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Extending Type Inference to Variational Programs

SHENG CHEN, MARTIN ERWIG, and ERIC WALKINGSHAW, Oregon State University

Through the use of conditional compilation and related tools, many software projects can be used to gen-
erate a huge number of related programs. The problem of typing such variational software is difficult. The
brute-force strategy of generating all variants and typing each one individually is: (1) usually infeasible
for efficiency reasons and (2) produces results that do not map well to the underlying variational program.
Recent research has focused mainly on efficiency and addressed only the problem of type checking. In this
work we tackle the more general problem of variational type inference and introduce variational types to
represent the result of typing a variational program. We introduce the variational lambda calculus (VLC)
as a formal foundation for research on typing variational programs. We define a type system for VLC in
which VLC expressions are mapped to correspondingly variational types. We show that the type system
is correct by proving that the typing of expressions is preserved over the process of variation elimination,
which eventually results in a plain lambda calculus expression and its corresponding type. We identify a set
of equivalence rules for variational types and prove that the type unification problem modulo these equiva-
lence rules is unitary and decidable; we also present a sound and complete unification algorithm. Based on
the unification algorithm, the variational type inference algorithm is an extension of algorithm W . We show
that it is sound and complete and computes principal types. We also consider the extension of VLC with
sum types, a necessary feature for supporting variational data types, and demonstrate that the previous
theoretical results also hold under this extension. Finally, we characterize the complexity of variational type
inference and demonstrate the efficiency gains over the brute-force strategy.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifications—
Applicative (functional) languages; F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs—Type structure

General Terms: Languages, Theory

Additional Key Words and Phrases: Variational lambda calculus, variational type inference, variational
types

ACM Reference Format:
Chen, S., Erwig, M., and Walkingshaw, E. 2014. Extending type inference to variational programs. ACM
Trans. Program. Lang. Syst. 36, 1, Article 1 (March 2014), 54 pages.
DOI:http://dx.doi.org/10.1145/2518190

1. INTRODUCTION

The source code in a software project is often used to generate many distinct but
related programs that run on different platforms, rely on different libraries, and in-
clude different sets of features. Current research on creating and maintaining mas-
sively configurable software systems through software product lines [Pohl et al. 2005],
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1:2 S. Chen et al.

generative programming [Czarnecki and Eisenecker 2000], and feature-oriented
software development [Apel and Kästner 2009] suggests that the variability of soft-
ware will only continue to grow. The problem is that even the most basic program
verification tools are not equipped to deal with software variation, especially at this
scale.

Simple static analyses, such as syntax and type checkers, are defined in terms of
single programs, so the usual strategy is to apply these only after generating a partic-
ular program variant. But this strategy works only when authors retain control of the
source code and clients are provided with a small number of preconfigured, pretested
programs. If the number of variants to be managed is large or if clients can configure
their own customized variants, the strategy fails since these errors will be identified
only when a particular variant is generated and likely by someone not in a position to
either fix or understand them.

Any static analysis defined for single programs can be conceptually extended to vari-
ational programs by simply generating all program variants and testing each one in-
dividually. In practice, this is usually impossible due to the sheer number of variants
that can be generated. The number of variants grows exponentially as new dimensions
of variability are added—for example, each independently optional feature multiplies
the total number of variants by two—so this brute-force strategy can only be used for
the most trivial examples. Sampling techniques can be used to improve the situation,
but do not solve the problem in general.

Efficiency is not the only failing of the brute-force strategy; there is also the issue
of how to represent the results of analyses on variational software. Using the brute-
force approach, one type error in the variational program can cause type errors in a
huge number of program variants. These errors will be reported in terms of particular
variants rather than the actual variational source code. Similarly, the types inferred
for a program variant will not correspond to the variational source code, limiting their
use as a way to describe and understand the original variational program.

In this article we address both of these problems in the context of typing. We first
present a simple formal language to support research on variational static analy-
ses, then define a type system for this language where variational programs are as-
signed correspondingly variational types. Finally, we present an algorithm for varia-
tional type inference that infers variational types from variational programs directly
and is therefore significantly more efficient in the expected case than the brute-force
strategy.

