Abstract
Variation is everywhere, and in the construction and analysis of customizable software it is paramount. In this context, there arises a need for variational data structures for efficiently representing and computing with related variants of an underlying data type. So far, variational data structures have been explored and developed ad hoc. This paper is a first attempt and a call to action for systematic and foundational research in this area. Research on variational data structures will benefit not only customizable software, but many other application domains that must cope with variability. In this paper, we show how support for variation can be understood as a general and orthogonal property of data types, data structures, and algorithms. We begin a systematic exploration of basic variational data structures, exploring the tradeoffs among different implementations. Finally, we retrospectively analyze the design decisions in our own previous work where we have independently encountered problems requiring variational data structures.

Categories and Subject Descriptors E.1 [Data Structures]

General Terms Design, Performance, Theory

Keywords variation, data structures, configurable software, software product lines, variability-aware analyses

1. Introduction
Variability is the law of life, and as no two faces are the same, no two bodies are alike, and no two individuals react alike and behave alike . . . [39]

Although referring to a special class of “biological systems”, this quote of William Osler, one of the icons of modern medicine, captures the pervasiveness of variability. In almost all domains, variation is the rule, from biological and social to economic and technical systems. Software is no exception.

A simple example of variation in software is parameterizing a program to support different use cases. To execute the program and compute a result, we must select a particular configuration of parameters. To compute results for other configurations, we must repeatedly configure and run the program. This serial approach to computing alternatives obscures variability in the problem we are trying to solve and performs redundant work that may have been shared among alternative configurations. The solution is to lift this variation into the program itself; that is, to compute with variational data explicitly, rather than with each alternative separately.

To illustrate, suppose we are planning a trip from Frankfurt Airport to Schloss Dagstuhl. Some travel planning software finds that there are many possible itineraries: taking a train then a bus; taking a train to one of two different stations, then a taxi; or taking a taxi the whole way. Now suppose we want to compute the price of the trip per person, which for the taxi also depends on the number of people traveling together. Traditionally, we might write a function of type \((\text{Itinerary}, \text{GroupSize}) \Rightarrow \text{Cost}\). This function is variational in the sense that it supports different inputs, but whenever we use it, we must select a particular itinerary and group size. Computing the costs of all travel options requires calling the function multiple times, once for each configuration. This is wasteful since we need to repeat (or cache) many of the same calculations; for example, we need to repeatedly lookup the price of the same train connections even if they do not change based on other parts of the itinerary or the group size.

Instead, we envision a function of type \(\text{V[Itinerary, GroupSize]} \Rightarrow \text{V[Cost]}\), that accepts a variational itinerary and a variational group size as input, and efficiently computes the variational results. In other words, we pass in all alterna-

1We use Scala syntax for types and code examples.
The variational inputs and outputs are not just sets of alternatives, but are structured such that we can see exactly which cost goes with which combination of itinerary and group size. By working with variational data rather than computing the results for each alternative sequentially, the algorithm can reuse work and exploit shared components more easily.

Variational data structures are data structures for efficiently representing and computing with variational data. For example, a variational itinerary data structure should share the common sub-paths of alternative itineraries. In this way, variational data structures support the definition of efficient variation-preserving or variability-aware algorithms.

The overarching goal of this paper is to promote foundational research on variational data structures. We want to raise awareness that variability can be dealt with systematically, and that many existing problems can benefit by considering the tradeoffs among well-understood variational data structures rather than implementing ad hoc solutions. This paper is a call to action for a systematic exploration of this design space by a group of authors who have separately run against the need to manage variational data, and who have, so far, themselves explored it in only a need-driven way.

In pursuit of this goal: (1) We argue in Section 2 that research on variational data structures is important and has a broad range of applications, both in software engineering and beyond, many of which may not be initially obvious. (2) We provide a baseline for discussion and future research by enumerating some basic variation representations in Section 3 and describing basic techniques for computing with variability in Section 4. (3) We demonstrate in Sections 4 and 6 that the design decisions and tradeoffs regarding variational data structures are non-obvious. As with traditional data structures, different implementations of variational data structures better support different use cases, with space and runtime efficiency tradeoffs among them.

Over the course of the paper, we make the following concrete contributions:

1. An abstract model of variational values as choices between labeled alternatives (Section 3.1), and three instantiations of this model (Section 3.2) based on our own previous work on the choice calculus [21] and TypeChef [31].

2. Some examples of variational data structures (Section 4), including variational lists, variational maps, and variational sets. For lists, we explore several alternative implementations and discuss the tradeoffs among them.

3. A retrospective case-study analysis of design decisions regarding variational data in our own previous work (Section 3). Using the types and data structures defined in the first two contributions, we discuss the tradeoffs among alternative implementations, and how a more systematic view of variational data structures would have helped us make more informed decisions.

We use our own previous work for the case study analysis since we have immediate access to the history and design rationale of these projects. In Section 7 we discuss other encounters with variational data structures and related efforts in the community to cope with variation.

Note that the example variational data structures presented in this paper represent a tiny fraction of the design space in this area. There are both many more possible implementations of the variational data structures we discuss, and many other data structures that can be adapted to support variability.

2. Motivation

Variation is an important dimension of complexity. To achieve efficient computation in the presence of variation, we must represent input, intermediate results, and output in a compact variational form. Since variational output from one function can be used as variational input to the next, this view leads to ubiquitous variability in data structures and algorithms.

In this section, we provide a number of motivating examples for variational data structures. Since these examples are quite diverse, we also set the scope of the paper by characterizing the kind of variation we consider in terms of functions from variational inputs to variational outputs.

2.1 Motivating Examples

Variational Program Analyses. Most static program analyses operate on data structures extracted from program syntax, such as maps (e.g. symbol tables), lists (e.g. wait lists), trees (e.g. abstract syntax trees), and graphs (e.g. data-flow and control-flow graphs).Recently, researchers have begun to lift program analyses to variational programs, such as software product lines [43], which can be configured to generate many different variant programs. This lifting affects both the internal data structures and the analysis algorithms.

For example, the lifted abstract syntax tree (AST) of a variational program represents the AST of all possible variants. Variational ASTs have been used to implement variational type checking [2, 30, 32, 36] and variational type inference [13, 14], which ensure the static type safety of a variational program as a whole, simultaneously covering all of the variants that can be generated. Variational type systems take as input the variational AST and produce as output the variational typing result that indicates which variants are well-typed. Likewise, variational control-flow graphs have been used to lift data-flow and model-checking analyses to variational programs [5, 9, 11, 16, 35, 36]. By exploiting sharing among variants encoded in the variational AST or variational graph, lifted analyses are able to efficiently verify properties for all variants at once, whereas verifying each variant individually is usually intractable.

