necessary. Many of
these monitors seek to prevent catastrophic failure, so they must also coordinate with
the human actor, the plan, and other monitors when the situation dictates.

Each agent in the system is responsible for negotiating control of the system with the
other agents. To mitigate this somewhat, the human agent is apportioned a more heavily
weighted priority in the scheme of negotiation (except where catastrophic failure prevents
this from being the case). The monitors are provided a broad, but more limited priority
when it comes to preventing such catastrophic failures. Whereas the plans themselves
take an advisory role, and are somewhat subservient to other agents.

4.5 Design Challenges

In a few aspects of our proposed DSL, there are fundamental tensions between the
strengths, needs, and weaknesses of the human agent compared to those of the com-
puter agents. These lead to interesting language design challenges.

The first such challenge is that we must provide a language that balances the tradi-
tional software engineering goal of writing robust software with our insights from previous
work that human agents require a simple, concrete, and mostly linear plan in order to
most effectively use a protocol/program. Our current proposal is to minimize the amount
of error handling that makes its way into the high-level plan that the user will read and
interact with. Instead, the high-level plan will consist mostly of linear sequences of steps
with lightweight guideposts to help both the computer and human agents confirm that
they are still on the right track. This not only increases the ability of the human agent
to interact successfully with the program, but also takes advantage of the human abil-
ity to think on the fly, adapt, and recover from a wide variety of errors. This in turn
might reduce development time since the language is more explicit about off-loading er-
ror checking and handling to the human agent. Lower-level error handling can still be
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implemented at the intraprocedural level within a particular step of the plan.
However, programmers are used to building in contingencies and error handlers to

manage as many potential causes of failure as they can foresee, to make the software as
robust as possible. This instinct is probably often good, even in our domain. On the one
hand, we want to free programmers from the burden of programming for contingencies
and take advantage of the human agent’s ability to do this on-the-fly. On the other hand,
we don’t want to actively prevent programmers from actually dealing with the cases that
they do foresee. This creates an interesting language design tension in our proposed DSL.

Another source of design tension exists in the simplicity needed in the negotiation
of control. Other languages and program models mentioned in Section 4.2 manage the
negotiation of control between several autonomous sources to accomplish some goal.

In these models, the negotiation can be a complex network of decisions navigated
concurrently or in parallel by a set of intelligent agents. These networks are too complex
for what we require in our proposed DSL. To some extent this is because the human
agent is given a priority over other agents in the negotiation of control of the system.
We have to provide enough freedom for the human agent to respond to situations and
perform the tasks for which they are best equipped.

4.6 Extended Examples

We provide the following extended example of a search-and-rescue or territorial surveying
program by way of illustrating the features of our proposed DSL in a concrete way. In
this program the computer and human agents are tasked with searching a prescribed
area or boundary for some intended target (e.g. a species of flora or fauna, or a person).
These tasks are described as goal-directed instructions in the form of blocks of actions
that are organized into plans using the programming model and negotiation primitives
described in Section 4.5.

With our proposed DSL, the programmer writes a series of actions with any intended
outcomes or expectations as well as any additional information they feel is relevant, and
organizes them into a plan that makes sense for what is known about the scenario at the
time. In this set of scenarios, the drone is controlled by the actions as they are laid out
by the programmer in a plan, and the human agent is freed to control the camera and
perform the visual tasks of the operation.
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While the drone is somewhat autonomously performing the search program provided,
the human agent can “tag” points of interest as either informational resources, or as a
means of returning to them quickly if the need arises. To some extent takes advantage of
a limited range of the faculties provided by the human agent, That being said, the pro-
grammer also intersperses offer commands with the action blocks that give the human
agent the opportunity to make changes “on-the-fly.”

If the user makes a request subsequent to the programmer providing an offer, the
human agent is given control of the drone free of the current plan. From this point, the
human agent can make changes to the plan (such as adjusting the search area, or creating
additional waypoints to search), and can either complete tasks manually, or return control
to the drone by selecting the action module they wish to continue autonomous drone
control from.

In addition, the programmer creates several monitors (agents responsible for mon-
itoring certain aspects of the drone state, and performing actions autonomously when
necessary) in order to avoid catastrophic failure, or provide users with guidance when
it looks like they may be veering off course. These monitors provide things like safe
landing guarantees in the event the battery becomes discharged beyond a certain point,
or providing suggestions to the user of they stray too far from the assigned (or modified
search area).

In the case of the battery monitor, the monitor will take control of the drone, and
execute a soft landing. This take command provides a lock on any future negotiations
until the exception flag caught by the monitor is cleared. Here, the only remedy for the
exception flag is a successful safe landing and subsequent battery replacement.

Where a monitor exists to provide the user with guidance to keep them in the correct
search area, the monitor will request control from the user or provide a suggestion to the
user about how to remedy the exception flag that was caught. This provides the human
agent with the freedom to ignore the suggestion should the scenario at hand dictate such
an action. Unless the human agent provides an offer for control, the request will be
assumed to be declined, and the human agent will maintain control of the program flow.
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4.7 Conclusion and Future Work

We have described the use of the design principles behind a DSL for building semi-
autonomous drone programs that require potential or anticipated human agent partici-
pation. Ultimately it is our intention to implement a DSL language on a drone operating
in physical space.