Other researchers have also addressed the efficiency problem by developing strate-
gies that type check variational software directly, rather than individual program
variants [Kästner et al. 2012a; Kenner et al. 2010; Thaker et al. 2007]. Our work dis-
tinguishes itself primarily by solving the more difficult problem of type inference. This
leads to some subtle differences. For example, the question of how to represent the re-
sults of type inference on variational programs leads to the notion of variational types.
This extends the notion of variation from the expression level to the type level, allowing
us to represent the types of variational programs more efficiently. More importantly,
variational types supports the understanding of variational software by characterizing
the variational structure of the encoded types.

In Section 2 we present the variational lambda calculus (VLC), a conservative ex-
tension of the lambda calculus with constructs for introducing and organizing static
variability in lambda calculus expressions. The extension is based on our own previ-
ous work on representing variation with the choice calculus [Erwig and Walkingshaw
2011]. VLC provides simple, direct, and structured support for static variability in
lambda calculus expressions, enabling arbitrarily fine-grained and widespread vari-
ation. We demonstrate this with a few examples emphasizing how variability can
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Extending Type Inference to Variational Programs 1:3

impact the types of functions and expressions. In addition to its use in this article,
like the choice calculus, VLC can serve more generally as a formal foundation for the-
oretical research on variational software.

In Section 3 we develop a type system for VLC that relates variational types to VLC
expressions. The structure of variational types is given in Section 3.1, and the typing
relation is given by a set of typing rules in Section 3.2. The crucial component of the
type system is the rule for function application, which invokes a notion of variational
type equivalence. The definition of this equivalence relation is provided in Section 4 to-
gether with a corresponding rewriting relationship, normal forms for variational types,
and their properties.

In Section 5 we present a precise characterization of the relationship between vari-
ational programs, variational types, and the variant programs and types that these
represent. VLC expressions are incrementally refined into plain lambda calculus ex-
pressions through a process called selection. We demonstrate that the typing relation
is preserved during selection, eventually yielding plain lambda calculus expressions
and their corresponding plain types.

Section 6 presents two independent extensions to the variational type system.
Section 6.1 extends the type system with sum types, illustrating that the type system
can be extended in a straightforward way to support the additional typing features
needed to support real-world functional programming languages, such as Haskell.
Section 6.2 describes an extension of the variability metalanguage with a construct
for declaring and scoping dimensions of variation. This provides an essential link to
our previous work on the choice calculus, showing that VLC is just an instantiation of
the choice calculus with the object language of lambda calculus.

The variational type inference algorithm is structurally similar to other type in-
ference algorithms. By far the biggest technical challenge is the unification of varia-
tional types. In Section 7 we describe the problem and present a solution in the form
of an equational unification algorithm based on a notion of qualified type variables.
We also evaluate the correctness and analyze the time complexity of this algorithm.
In Section 8 we define the type inference algorithm as an extension of algorithm W
and demonstrate that the algorithm is sound, complete, and has the principal type
property.

Because a straightforward, brute-force algorithm exists for typing variational pro-
grams, as described earlier, our algorithm must improve on this in order to be prac-
tically useful. In Section 9 we characterize the efficiency gains of variational type
inference over the brute-force approach, then demonstrate these gains in a series of
experiments.

In summary, this article makes the following contributions.

— The variational lambda calculus language, which can serve as a formal foundation
for studying variational typing and other variational analyses (Section 2.2)

— The concept and representation of variational types for characterizing the types of
variational expressions (Section 3.1)

— The type system for assigning variational types to VLC expressions (Section 3.2)
— A set of equivalence rules for variational types (Section 4) and a normalizing rewrit-

ing relation for checking type equivalence (Theorem 4.6)
— A proof that variational typing is preserved over variant selection

(Theorem 5.2). In practical terms, this means that we can determine the type
of each plain program variant that can be selected from a variational program, just
by applying the same selection to the variational type.

— A proof that variational unification, modulo the type equivalence rules, is unitary
(Theorem 7.1).