Besides the variational representation of the program itself, variational program analyses must store intermediate data in all kinds of variational data structures, including variational symbol tables, program-state maps, and parameter lists. The
explicit representation of variation within a shared context is the key to supporting efficient variational analyses [5][11][30].

Variational Software Artifacts. Besides source code, other kinds of software artifacts may exhibit variation, such as documentation and test suites, and many variation representations are sufficiently general to support this [11][3][8]. Thüm et al. [44] proposed incorporating variation in test suites and formal specifications, which supports the development of new kinds of variational analyses, for example, variational test execution [6][33][34][37][45] and variational deductive verification [44]. Variational test execution, which entails simulating the execution of a test on all software variants, needs substantial support from variational data structures since arbitrary computation must be performed in a variational setting.

There are many opportunities for future work in representing and analyzing variation in supplementary software artifacts, such as variational document analysis, performance modeling, build-system analysis, and so on, all of which require support from variational data structures.

Beyond Variational Software. In principle, any parameterized operation can be made variational to simultaneously consider several alternative inputs/ configurations at once. The travel planning example in Section 1 is just one illustration of the potential of this view.

There are also many applications that already cope with variation. Since there is no underlying theory, they usually do this in an ad hoc way. In our travel planning example, we took as a given a route-planning service that returned a list of alternative itineraries. This service must cope with variation in several different kinds of data: The transportation network graph may be variational [23] if users can choose what modes of transportation they are willing to take, how far they are willing to walk, etc. The input may be variational if we allow for optional waypoints (nodes in the graph) or prioritize certain modes of travel (edges). Finally, the output is a variational path through the graph, and may also return variational properties of the paths, such as time and cost.

Variational data structures can also be used to simulate computation in the presence of uncertainty. For example, Chen et al. have shown how variational types can be used to recover from type errors during type inference [13] and improve the quality of type errors [12]. Similarly, variational data structures can support the efficient simulation of all possibilities in alternative programming models, such as probabilistic computing; to track context information that controls an algorithm, as in context-oriented programming [26]; or to maintain alternative views of sensitive values corresponding to different privacy policies [6][7][40].

2.2 Scope

The motivating examples illustrate the diversity of applications for variational data structures. Since “variation” is a very broad term, in this section we set the scope of this paper by clarifying the kind of variation that we consider.

Consider a function with multiple arguments. A function already offers variability in that it can be evaluated with different arguments, but this is not the variability we address in this paper. Likewise, there may be variation in the algorithm computed by a function; for example, a function may sort a list using either merge sort or ring sort depending on the setting of a configuration option. Such configuration options induce a certain variability, but as long as we pick a specific configuration before executing the function, the execution itself is not variational, and so is not the focus of this paper.

Instead, we focus on variation-preserving functions, which take one or more variational inputs and produce correspondingly variational output. A variational input or output can have a finite number of values at the same time during computation. In other words, a variation-preserving function computes the result for all combinations of alternative argument values, generally leading to several alternative results. Additionally, variational inputs and outputs are structured such that the relationship of each output to its corresponding inputs is clear. For example, in the travel-planning scenario, our function accepts two variational inputs, for comparing different itineraries and group sizes, and computes a variational output representing the cost corresponding to each combination of inputs.

Functions with static configuration options (e.g. implemented by C preprocessor directives) can be transformed into regular functions by promoting the configuration options to function arguments. This process, which has been described similarly elsewhere [40], is illustrated in pseudocode below.

```c
createFile(name) {
    createFile(os, name) {
        #if OS == "Windows"
            if (os == "Windows") {
                ...
        #elif OS == "Unix"
        } else if (os == "Unix") {
                ...
        #endif
    }
}
```

Now the `createFile` function can be made variation-preserving by interpreting the first argument (os) as a variational string. Similar translations are possible for other compile-time variability mechanisms [4], such as feature-module composition and aspect weaving. For example, a choice between two function implementations can be translated into a new function with an additional variational argument. The issue of different binding times (run-time vs. load-time vs. compile-time variability) is orthogonal to this model. The key is that there are some arguments that are not bound to a single value when calling the function, but to multiple values.

3. Variational Data Types

In this section, we develop an abstract model of variation in data types and three ways to implement it. The model is flat: it describes variability in terms of a mapping from configurations to plain (non-variational) variants. This is obviously inefficient for representing variation in composite data types since common subparts will not be shared. In Section 3, we show how to incorporate more sophisticated mechanisms...
to support various kinds of sharing. The notations and concepts developed in this section will provide a framework for describing and comparing variational data structures.

3.1 Choices as Variational Values

A variational value v exists in the context of a configuration space C, which describes all possible ways that v can be configured. Abstractly, we can represent C as a finite set of configurations. For example, if C is defined by a feature model [22], then each configuration may be represented by a set of features to include, and the set C contains all sets of features that are consistent with the feature model. However, our model is independent of any particular encoding of C.

The meaning of v is defined in terms of its resolution to a plain value for every configuration in C. A plain value is one that does not contain variation. We call the set of plain values that v can be resolved to its variants, which must all be of the same type A. Therefore, the semantics of a variational value v is a mapping from its configurations to its variants, $C \Rightarrow A$.

Since the set of configurations is finite, an initial syntactic representation of v could be to just represent the mapping from configurations to variants directly. A choice is a set of configuration-labeled variants. For example, if $C = \{c1, c2, c3\}$ and $A = \text{Int}$, then the choice $\langle c1:4, c2:4, c3:5 \rangle$ defines a variational integer where configurations $c1$ and $c2$ are mapped to the variant 4, and $c3$ is mapped to 5. However, this representation of choices is inefficient since usually many configurations will map to the same variants. The redundancy can be reduced by recognizing that variation is not arbitrary but corresponds to structure in the configuration space. For example, if c is defined by a feature model, then the differences at one variation point, represented by a choice, are likely to correspond to only a small subset of the features.

Therefore, rather than labeling variants by configurations directly, it is more efficient to label them by higher-level concepts in the structure of the configuration space. For example, if configurations $c1$ and $c2$ contain features $f1$ and $f2$, respectively, and $c3$ contains neither feature, then we can represent our variational integer as $\langle f1 \lor f2:4, \neg f1 \land \neg f2:5 \rangle$. In this case, each label describes the subset of the configuration space, or partial configuration space, that satisfies the corresponding inclusion condition.

To support our semantic goal of uniquely mapping every configuration to a variant, the set of labels used in any choice v must define a partitioning of C; that is, the partial configuration space defined by each label must be a subset of C such that all subsets are pairwise disjoint and the union of all subsets is C. We call this invariant on choices the choice-as-partition invariant.