Many of the advantages of a DSL like this one for semi-autonomous drone program-
ming are related to its implementation. Contingencies that cannot necessarily be con-
ceived of by the programmer, can be altered in the field. And although not all contin-
gencies are recoverable, our proposed DSL goes a long way in mitigating some of the
unanticipated variability of operating a drone in the physical world.

Rather than spending undue time chasing all possible error points, programmers
are freed to focus on programming tasks for the drone and the human actor in more
meaningful ways. Programmers can still provide guidance for anticipated concerns in the
completion of the necessary tasks, but our framework is flexible enough to give most of
the recovery procedures over to the human agent in the field.

The programmer is exposed to a small, but meaningful, set of primitives for negoti-
ating control of the flow of the program. This can be accomplished either synchronously
or asynchronously. Whereas the human agent is provided with a simplified by high-
level view of the entire program that is understandable and navigable. Our proposed
DSL provides understandable units of execution, as well as information and some of the
contingencies necessary to the completion of the task or tasks at hand.

In short, our proposed DSL will be able to take advantage of the faculties of both the
human agent and the computer agent (represented by the programmer) in meaningful
ways, without overwhelming either of them. We are able to accomplish this using nego-
tiation primitives with behaviors designed to prevent deadlocks, and a simplified easy to
navigate and compose interface for plans (programs).
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Chapter 5: Conclusion

Since the publication of the paper included in this thesis, we have continued to refine
our understanding of mixed-initiative programming and our ideas about where such a
project could be headed in the future. This section will briefly describe some of the
implications of our past research and understanding of work that has been done to drive
future advances in mixed-initiative programming.

The fundamental promise of mixed-initiative programming is that humans and com-
puters have complementary strengths and weaknesses, and so together can solve problems
more effectively than either could alone.

Within the domain of mixed-initiative systems, computers and AI excel at executing
repetitive strategies, performing rapid calculations, monitoring many sensors at once, and
executing precise adjustments. Meanwhile humans excel at visual recognition, recovering
from errors, providing high-level oversight, and revising plans in the presence if unforeseen
events.

The goal of a mixed-initiative programming languages is to allow programmers to
take full advantage of these complementary strengths. For example, in fully autonomous
situations, planning for contingencies is a tedious, error-prone, and often incomplete
process. A mixed-initiative program can instead simplify this by transferring control to
the human user in such an event, and rely on their judgment or experiential knowledge
or creativity to recover.

In our work on lab protocols, we found that when people write complex instructions
(programs) for other people to execute, they often provide only high-level checks to ensure
that the person executing the program is still on the “right track”, however it is left to
the user of the protocol to determine the method of recovery [1].

At a higher level, we consider the application of design implications from reviewed
research done in the area of mixed-initiative programming, as well as that of lab proto-
cols [1] in order to propose a DSL for mixed-initiative drone control. Such a DSL could
be used to provide programs for drones—working alone or in “swarms”—in conducting
search-and-rescue operations or surveying territory. These real-world applications em-
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ploying the strengths of both computer systems and human users, shows how each can
provide an interesting complement when managed using a mixed-initiative program.

For example, a programmer may code a drone to use a flight pattern to perform a
search within a prescribed area or boundary, and in addition provide the human user
with an intended search target and/or some set of goal-directed tasks that need to be
accomplished. We know from previous research [1] that users adopt human instructions
or programs more readily when they are supplied in a linear fashion (giving the user
a high-level overview of the process). These instruction sets also need to provide users
with derivation points that allow them the freedom to modify instructions as needed,
while simultaneously providing guideposts for error recovery and locations to return to
the original protocol.

In our study of lab protocols [1], we have identified several unique aspects of programs
written for people compared to programs written for computers, and have used related
work on how humans use plans and protocols [43,61] to argue that these differences make
sense given the respective strengths and weaknesses of humans and computers.

We believe that a mixed-initiative programming language will be most useful if it
takes both the computer system and human user into account.

A distinguishing feature of programs for people is that they achieve flexibility, re-
usability, and robustness through simplicity. The idea is that, to execute a plan and
adapt it to new situations, a person should be able to understand how it works in its
entirety. From this perspective, explicit error handling actually detracts from the utility
of a program since it makes it more difficult to understand; it is better to rely on human
judgment for robustness. Similarly, programs for people are mostly linear with minimal
branching, looping, or other complex control flow.

However, human protocols support a rather sophisticated form of composition by
using common sense to interleave multiple protocols. This can be used in many scenarios
where a computer program would use conditionals, for example, to interleave certain
safety measures only when handling certain kinds of dangerous materials.

We have used our understanding of the complexity behind programs for people to
formulate design concepts for describing and writing mixed-initiative programs through
a set of common negotiation primitives, that provide adaptable autonomy by breaking
plans into their components, and also a means for developing natural communications
between computer systems and human users.
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