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 1, Publication date: March 2014.
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1:4 S. Chen et al.

— An algorithm for solving the variational unification problem (Section 7.2) that is
sound (Theorem 7.5) and complete (Theorem 7.6).

— An analysis of the time complexity of the variational unification algorithm
(Section 7.4)

— A type inference algorithm for VLC (Section 8) and a proof that the essential prop-
erties of type inference for lambda calculus carry over to type inference for VLC,
specifically that the algorithm is sound (Theorem 8.1) and complete and most gen-
eral (Theorem 8.2).

— An evaluation of the efficiency of the type inference algorithm, both analytically
and experimentally, that demonstrates the feasibility of our approach (Section 9)

2. VARIATIONAL LAMBDA CALCULUS

After providing a quick overview of the main constructs of our chosen variation repre-
sentation in Section 2.1, we will define the syntax and semantics of variational lambda
calculus (VLC) in Sections 2.2 and 2.3, respectively.

2.1. Elements of the Choice Calculus

Our variation representation is based on our previous work on the choice calculus
[Erwig and Walkingshaw 2011], a fundamental representation of software variation
designed to improve existing variation representations and serve as a foundation for
theoretical research in the field. The fundamental concept in the choice calculus is the
choice, a construct for introducing variation points in the code. Choices are associated
with dimensions, which are used to synchronize related choices and provide structure
to the variation space.

As an example, suppose we have two different ways to represent some part of a
program’s state. In one version of the program the state is binary so we use a boolean
representation; in another version of the program there are more possible states, so we
use integers. The decision of which state to use is static—that is, we make the decision
before the program runs. In our code, when we initialize this part of the state, we have
to somehow choose between these two different representations. This is expressed in
the choice calculus as a choice.

x = Rep〈True, 1〉
The two different alternatives are tagged with a name, Rep, that stands for the decision
to be made about the representation. We call Rep a dimension of variation. Note that
in the preceding example the choice has been made minimally, but that is not required.
It would have been just as correct to make the whole statement subject to a choice, as
shown next.

Rep〈x = True, x = 1〉
Laws for factoring choices and many other transformations are described in our previ-
ous work [Erwig and Walkingshaw 2011].

Now suppose we have to inspect the value of x at some other place in the program.
We have to make sure that we process the values with a comparison operator of the
right type, as indicated in the following example.

if Rep〈not x, x < 1〉 then ...

This choice ensures that not is applied if x uses the boolean representation and the
numeric comparison is used when x is an integer. Here the choice’s dimension name
comes critically into play. Different choices in different parts of the program will be
synchronized if they have the same dimension name. This reflects the fact that we
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Extending Type Inference to Variational Programs 1:5

want to make the decision about the state representation once, then reuse this de-
cision consistently throughout our code. In the choice calculus, each such decision is
represented by a unique dimension of variation, and each dimension can have many
associated choices that will all be synchronized.

So what is the type of x? It can be either Bool or Int, depending on the decision made
for the dimension Rep. We can therefore express the type of x also using a choice.

x : Rep〈Bool, Int〉
Choices can have more than two alternatives, but all choices with the same dimension
name must have the same number of alternatives. Of course, a variational program
can have choices in many different dimensions, and these can be arbitrarily nested.

The relationship of dimensions and choices, and the kind of variability expressed by
the choice calculus can be understood by analogy with conditional compilation using
the C Preprocessor (CPP) [GNU Project 2009]. In this analogy, dimensions correspond
to CPP macros and choices correspond to #ifdef statements that refer to these macros.
For example, the preceding choice might be represented in CPP as shown next.

if
#ifdef REP
not x

#else
x < 1

#endif
then ...

Like CPP, the choice calculus is principally agnostic about the language that is being
annotated by choices. However, the choice calculus is a much more structured repre-
sentation of variability than CPP since:

(1) it annotates the abstract syntax tree, rather than the plain text of the concrete
syntax, ensuring that all variants that can be generated are syntactically correct;

(2) choices provide a more restricted and regular form of variability than arbitrary
boolean conditions on macros; and

(3) it ensures that variation points are consistent in the sense that all choices in the
same dimension must have the same number of alternatives.