3.2 Implementing Variational Data Types

A variational value is the simplest kind of variational data structure and can be implemented in a number of different ways. In this section we present three different implementations of variational values that are generic in the type of the variants. In Section[4] we will discuss how to weave variability into the definition of specific data structures. This will generally lead to different implementations of one variational data type that are tailored to support different usage scenarios.

We present the implementations using Scala code. In fact, the shown data structures have been employed and tested in previous projects (reported in Section[4]). Note that, although we use Scala as the metalanguage, the discussion is not tied to Scala in any significant way.

3.2.1 Tag Trees

Whenever the configuration space can be characterized by a set of binary configuration tags, say of type Tag, we can employ a binary-tree representation with tags at internal nodes and values stored in leaves. In Scala, we implement this data structure using case classes since these support the use of pattern matching in function definitions. The type parameter A represents the (arbitrary) type of values that are made variational by applying the type constructor V.

```
trait V[A]
case class One[A](v:A) extends V[A]
case class Chc[A](t:Tag, y:V[A], n:V[A]) extends V[A]
```

The class One encodes a variant of a leaf in the tree, while Chc divides the configuration space into two partial configuration spaces, one in which the tag t is selected (y for yes), and one in which it is deselected (n for no).

We also introduce syntactic sugar for concisely expressing tag trees. The notation is introduced by example below:

```
T<a,b> ≡ Chc(T, One(a), One(b))
T<a,U<\forall c> ≡ Chc(T, One(a), Chc(U, One(b), One(c)))
```

By nesting choices within other choices, we can hierarchically divide the configuration space based on the selected and deselected tags. A key benefit of this implementation is that it maintains the choice-as-partition invariant (see Section[3.1]) by construction.

When working with variational values, we often need to apply a function to all of the variants it contains. To support this, we introduce two “variational map” operations, which correspond to Scala’s idiomatic map and flatMap methods.

The map operation applies a function of type $A \Rightarrow B$ to every variant of a variational value of type $V[A]$, preserving its structure. Its implementation for tag trees is shown below.

```
  case One(a) ⇒ One(f(a))
  case Chc(t, y, n) ⇒ Chc(t, map(y, f), map(n, f))
}
```

For example, suppose we have a variational value $x = T<3,4>$, and we want to test whether the variants of x are even by applying a function even of type $\text{Int} \Rightarrow \text{Boolean}$. We can apply even to all of the variants with map, writing $\text{map}(x, \text{even})$, which produces the result $T<false, true>$.

2 The notation is based on the choice calculus [21], see Section[0.5].

3 In Haskell, these are fmap and monadic bind ($\gg=$), respectively.
A more flexible representation than tag trees is to use Boolean formulas in choices rather than tags. This enables us to efficiently represent the example at the end of Section 3.2.1 by creating a choice with the formula \(8pm \lor 10pm\), which represents a partial configuration space. We can reason about those trains costs 259 EUR for a taxi. Unfortunately, express-trains can cost significantly more, sometimes exceeding 1000 EUR. A formula map is that, since values map to the same value, we must combine their formulas with a disjunction in the resulting map. For example, suppose we map the function \(even\) over the formula map \(x = V(\text{Map}(2 \to i, 3 \to j, 4 \to k))\). Since both 2 and 4 are even, then \(map(x, even)\) combines these variants to produce the formula map \(V(\text{Map}(true \to i \lor k, false \to j))\).

For the \(flatMap\) operation, of type \(V[A], A \Rightarrow V[B] \Rightarrow V[B]\), another \(a \rightarrow m\) in the initial internal map can expand into potentially many entries of the form \(b \rightarrow m \land n\) where each \(b\) and \(n\) correspond to entries in the formula map returned by \(\text{map}(a)\). For example, \(flatMap(x, \{a: Int\} \Rightarrow V(\text{Map}(a \rightarrow l, a+5 \rightarrow l)))\) produces the following formula map.

\[
V(\text{Map}(2 \rightarrow i \land l, 7 \rightarrow j \land l, 3 \rightarrow i \land l, 8 \rightarrow j \land l, 4 \rightarrow k \land l, 9 \rightarrow k \land l))
\]

Once again, we must potentially merge entries in the result with disjunctions, further complicating the process.

The key advantage of a formula map is that, since values are used as keys, there is exactly one entry for each variant and therefore no redundancy. In a sense, this is a space-optimal representation. In contrast, the tree-based representations do not automatically join redundant variants, which means additional join algorithms have to be implemented. While joins between two siblings are straightforward, joins across different levels of the tree are only possible in formula trees and require nontrivial implementations.

The main disadvantage is that the choice-as-partition invariant is more costly to maintain. For example, every time we add a variant to a formula map, we must update the formulas for every other variant to ensure that their partial configuration space does not overlap with the new variant. It also shares the disadvantage with formula trees of needing to solve satisfiability problems for many operations.

The implementation of map and flatMap are identical for tag and formula choices.

With formulas in internal nodes we can reduce redundancy in the representation and still enforce the choice-as-partition invariant by construction. The drawback is that even simple operations that are trivial in tag trees, such as identifying “dead” alternatives that do not correspond to any configurations, require solving satisfiability problems in formula trees.

3.2.3 Formula Maps

A different implementation of \(v\) employs an internal map data structure from variants to formulas. The formula describes the partial configuration space in which the variant occurs.

\[
\text{case class } V[A](data: Map[A,Formula]) \{ \ldots \}
\]

The map operation, of type \(V[A], A \Rightarrow V[B] \Rightarrow V[B]\), can be implemented for formula maps by mapping over the keys of the internal map data structure. However, a complication is that if two \(A\) values map to the same \(B\) value, we must combine their formulas with a disjunction in the resulting map. For example, suppose we map the function even over the formula map \(x = V(\text{Map}(2 \rightarrow i, 3 \rightarrow j, 4 \rightarrow k))\). Since both 2 and 4 are even, then \(map(x, even)\) combines these variants to produce the formula map \(V(\text{Map}(true \rightarrow i \lor k, false \rightarrow j))\).
3.3 Representation Tradeoffs

The three implementations of variational values presented in this section each have their own strengths and weaknesses. To briefly summarize the discussion so far: Tag trees and formula trees preserve the choice-as-partition invariant by construction; this is costly to maintain in formula maps. On the other hand, formula maps trivially ensure space optimality; this requires costly join operations in formula trees and is impossible in tag trees. Finally, operations on formula maps and formula trees require reasoning about satisfiability problems, typically with external tools, such as SAT solvers or BDDs; operations on tag trees rely only on reasoning about the sets of selected and deselected tags.