Additionally, the choice calculus provides a static sharing construct for factoring out
code common to multiple variants, and a construct for declaring and scoping dimen-
sions of variability.

In the following two sections we introduce the variational lambda calculus (VLC).
This language is an instance of the more abstract choice calculus, where its simple
tree representation of the object language is replaced with constructs of the lambda
calculus. Equivalently, VLC can be viewed as a conservative extension of the lambda
calculus with the choice and static sharing constructs from the choice calculus. A fur-
ther extension with the choice calculus’s dimension declaration construct is presented
in Section 6.2.

2.2. VLC Syntax

The syntax of VLC is given in Figure 1. To simplify the presentation of typing and
the equivalence rules, we restrict choices to the binary case. This is not a fundamental
limitation since it is easy to simulate an n-ary choice by nesting n − 1 binary choices.

The first four VLC constructs, constant, variable, abstraction, and application are
as in other lambda calculi. The choice, binding, and reference constructs are all from
the choice calculus. The choice construct was explained in the previous section. The
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1:6 S. Chen et al.

e ::= c Constant
| x Variable
| λ x.e Abstraction
| e e Application
| D〈e, e〉 Choice
| share v= e in e Binding
| v Reference

Fig. 1. VLC syntax.

sharing constructs (binding and reference) are similar to let-constructs in lambda cal-
culus, except that they work on the annotation level. They are used to share com-
mon subexpressions across different program variants, but are resolved statically like
choices. Since share is an annotation-level construct that is resolved statically, it does
not introduce polymorphism.1

Neither VLC nor the choice calculus provide direct support for optional expressions.
This is because the alternative model of variation is more general, although in the case
of VLC, it can sometimes lead to redundancy. For example, suppose we want to repre-
sent a choice between the function even or the function even applied to the constant 3.
With explicit support for optionality via empty expressions, we might represent this
as even A〈3, ε〉, where ε denotes an empty expression. However, notice that we can’t
just include ε anywhere we allow an expression—for example, the body of an abstrac-
tion cannot be empty. Therefore, rather than treat optionality specially, we require the
scope of the choice to be expanded. So the preceding VLC expression would be rep-
resented as A〈even, even 3〉. If the repeated subexpression is large, we could instead
factor this out with sharing, for example, share f = ebig in A〈f , f 3〉.

If all share-variable references are bound by corresponding share expressions, we
say that the expression is well formed. If a VLC expression does not contain any
choices, bindings, or references (that is, it is a regular lambda calculus expression with
constants), we say that the expression is plain.

2.3. Semantics

Conceptually, a VLC expression represents a set of related lambda calculus expres-
sions. It is important to stress again that the choice calculus constructs in VLC de-
scribe static variation in lambda calculus expressions. That is, we will not extend the
semantics of lambda calculus to incorporate choices. Rather, the semantics of a VLC
expression is a mapping that describes how to produce plain lambda calculus expres-
sions from the VLC expression.

To produce a plain variant, we first expand all share expressions in the usual way.
We assume this is done implicitly in the following discussion. Next we must repeat-
edly eliminate dimensions of variation until we obtain an expression with no choices.
For each dimension D, we can select either left or right, which will replace each choice
in dimension D with its left or right alternative, respectively. We write �e�D to indi-
cate choosing the left alternatives of all choices in dimension D and �e�D̃ to indicate
choosing the right alternatives. We call D and D̃ selectors, and range over them with
the metavariable s. Since each selection eliminates a dimension of variation, we also

1We call the share construct let in our previous work [Erwig and Walkingshaw 2011] but name it differently
here to prevent confusion since it behaves differently than traditional let expressions.
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Extending Type Inference to Variational Programs 1:7

�c�s = c
�x�s = x

�λ x.e�s = λ x.�e�s

�e1 e2�s = �e1�s �e2�s

�D〈el, er〉�s =

⎧⎪⎨
⎪⎩

�el�s if s = D
�er�s if s = D̃
D〈�el�s, �er�s〉 otherwise

�share v= e in e′�s = share v= �e�s in �e′�s

�v�s = v

Fig. 2. Selection / variation elimination.

refer to this operation as variation elimination. The operation is defined in Figure 2.
Most cases simply propagate the selection to subexpressions. The interesting case is
for choices, where the choice is eliminated and replaced by one of its alternatives if the
selector is of the corresponding dimension.

We call a set of selectors a decision, and range over decisions with the metavariable
δ. The semantics of VLC is then defined as a mapping from decisions to plain lambda
calculus expressions. The definition is based on repeated selection with selectors taken
from decisions, that is, �e�δ = ��. . . �e�s1 . . .�sn−1�sn , where δ = {s1, s2, . . . , sn}. A decision
that eliminates all choices in e is called complete.

We want the semantics to be “robust” in the sense that selection with a dimension
that does not occur in e is well defined but does not eliminate any choice in e. Thus,
for any given expression e, a selector in a decision δ can play two different roles when
used in a selection. It can either be relevant and eliminate at least one choice from e
or irrelevant and not change e. Since there are infinitely many irrelevant selectors for
any expression e, we define the semantics in two conceptual steps. First, we construct
a mapping with decisions containing only relevant selectors, and then extend it to
account for irrelevant selectors.

A decision δ is minimally complete with respect to an expression e if it satisfies the
following two conditions:

(a) �e�δ is plain,
(b) ∀s ∈ δ : �e�δ−{s} is not plain.

Condition (a) ensures that δ eliminates all variability in e (that is, δ is complete with
respect to e), and condition (b) ensures that δ is minimal in the sense that it does not
contain any irrelevant selectors.

The semantics can now be defined by mapping all minimally complete decisions to
the plain expressions they select while allowing each decision to also include irrelevant
dimensions. In the definition given next we use the function |δ| = {|s| | s ∈ δ} (where
|D| = |D̃| = D) to extract the set of dimensions underlying a set of selectors.

�e� = {(δ ∪ δ′, �e�δ) | δ is minimally complete with respect to e and |δ| ∩ |δ′| = ∅}
To illustrate this definition, we give the semantics of the expression A〈e1, B〈e2, e3〉〉
where e1, e2, and e3 are plain expressions, and where we use the shorthand notation
{δ � e} to denote the set {(δ ∪ δ′, e) | |δ| �⊆ |δ′|}.

�A〈e1, B〈e2, e3〉〉� = {{A} � e1} ∪ {{Ã, B} � e2} ∪ {{Ã, B̃} � e3}

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 1, Publication date: March 2014.
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1:8 S. Chen et al.

T ::= τ Constant Types
| a Type Variables
| T → T Function Types
| D〈T, T〉 Choice Types

Fig. 3. VLC types.

Note that due to the minimality constraint, dimension B does not appear in the deci-
sion of the first entry since it is irrelevant.

3. TYPE SYSTEM

In this section we present a type system for VLC. We present a representation of vari-
ational types in Section 3.1, and typing rules for relating variational types to VLC
expressions in Section 3.2.

The type system is based on the definition of an equivalence relation on variational
types. In order to test for type equivalence, we also have to identify a representative
instance from each equivalence class. This is achieved through a set of terminating
and confluent rewrite rules. This technical aspect is provided in Section 4. Finally, in
Section 5 we present one of our main results, which says that typing is preserved over
selection.

3.1. Variational Types

As the example in Section 2.1 demonstrates, describing the type of variational pro-
grams requires a similar notion of variational types. The representation of variational
types for VLC is given in Figure 3. The meanings of constant types, type variables, and
function types are similar to other type systems. We extend the notion of plainness to
types, defining that plain types contain only these three constructs. Nonplain types
contain choice types to represent variation in types, just as choices represent variation
in expressions. Choice types often (but do not always) correspond directly to choice
expressions; for example, the expression D〈2, True〉 has the corresponding choice type
D〈Int, Bool〉.

In the next section we define the mapping from VLC expressions to variational types.

3.2. Typing Rules

The association of types with expressions is determined by a set of typing rules, given
in Figure 4. These rules also ensure that all share-bound variable references are
bound by corresponding share expressions.