This last tradeoff is illustrated by considering, for each representation, the implementation of a function \(\text{prune} \) that removes dead alternatives that are not used in any configuration. For example, suppose we want to represent the variation between two lists, \([1,2,3,4]\) and \([1,2,5,4]\). Naively, we can represent this as a choice between lists, \(T<\{1,2,3,4\},\{1,2,5,4\}>\), which has type \(V\langle\text{List}\langle\text{Int}\rangle\rangle\). This representation repeats shared parts of the two data structures. Simple operations, such as retrieving the first element of the list, require inspecting both alternatives even though they share the same initial sequence of values. Considering only variation among atomic data types introduces a lot of redundancy of this kind, especially when large data structures differ only in minor details.

Therefore, instead of managing variation externally, we must identify ways of pushing variation into the data structure itself to support internal sharing among variants. There are many possible ways to do this. In this section, we provide some examples of variational data structures. Specifically, we present three different implementations of variational lists, a variational map, and a variational set.

These variational data structures are just the tip of the iceberg. Although independently useful, these examples are intended to demonstrate the existence of design tradeoffs among variational data structures. They also provide reference points for the retrospective analysis of our own previous work in Section 3. There is a huge amount of unexplored space both in alternative implementations of the variational data structures we discuss and in variational implementations of the many data structures we do not consider here.

4. Variational Data Structures

In the previous section, we introduced three implementations of a generic \(V\) type constructor that can produce from any data type \(A\) a corresponding variational data type \(V[A]\). Although convenient, these implementations are inefficient for representing variability in complex data structures since they do not take the internal structure of \(A\) into account and therefore cannot support the sharing of common subparts. As a simple example, consider the case class

```scala
case class Nil[A]() extends List[A]
case class Cons[A](h: A, t: List[A]) extends List[A]
def get[A](l: List[A], i: Int): Option[A]
def length[A](l: List[A]): Int
```

Although modern SAT solvers are very efficient even for big formulas, the underlying problem is NP-complete and does not scale well for certain formula shapes.

4.1 Variational Lists

Let us begin with a traditional non-variational interface for immutable linked lists, parameterized by the type \(A\) of its elements:

```scala
trait List[A]
case class Nil[A]() extends List[A]
case class Cons[A](h: A, t: List[A]) extends List[A]
```

Additionally, throughout the paper we employ the following syntactic sugar for denoting lists.

```
[x1, ..., xn] ≡ Cons(x1, Cons(..., Cons(xn, Nil()))...)  
```

To implement a variational list, the first step is to introduce variation into the type signatures of the plain list operations.

```scala
def prune[A](v: V[A], sel: Set[Tag], des: Set[Tag]): V[A]
def prune[A](v: V[A], ctx: Formula): V[A]
```

![Figure 1. Pruning dead alternatives from tag trees.](image)

![Figure 2. Pruning dead alternatives from formula trees.](image)
Already this poses a design decision: Which (argument and result) types do we make variational? This will determine where we introduce variation into the data structure. Then, we must decide how to encode this variation to support efficient implementations of the operations that we need.

4.1.1 List[V[A]]

An initial idea is to not change the types of the signatures or the list data structure at all. We have already seen that we can trivially implement variational lists (inefficiently) by applying V to List[A] to form a variational list of type V[List[A]]. However, we can also apply V to the element type A, to obtain a variational list of type List[V[A]]; that is, the variational list is just an ordinary list of variational elements. Now we can concisely represent the variation between [1,2,3,4] and [1,2,4,5] as [1,2,T<3,5>,4].

The advantages of this implementation are that it supports the sharing of common elements among list variants (observe that there is no redundancy in the encoding of our example), and it requires no changes to the underlying list data structure. However, a significant drawback is that it enforces that all variant lists have the same length. For example, using this representation there is no way to encode the variation between the lists [1,2,3,4] and [1,2,3]. Therefore, while List[V[A]] is more space efficient, the naïve V[List[A]] representation is more expressive. The next two implementations will recover this expressiveness while maintaining some or all of the space efficiency gains, but at the cost of increased implementation and runtime complexity.

4.1.2 TList[A]

Returning to the question of where to introduce variability in the types and implementation of our linked-list data structure, one possibility is to make the list’s tail variational.

```scala
trait TList[A]

case class Nil[A]() extends TList[A]

case class Cons[A](h: V[Option[A]], t: OList[A]) extends TList[A]
```

In addition to replacing List[A] by the new type TList[A], observe that we have made the tail component of Cons variational. With this encoding, we can prepend an element onto potentially several alternative lists, supporting variational lists with different lengths that may share common prefixes. For example, we can encode the variation between [1,2,3] and [1,2] as Cons(1, Cons(2, T<Cons(3,Nil()), Nil()>), Nil(=))).

Implementations of the get and length operations are straightforward and exploit sharing at the head of the list.

```scala
def get[A](l: TList[A], i: Int): V[Option[A]] = l match {
  case Nil() => One(None)
  case Cons(h, t) => if (i==0) One(Some(h))
      else flatMap(t, (k:TList[A]) => get(k, i-1))
}

def length[A](l: TList[A]): V[Int] = l match {
  case Nil() => One(0)
  case Cons(h, t) =>
      map(flatMap(t, length[A]), (a:Int) => (a+1))
}
```

Note that the types of the operations also change to reflect the structure of the data type. The length operation now returns a variational integer since a TList represents potentially many different plain lists, which may be of different lengths. The get operation returns a V[Option[A]]. The outer V reflects that different variant lists can have different elements at index i. The Option[A] type reflects that i might be out of range for some of these variants, in which case the corresponding element in the variational result will be None.

This representation supports quickly adding new non-variational elements to a variational list (by the Cons operation). Since the first element of a TList is not varied, we must use V[TList[A]] if we want to support variation among arbitrary lists. The major limitation of this representation is that it supports only the efficient sharing of list prefixes. For example, to encode the variation between [1,2,3,4] and [1,2,4], we must write the following, where the element 4 is repeated.

```scala
Cons(1, Cons(2, T<Cons(3, Cons(4,Nil())), Cons(4,Nil())>))
```

4.1.3 OList[A]

An alternative encoding of variational lists can be obtained by making the head of the list variational. In fact, we already explored this possibility in Section 4.1.1. The problem was that, by only varying the head, we were limited to representing variation among lists of the same length. To circumvent that problem in this implementation, we make list elements optional; that is, the head of a list may be a choice in which some of the variants are values and some are None.

```scala
trait OList[A]

case class Nil[A]() extends OList[A]

case class Cons[A](h: V[Option[A]], t: OList[A]) extends OList[A]
```

Besides replacing List by OList, the significant change is replacing the element type A by V[Option[A]] in both the argument to Cons and the result of get.

Using this data structure, we can represent the variational list T<[1,2,3],[2,4]> without redundancy as follows.

```scala
[Chc(T,One(Some(1)),One(None)), One(Some(2)),
 Chc(T,One(Some(3)),One(Some(4)))]
```

Observe that the second alternative in the choice containing 1 is None, indicating that there is no corresponding element in the list when tag T is not selected.

This encoding supports lists of different lengths (by using None), and sharing at arbitrary positions within the list, as demonstrated by the sharing of 2 in the middle of the example above. Therefore, it can efficiently represent all of the examples discussed in this section. Its main drawback is that it requires much more complex implementations of the operations get and length, since we must track which branches of variation ultimately contain elements and which do not.
4.2 Variational Maps

As with variational lists, the goal of a variational map is essentially to provide an efficient interface to a set of related alternative plain map data structures. Similarly to lists, the naive encoding \(V[Map[A, B]] \) is obviously inefficient since variational maps can be expected to share many entries.

One possible encoding of variational maps is \(Map[A, V[Map[B]]] \). This representation exhibits many of the same tradeoffs as the variational list representation \(List[V[A]] \); that is, its main advantage is that it can directly reuse an existing map data structure unchanged. Its main disadvantage is that it does not account for the possibility that different variant maps may contain entries for different sets of keys. However, for some application domains (where keys are fixed but values may vary), this representation may be a good choice.

For other cases, let us consider an approach similar to the variational list representation \(0List[A] \). Specifically, we store mappings from keys to variational optional values. This is implemented by the following partial class definition.

```scala
class VMap[A, B](entries: Map[A, V[Option[B]]]) {
  def contains(key: A): V[Boolean] = ... 
  def get(key: A): V[Option[B]] = ... 
  def put(key: A, value: V[Option[B]]): VMap[A, B] = ... 
}
```

The role of each operation is to translate an operation on \(VMap \) into an operation on the internal representation of entries.

As an extension, we illustrate below a general technique for incrementally building variational maps in a similar way as formula trees (see Section 3.3). This alternative implementation of \(put \) maps a key to a single value of type \(B \) in a particular variational context represented by a formula.

```scala
  new VMap(entries + (key -> 
    Chc(ctx, One(Some(v)), this.get(key)))))
```

This \(put \) operation associates the key with a choice between either the new value or the value previously associated with that key. This allows us to build up a variational map entry piece-by-piece, rather than computing up front all alternative values that a key may map to. This is useful, for example, when accumulating data over another variational data structure. An obvious optimization to this implementation is to detect and remove dead branches from the choice structure using \(prune \) from Section 3.3.

4.3 Variational Sets

The last variational data structure we consider is a variational set. Once again, we use a strategy of pushing the \(V \) constructor into the definition of the data structure to increase sharing relative to the naive implementation of \(V[Set[A]] \).

One possible implementation is \(Set[V[Option[A]]] \), which is similar to \(0List[A] \) and the internal representation of \(VMap[A, B] \). This implementation has the advantage of reusing an existing set implementation and it is maximally expressive.

An alternative implementation of variational sets is based on a map that associates each element with a formula. The formula defines in which configurations the element is present in the set. The motivation for this implementation is similar to the extended \(put \) operation for variational maps—it allows us to build up variational sets incrementally, rather than requiring us to compute in advance all configurations where an element is or is not present.

```scala
class VSet[A](entries: Map[A, Formula]) {
  def contains(key: A): V[Boolean] = ... 
  def add(key: A, ctx: Formula): VSet[A] = new VSet(entries + (key -> 
    ctx ∨ entries.getOrElse(key, False))))
}
```

The internal representation is similar to the formula map implementation of \(V \) described in Section 3.2.3 but simpler since it need not maintain the choice-as-partition invariant. This makes the \(add \) operation quite simple.

```scala
def add(key: A, ctx: Formula): VSet[A] = new VSet(entries + (key -> 
  ctx ∨ entries.getOrElse(key, False))))
```

When an element–formula pair is added, the element will be included in all configurations where either the argument formula is satisfied, or the previous formula for the element is satisfied. This supports incrementally adding new variational elements to the set based on the current configuration context.

5. Computing with Variational Data

Ultimately, variational data structures are needed to support variational computations. As described in Section 2.2, we focus specifically on functions that preserve the variability of their inputs in their output. Given a function \(f \) of type \((A_1, \ldots, A_n) \Rightarrow B \), the corresponding variation-preserving function \(vf \) has the type \((V[A_1], \ldots, V[A_n]) \Rightarrow V[B] \). Most importantly, the relationship between inputs and outputs defined by \(f \) will be preserved across all configurations in \(vf \); that is, if we configure each variational input to \(vf \) with the same configuration \(c \) and obtain the plain inputs \(a_1, \ldots, a_n \), then if we also configure the variational output of \(vf \) with \(c \), we should obtain the plain output \(f(a_1, \ldots, a_n) \).

One important observation is that variation-preserving functions can be mechanically obtained from plain functions. As a simple example, consider the following function that adds two integers and returns the result.

```scala
def plus(a: Int, b: Int): Int = a + b
```

Our goal is to define a variation-preserving function \(vplus \) such that, for example, \(vplus(A<1,2>, A<4,8>) \) returns \(A<5,18> \) and \(vplus(A<1,2>, B<4,8>) \) returns \(A<8,9>, B<6,10> \). This can be easily achieved for any of the implementations of \(V[A] \) presented in Section 3 by the \(map \) and \(flatMap \) functions.

```scala
def vplus(va: V[Int], vb: V[Int]): V[Int] = flatMap(va, (a:Int) => map(vb, (b:Int) => a+b))
```
In fact, we can lift any plain function to make it variation-preserving by using map and flatMap. The following functions automate this process for functions of different arities\(^6\)

\[
\begin{align*}
def liftV\{A,B\}(f: A=B, va: V\{A\}): V\{B\} &= \text{map}(va, (a:A) \mapsto f(a)) \\
def liftV2\{A,B,C\}(f: (A,B)\Rightarrow C, va: V\{A\}, vb: V\{B\}): V\{C\} &= \text{flatMap}(va, (a:A) \mapsto \text{map}(vb, (b:B) \mapsto f(a,b))) \\
def liftV3\{A,B,C,D\}(f: (A,B,C)\Rightarrow D, va: V\{A\}, vb: V\{B\}, vc: V\{C\}): V\{D\} &= \text{flatMap}(va, (a:A) \mapsto \text{flatMap}(vb, (b:B) \mapsto \text{map}(vc, (c:C) \mapsto f(a,b,c))))
\end{align*}
\]

Now we can define vplus as simply liftV2(plus, va, vb).