We use two separate environments in the typing rules, � and �, each implemented
as a stack. The notation E ⊕ (k, v) means to push the mapping (k, v) onto the envi-
ronment stack E, and the notation E(k) = v means that the topmost occurrence of k
is mapped to v in E. The � environment maps share-bound variables to the type of
their bound expression. The � environment is the standard typing environment for
lambda calculus variables. The use of separate environments for lambda calculus vari-
ables and share-bound variables is a presentation decision to emphasize that these
variables inhabit different namespaces and serve different roles. However, they could
be easily merged into a single environment.

The T-CON rule is a trivial rule for mapping constant expressions to type constants.
The T-ABS and T-VAR typing rules for typing abstractions and variables use the typing
environment � and are the same as in other type systems for simply-typed lambda
calculi without explicit type annotations [Pierce 2002].

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 1, Publication date: March 2014.
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Extending Type Inference to Variational Programs 1:9

T-CON
c is a constant of type τ

�, � � c : τ

T-ABS
�, � ⊕ (x, T′) � e : T
�, � � λ x.e : T′ → T

T-VAR
�(x) = T

�, � � x : T

T-APP
�, � � e : T′′ �, � � e′ : T′ T′′ ≡ T′ → T

�, � � e e′ : T

T-SHARE
�, � � e′ : T′ � ⊕ (v, T′), � � e : T

�, � � share v= e′ in e : T

T-REF
�(v) = T

�, � � v : T

T-CHOICE
�, � � e1 : T1 �, � � e2 : T2

�, � � D〈e1, e2〉 : D〈T1, T2〉
Fig. 4. VLC typing rules.

The T-APP rule, however, differs from the standard definition. Given an application
e e′, typically it is required that if e′ : T′ then e : T′ → T. But this is too rigid in the
presence of variation since there are many cases where e or e′ are not exactly equal but
are still compatible due to the presence of choice types. Instead we require that the
type of e be equivalent to a function of the appropriate type, using the type equivalence
relation ≡. The definition of type equivalence, and a more concrete motivation for the
more permissive T-APP rule will be provided in Section 4.

The T-SHARE and T-REF rules describe the typing of share expressions and their
corresponding variable references. These rules use the � environment, as described
before, and are otherwise straightforward.

The T-CHOICE rule states that the type of a choice is a choice type in the same di-
mension, where each alternative in the choice type is the type of the corresponding
alternative in the choice expression.

4. TYPE EQUIVALENCE

In this section we return to the discussion of the T-APP rule from Section 3.2. This rule
is similar to the standard rule for typing application in lambda calculus, except that
requiring type equality between the type of the argument and the argument type of
the function is too strict. We demonstrate this with the following example.

succ A〈1, 2〉
The LHS of the application, succ, has type Int → Int; the RHS, A〈1, 2〉, has type
A〈Int, Int〉. Since Int �= A〈Int, Int〉, the T-APP typing rule will fail under a type-equality
definition of the ≡ relation. This suggests that equality is too strict a requirement since
all of the individual variants generated by the previous expression (succ 1 and succ 2)
are perfectly well typed (both have type Int).

Although the types Int and A〈Int, Int〉 are not equal, they are still in some sense
compatible, and are in fact compatible with an infinite number of other types as well.
In this section we formalize this notion by defining the ≡ type equivalence relation
used to determine when function application is well typed. The example given before
can be transformed into a more general rule that states that any choice type D〈T1, T2〉
is equivalent to type T1 if T1 is equivalent to T2. This relationship is captured formally
by the choice idempotency rule, C-IDEMP, one of several type equivalence rules given
in Figure 5.