While general, the liftV functions essentially execute the lifted function repeatedly on the cross product of the variants of its inputs, so this approach can be quite inefficient. Note also that we cannot generically lift operations on plain data structures to the variational data structures defined in Section 4 since these specialized implementations do not have types of the form \(V\{\ldots\}\). However, many operations can be defined by similar uses of map and flatMap. For example, the following function sums the elements of a variational TList, producing a variational integer as a result.

\[
\begin{align*}
def \text{vsum}(l: TList[Int]): V\{Int\} &= l \text{ match } \\
&\quad \text{\{ case Nil() } \Rightarrow \text{One(0)} \\
&\quad \text{\, case Cons(h,t) } \Rightarrow \text{vplus(One(h), flatMap(t,\text{vsum})) }
\end{align*}
\]

Implementing variational sum for OList requires also taking into account that some values may be None. These are counted as 0 when computing the sum.

\[
\begin{align*}
def \text{vsum}(l: OList[Int]): V\{Int\} &= l \text{ match } \\
&\quad \text{\{ case Nil() } \Rightarrow \text{One(0)} \\
&\quad \text{\, case Cons(h,t) } \Rightarrow \text{vplus(One(h), flatMap(t,\text{vsum})) }
\end{align*}
\]

Although pattern matching, map, and flatMap provide a powerful interface for defining new operations on variational data structures, an important avenue of future research will be identifying more abstract interfaces that hide the implementation details discussed in Section 4. Ideally, clients need understand only the expressiveness and performance trade-offs among representations and not their specific encodings.

While this section has presented a structured approach to defining simple variation-preserving functions, computing with variational data in real applications can get considerably more complicated. In the next section, we explore this problem and discuss how a suite of general-purpose, well-understood variational data structures can help.

6. Retrospective Design Analysis

In this work, we advocate a general approach to variability and start exploring the design space for variational data structures. In fact, we discovered only after several years of research that we and others have independently explored principles of encoding variational data. Without being aware of the larger design space, we have explored these encodings in an ad hoc fashion and incrementally improved them until they met some performance goals (for example, being able to parse the entire Linux kernel in reasonable time). While the different approaches are similar at a high level, they often use different encodings and make different tradeoffs, locating them at different points in the design space.

In this section, we retrospectively analyze the design of several systems that cope with variability in different ways using case-study research. We identify design decisions and their rationales at the time, as well as possible alternatives that our discussion of the design space reveals. We look mostly at systems that have been developed by some of this paper’s authors, giving us access to the history and rationales of these projects. Since most of the systems rely on several years of research, it would require significant engineering effort to actually rewrite the systems to use more generic representations and to experiment with alternatives. Such an elaborate analysis exceeds the scope of this paper.

6.1 CIDE and CFJ

In our (Kästner and Apel) early work, we use a restricted encoding of variability based on optionality. CIDE is a tool for managing software variation by coloring parts of the code that correspond to different features [29]. Colored Featherweight Java (CFJ) [30] is a formalization of this technique based on Featherweight Java (FJ) [27], a formal calculus that models a small subset of the Java programming language. In both CIDE and CFJ, nodes in an AST can be marked as optional, but alternatives are not supported. Optional nodes are associated with formulas representing a partial configuration space.

The model is similar to the OList data structure introduced in Section 4. However, unlike list elements, not all AST nodes can be marked optional because omitting them would yield a syntactically invalid program. For example, a Java statement is syntactically optional while the condition of an if-statement is not. Therefore, to vary the condition of an if-statement, some workaround is needed, such as duplicating the entire if-statement, marking both as optional, and associating them with different (mutually exclusive) features. CIDE includes special support for some common patterns like this, but the problem could have been avoided with a variation model that also supports choices instead of only optionality.

6.2 Variability-Aware Type Checking in FFJ\(_{PL}\)

Our work on type checking FFJ\(_{PL}\) is one of our earliest efforts to reason about variational programs [2]. FFJ\(_{PL}\) extends FJ with support for feature composition based on mixins [24] and superimposition [3]. Each program feature is implemented by its own module; modules can be composed in different combinations, giving rise to a product line [3].
The type system for FFJ$_{PL}$ must take the variability induced by the combinatorics of feature composition into account. The type of a term may vary depending on the features that are included. A key design decision was to represent the variational type of a term as the set of all possible types the term can have in the configuration space. Once this set has been computed for a term, the type checker proceeds with all possibilities simultaneously. Since the set contains only distinct types, this avoids redundant work for variant terms of the same type. This is an early example of exploiting sharing in a variational analysis.

Compared to later variational analyses, however, the variational data structures in FFJ$_{PL}$ are very simple—variational types are expressed as simple untagged sets of alternatives. This has a few limitations.

One limitation is that information, about which variants have which types, is lost during the typing process. For example, if method m has type $\text{Int} \Rightarrow \text{Bool}$ when feature T is included, and type $\text{Bool} \Rightarrow \text{Bool}$ otherwise, then the set of possible types is \{ $\text{Int} \Rightarrow \text{Bool}$, $\text{Bool} \Rightarrow \text{Bool}$ \}. Now every invocation of m must be compatible with both types, which in this case is impossible. Using a choice, we can represent the possible types of m as $T\text{Int} \Rightarrow \text{Bool}$, $\text{Bool} \Rightarrow \text{Bool}$. Then, in contexts where feature T must be selected, such as in the module implementing T, we need only check against the corresponding type of m. In contrast, the set representation leads to an overly conservative type system since it enforces that every use is compatible with every definition, even though some definition-use combinations are impossible.

Another limitation is that the set representation is flat, which misses opportunities for sharing in compound types. For example, the signature of method m varies only in its argument type, but we repeat the shared result type in both alternatives. The variational type of the corresponding choice representation is $V[\text{A} \Rightarrow \text{B}]$. A more efficient representation is to localize variability in compound types. For example, the type of m can be represented as $T\text{Int} \Rightarrow \text{Bool}$, $\text{Bool} \Rightarrow \text{Bool}$. This representation of variational types is used in the variational type inference algorithm described in Section 6.7.

At the time of developing FFJ$_{PL}$ and its type system, we did not have a full understanding of variational data structures and algorithms. The model we develop in this paper makes these limitations and their solutions apparent.

6.3 Variability-Aware Parsing in TypeChef

In the development of TypeChef, when we decided to reach for the goal of parsing the Linux kernel with all of its #ifdef configurations [31], we needed an efficient encoding of variability in the resulting AST. The size of the problem and the nature of having small #ifdef blocks in large files required a data structure where variation in the input (C source file) is represented locally in the output (AST).

After in-lining all included header files, a typical C file contains hundreds of top-level declarations (TLDs), many of which are guarded by #ifdef blocks. Some TLDs also have alternatives, for example, selecting between a 32-bit and 64-bit architecture. The average Linux file is affected by 207 configuration options [31], so a naive encoding, such as $V[\text{AST}]$, would lead to an exponential blowup. Instead, our data structure for a translation unit contains a list of TLDs (the order of TLDs is significant in C), where each TLD is associated with a formula describing in which configurations it is visible. The formula is derived from the condition of the #ifdef guarding the TLD, if any. This is equivalent to the variational list data structure $O\text{List}[\text{TLD}]$.

In retrospect, the chosen representation of $O\text{List}[\text{TLD}]$ is better than $\text{List}[V[\text{TLD}]]$ since it is common for different configurations to have different numbers of top-level declarations. It is also more efficient than $T\text{List}[\text{TLD}]$ since many differences and commonalities are distributed throughout the entire list (in a C file, there are optional entries in header files at the beginning, and in the actual code at the end), which would lead to redundancies in $T\text{List}[\text{TLD}]$.

Deriving partial configurations from #ifdef expressions (where users can write $\#if \ A \ || \ (B<2)$) requires an expressive representation of formulas. We use propositional formulas instead of also encoding numeric operations because reasoning about propositional formulas with SAT solvers is much faster than reasoning with CSP or SMT solvers.

Additionally, a TLD may itself contain variation. Where possible, we represent this by nested variational lists, for example, a variational list of statements, $O\text{List}[\text{Stmt}]$, in the block of a function. Where nodes of the AST are not syntactically optional, for example, the return type of a function or the condition of an if-statement, we encode variation by simple choices between alternatives. For choices, we use the formula tree representation, described in Section [6.7].

In the development of their SuperC parser [25], Gazzillo and Grimm independently arrived at the same data structure design as the TypeChef parser, except in an untyped setting.

6.4 Variability-Aware Type Checking in TypeChef

Using as input the variational AST data structure from Section 6.3, we implemented a type system that reports type errors in partial configuration spaces as output [32, 36]. The type checker works mostly in the usual way: It iterates over the AST, collects defined names and their types in a symbol table, and checks whether expressions are well typed. The major difference is that variation in the AST propagates to many other data structures. This has led to interesting observations regarding variational data structures.

We implemented a variational symbol table as a map from names to variational types, $\text{Map}[\text{Name}, V[\text{Option}[\text{Type}]]]$. As in the $V\text{Map}$ data structure from Section 4.2, values are optional since not all symbols occur in every configuration. We had to develop most of the operations for this data structure from scratch, but would have used a general-purpose variational map data structure, such as $V\text{Map}$, if it was available.

In most cases, we expect relatively little variation within types, so we represent variational types as simply $V[\text{Type}]$.
6.5 Choice Calculus

In a different line of work, we (Erwig and Walkingshaw) have introduced the choice calculus as a formal model of variation that can be instantiated for different object languages and extended by new language features [20][21]. The goal of the choice calculus is to provide a platform for research on the representation, manipulation, and analysis of variation. In fact, we have used it in this role throughout this paper, as it is the basis of the choice-based variation models from Section 3.

The choice calculus is similar to the tag-tree model described in Section 5.2.1. The main difference is that each choice is locally bound by a dimension of variation that declares several tags to be used by all of its bound choices. All choices in the same dimension must have the same number of alternatives, and they are all synchronized; that is, if the first tag in a dimension is selected, every bound choice is replaced by its first alternative.

The tag-tree model is isomorphic to the choice calculus restricted to binary dimensions and choices. An n-ary choice can be transformed into a tag tree by simply chaining binary choices, for example, if dimension δ contains tags τ, υ, and ∀, then the choice calculus expression δ<1,2,3> can be encoded by the tag tree τ<1,υ<2,3>> (the selection of ∀ implies that neither τ nor υ was selected). Therefore, although tag trees are equally expressive as the choice calculus, the organization of tags into dimensions imposes an additional structure that ensures that mutually exclusive tags are used consistently.

Otherwise, relative to formula-based representations, such as formula trees and TypeChef, the choice calculus exhibits similar tradeoffs as tag trees: Some kinds of variation are difficult to represent efficiently, for example, inclusive-or relationships between tags can only be expressed by redundancy or by a separate reuse construct provided by the choice calculus (similar to a let-expression). However, it supports simple functional operations in many places where formula-based representations require SAT solvers. Also, like tag trees and formula trees (but unlike formula maps), the choice calculus preserves the choice-as-partition invariant by construction.

6.6 Variation Programming

In our work on variation programming [22], we promoted the idea of computing with variation and began exploring variational data structures, using the choice calculus. We provided a general strategy to add variability to an algebraic data type and to lift operations on the original data type to the new variational data type.

The strategy is to extend the data type τ by a new case for ∀[τ] for representing variation embedded within the data type. Since ∀ is a monad, the map and flatMap functions can be mechanically derived, along with the lift∀ functions from Section 5. This makes it trivial to lift functions on τ to the new data type. In the case of lists, this approach corresponds exactly to the TList[A] representation for incorporating variability in the tail of a list.

This systematic approach to defining variational data structures is general in that it can be applied to any data structure that can be represented as an algebraic data type. However, it only supports the sharing of contexts of variational subexpressions; that is, if there are more commonalities within the alternatives of a choice, they cannot be shared. Therefore, for many use cases a specialized representation will be more efficient; for example, this weakness of the mechanically derivable TList[A] is overcome by OList[A].

6.7 Variational Type Inference

Using the choice calculus, we have also worked on the problem of typing variational programs, but from a quite different perspective than FFJPL and TypeChef. We have extended Hindley-Milner-style type inference to the variational lambda calculus (VLC) [13][14]. The type system assigns correspondingly variational types to VLC expressions.

Both VLC expressions and variational types can be viewed as variational data types of the form described in Section 6.6. The representation of variational types is more space efficient than FFJPL and TypeChef since it supports sharing of common subparts of a type. This can have a significant effect when several dimensions of variability are involved. For example, the following variational type includes three dimensions of variation.

(A<Int,Bool>, B<Int,Bool>) => C<Int,Bool>

In TypeChef, a function with this type would require eight alternative types in the formula tree corresponding to the function’s declaration. This is acceptable since such types are rare in existing code, which is TypeChef’s focus. However, we sought to promote variability to a first-class language feature and encourage its use, so efficiently representing highly variational types was a priority.

The efficient representation of variation in VLC expressions and types is crucial to the efficiency of our type-inference algorithm. For expressions, localizing variation in choices allows us to infer the types of shared context once for all variants. It also allows us to locally reuse type unifi-
cation results when two subexpressions have the same type. For types, localized variation supports a type unification algorithm that is cubic in the size of the types being unified. While this is somewhat worse than traditional type unification, it is significant that the running time is bounded by the size of the expressions rather than the number of variants, which is the typical source of blowup when analyzing variability.