Besides idempotency, there are many other type equivalence rules concerning choice
types. The F-C rule states that we can factor/distribute function types and choice types.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 1, Publication date: March 2014.
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FUN
T′

l ≡ T′
r Tl ≡ Tr

T′
l → Tl ≡ T′

r → Tr

F-C
D〈T1, T2〉 → D〈T′

1, T′
2〉 ≡ D〈T1 → T′

1, T2 → T′
2〉

C-C-SWAP1
D′〈D〈T1, T2〉, T3〉 ≡ D〈D′〈T1, T3〉, D′〈T2, T3〉〉

C-C-SWAP2
D′〈T1, D〈T2, T3〉〉 ≡ D〈D′〈T1, T2〉, D′〈T1, T3〉〉

C-C-MERGE1
D〈D〈T1, T2〉, T3〉 ≡ D〈T1, T3〉

C-C-MERGE2
D〈T1, D〈T2, T3〉〉 ≡ D〈T1, T3〉

CHOICE
T1 ≡ T′

1 T2 ≡ T′
2

D〈T1, T2〉 ≡ D〈T′
1, T′

2〉

C-IDEMP
T1 ≡ T2

D〈T1, T2〉 ≡ T1

REFL
T ≡ T

SYMM
T ≡ T′
T′ ≡ T

TRANS
T ≡ T′ T′ ≡ T′′

T ≡ T′′

Fig. 5. Variational type equivalence.

The C-C-SWAP rules state that types that differ only in the nesting of their choice types
are equivalent. The C-C-MERGE rules reveal the property that outer choices dominate
inner choices. For example, D〈D〈1, 2〉, 3〉 is semantically equivalent to D〈1, 3〉 since the
selection of the first alternative in the outer choice implies the selection of the first
alternative in the inner choice.

The remaining rules are very straightforward. The FUN rule propagates equivalence
across function types, defining that two function types are equivalent if their argu-
ment and result types are equivalent. Similarly, the CHOICE equivalence rule propa-
gates equivalence across choice types, defining that two choice types are equivalent if
both of their alternatives are equivalent. The REFL, SYMM, and TRANS rules make type
equivalence reflexive, symmetric, and transitive, respectively.

In our previous work we provide a set of semantics-preserving transformation laws
for choice calculus expressions [Erwig and Walkingshaw 2011]. The type equivalence
relation is directly descended from these laws.

The important property of equivalent types is that they represent the same map-
ping from super-complete decisions to plain types. A super-complete decision on types
T1 and T2 is a decision that is complete for both T1 and T2; that is, it resolves both
potentially variational types into plain types. Making a selection on types is the same
as making a selection on expressions. As with expressions, we define selection in ir-
relevant dimensions to be idempotent, for example, �Int�s = Int. This is crucial since
super-complete decisions will often result in selection in dimensions that do not exist
in one type or the other. The semantics function �·� for types is defined in the same
way as for expressions, as a mapping from all complete decisions to the plain types
they produce through the process of selection.

The following lemma states that a super-complete decision on two equivalent types
produces the same plain type.

LEMMA 4.1 (TYPE EQUIVALENCE PROPERTY). T1 ≡ T2 =⇒ ∀δ ∈ S : (δ, T′
1) ∈

�T1� ∧ (δ, T′
2) ∈ �T2� =⇒ T′

1 = T′
2, where S is the set of all super-complete decisions

on T1 and T2.

The proof of Lemma 4.1 relies on a simpler lemma that states that type equivalence is
preserved over selection.

LEMMA 4.2 (TYPE EQUIVALENCE PRESERVATION). If T1 ≡ T2, then �T1�s ≡ �T2�s.
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Extending Type Inference to Variational Programs 1:11

S-F-ARG
Tl � T′

l

Tl → Tr � T′
l → Tr

S-F-RES
Tr � T′

r

Tl → Tr � Tl → T′
r

S-F-C-ARG
D〈T1, T2〉 → T � D〈T1 → T, T2 → T〉

S-F-C-RES
T → D〈T1, T2〉 � D〈T → T1, T → T2〉

S-C-SWAP1
D � D′

D′〈D〈T1, T2〉, T3〉 � D〈D′〈T1, T3〉, D′〈T2, T3〉〉
S-C-SWAP2

D � D′

D′〈T1, D〈T2, T3〉〉 � D〈D′〈T1, T2〉, D′〈T1, T3〉〉
S-C-DOM1
�T1�D = T′

1 T1 �= T′
1

D〈T1, T2〉 � D〈T′
1, T2〉

S-C-DOM2
�T2�D̃ = T′

2 T2 �= T′
2

D〈T1, T2〉 � D〈T1, T′
2〉

S-C-ALT1
T1 � T′

1

D〈T1, T2〉 � D〈T′
1, T2〉

S-C-ALT2
T2 � T′

2

D〈T1, T2〉 � D〈T1, T′
2〉

S-C-IDEMP
D〈T, T〉 � T

Fig. 6. Variational type simplification.