6.8 Variability-Aware Data-flow Analysis

In SPLLIFT, we (Bodden) have presented an approach to automatically lift inter-procedural data-flow analyses to operate on an entire software product line at once \cite{10}. The main design goal of SPLLIFT was to support the direct reuse of single-program data-flow analyses on variational programs, and this is reflected in the design of its data structures.

The analysis operates on a variational inter-procedural control-flow graph in which individual edges are annotated with Boolean feature constraints. The encoding of successors is effectively a variational map between statements, VMap[Stmt,Stmt], which conditionally connects one statement to another through a control-flow edge. This encoding is a natural extension of the edge map representation for plain graphs. For control-flow graphs, which are typically quite sparse, the encoding is efficient. A viable alternative implementation would be to maintain a variational list of successor nodes for each node in the graph, for example, as OList[Stmt]. Two nonviable alternatives are V[List[Stmt]], which does not exploit sharing, and List[V[Stmt]], which requires each node to have the same number of successors in every configuration. It is interesting to note that the designers of TypeChef independently arrived at the same variational map-based encoding of variational control-flow graphs \cite{46}.

While executing an analysis, SPLLIFT associates computed data-flow facts with formulas that describe the configuration space in which the fact is known to hold so far. This association is implemented by a variational set of data-flow facts, Vset[0]. This encoding was chosen to integrate easily with the existing analysis engine for plain Java programs. SPLLIFT is a variant of the IFDS framework for interprocedural finite distributive subset problems \cite{41}. Within this framework, one can safely process a single data-flow fact at a time. This means that, for plain programs, at each statement the analysis would iterate over the set of known facts, Set[0], and apply its data-flow function to each one. The lifted implementation similarly processes the variational set, considering each fact and its corresponding formula. This makes the lifting process completely transparent from the perspective of the existing data-flow analysis.

Brabrand et al. \cite{11} also discuss a number of different encodings to lift data-flow analyses from regular programs to software product lines. In particular, they discuss two different variational encodings of data-flow facts, which they call A3 and A4. Both effectively implement instances of variational sets, A3 as an equivalent of V[Set[A]], and A4 as a variant of VSet[A].

7. Related Work

The idea for this paper formed at the Dagstuhl seminar on “Analysis, Test and Verification in the Presence of Variability” \cite{10}, where we discussed the need for foundational work on variational data structures. There had already been some preliminary attempts to identify general principles for variational data structures and algorithms: In the context of variational testing and model checking, respectively, Kästner et al. \cite{33} and Apel et al. \cite{5} identified the principles of late splitting and early joining as essential for efficiently computing with variability. In the context of type checking and data-flow analysis, Liebig et al. \cite{35} emphasized the need to express variation locally within data structures. Also in the context of data-flow analysis, Brabrand et al. \cite{11} explored different ways to express and reason about variability at the level of data structures. While none of these findings were generalized beyond their respective contexts, they motivated us to put variational data structures on more solid ground.

In a more foundational line of work, Erwig et al. developed an abstract representation of variational sets and graphs, and a framework for describing variational graph algorithms \cite{23}. The representation is based on tagging the components of the data structures with Boolean inclusion conditions.

The rest of this section focuses on the substantial corpus of work on modeling and reasoning about variation in specific application areas. In this work, much like with our own early attempts (see Section 6), variation is often encoded implicitly or in an ad hoc fashion. We discuss only a representative subset; for a comprehensive overview on variational program analyses, we refer the reader to the survey by Thüm et al. \cite{43}.

Early work on analyzing variational programs used different strategies to represent and reason about variability. The seminal work of Czarnecki et al. \cite{13} and Thaker et al. \cite{42} encoded well-formedness and type-safety properties of configurable models and programs as SAT problems. The key idea was to construct a single Boolean formula that captures the whole compile-time variability of a model or program, then to verify whether it is consistent with a variability model that expresses the intended variability. Although there were no variational data structures involved, the idea of sharing to speed up computations with variation was already at the heart of this work. Our later work on type checking made variation more explicit, as explained in Section 6.

Work on variational model checking tries to maximize sharing when representing and analyzing the states of all program variants \cite{4,15,16,35,40}; that is, parts of the state space that are equal across multiple variants should be explored and analyzed only once. To achieve this goal, one can either map parts of the state space to partial configurations \cite{16,35} or encode the association of program states and configuration options in dedicated configuration-option variables \cite{4,15,40}. Either way, the model checker must find a compact representation of the state space for all program
variants, and state-space exploration must reason about sets of states that correspond to partial configuration spaces.

In work on testing, combinatorial testing addresses the exponential blowup of configurations by strategically sampling the configuration space and applying traditional testing methods to a smaller set of variants \([17,38]\). Toward efficiently testing all variants, several researchers have explored executing a program on variational inputs by lifting a corresponding interpreter \([33,34,37,45]\). Variational interpreters have also been employed for computing with alternative privacy policies \([6,7,46]\). Values in the store of a variational interpreter are represented by variational data types. These approaches use different variational data structures; for example, Austin, Yang, and their collaborators have essentially designed tag trees \([6,7,46]\), whereas Kästner et al. have used formula trees and variational maps \([33]\).

8. Conclusion

Variation is a considerable source of complexity in software systems. Despite many attempts to represent and reason about variation in software, there is no principled understanding of how to manage variational data effectively, nor of the design space and implementation tradeoffs of variational data structures. So far, researchers and practitioners have mostly resorted to ad hoc solutions, which are not easily generalizable to other use cases and therefore miss opportunities for knowledge and code reuse. Moreover, because there are many other potential applications of variational data structures, it misses a chance for research on software variability to make a more general and significant contribution to software engineering at large.

The main goal of this paper is to promote systematic and foundational research on variational data structures and to raise awareness of the benefits of such research. Our key insight is that support for variation can be understood as a general and orthogonal property of data types, data structures, and algorithms. We began the systematic exploration of some basic variational data structures, focusing on revealing tradeoffs among different implementations. Based on this work, we retrospectively analyzed the design decisions and design tradeoffs in our own previous work and in the work of other researchers. However, this is only the beginning. This paper is also a call to action to rethink current approaches to managing variational data, to examine how they can be generalized, and to develop new solutions based on a principled and common understanding of the nature of variation.

Acknowledgments

This work is supported by NSF grants CCF-1219165, CCF-1318808, and IIS-1314384; by DFG grants AP 206/2, AP 206/4, and AP 206/6; by the BMBF within EC SPRIDE; and by the Hessian LOEWE excellence initiative within CASED. We would also like to thank Paolo G. Giarrusso for helpful comments on an earlier version of this paper.

References

[27] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GI. ACM Trans. Programming Languages and Systems, 23(3):396–450, 2001.