A proof sketch for this lemma is given in the appendix, in Section A.3.1. Using
Lemma 4.2, we can now prove Lemma 4.1.

PROOF OF LEMMA 4.1. By induction over the size of δ, from Lemma 4.2 it follows
that T1 ≡ T2 implies �T1�δ ≡ �T2�δ. Since δ is complete for both types, then neither
�T1�δ nor �T2�δ will have any choice types. By examining the four equivalence rules
that do not include choice types (FUN, REFL, SYMM, TRANS), it is clear that these types
must be structurally identical.

A simple observation is that each equivalence class of types is infinite. For example,
we can always trivially expand a type T into an equivalent choice type D〈T, T〉. In order
to facilitate checking whether two types are equivalent, we identify one representative
from each equivalence class as a normal form and define rewriting rules to achieve
this normal form. Two types are then equivalent if they have the same normal form.

We define the type simplification relation � to rewrite a type into a simpler one
and use the reflexive, transitive closure of this relation �∗ to transform a type into
normal form. The type simplification rules, shown in Figure 6, are derived from the
type equivalence rules in Figure 5.

The FUN equivalence rule leads to two rewriting rules, S-F-ARG and S-F-RES,
which simplify the argument and result of a function type, respectively. Likewise, the
S-F-C-ARG and S-F-C-RES rules are derived from the F-C equivalence rule, and factor
a choice type out of the argument or result of a function type, respectively.

The two S-C-SWAP simplification rules are derived from the two C-C-SWAP equiv-
alence rules, but each adds an additional premise that ensures choice types will be
nested according to a known ordering relation � on dimension names. Thus, if T is in
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1:12 S. Chen et al.

normal form and A � B, then no choice type A〈. . .〉 will appear within an alternative of
a choice type B〈. . .〉 in T.

Picking a good ordering relation is important for efficiency since the S-C-SWAP rules
each duplicate part of the type. In the worst case, the normalization process could
lead to an exponential blow up in the size of the type. For example, if we assume
a lexicographic ordering for �, then normalizing the type D〈C〈B〈A〈· · ·〉, · · ·〉, · · ·〉, T〉,
will lead to T being duplicated eight times. One way to deal with this problem is to
determine � heuristically, for example, by initially performing a depth-first traversal
of one of the types we are comparing (before converting it into normal form), then
using its nesting of choices as �. This will ensure that we only perform the necessary
choice-swaps in the other type. Another approach (which can be combined with the
heuristic approach) is to share, rather than duplicate, the common part when swapping
choice types. This requires solving the common subexpression problem, for which there
are some efficient algorithms [Downey et al. 1980; Nelson and Oppen 1980]. Since
performance is not our primary focus here, our unification algorithm uses a variant of
the first approach, only swapping choices as needed during the decomposition process.

The remaining rewriting rules are straightforward. Like the S-F-ARG and S-F-RES

rules, the S-C-ALT rules are focused adaptations of the CHOICE equivalence rule, one
simplifies the left alternative of a choice type, the other simplifies the right. The
S-C-DOM rules follow less directly from the corresponding C-C-MERGE equivalence
rules. They reuse the selection operation from the semantics to more immediately
eliminate any dominated choice types. Finally, the S-C-IDEMP rewriting rule is derived
from the C-IDEMP equivalence rule, but is somewhat stricter since it requires the two
alternatives to be structurally equal.

By repeatedly applying type simplification until no rewrite rule matches, we achieve
a type in normal form. Types in normal form satisfy the following criteria.

(1) Choice types are maximally lifted over function types. For example, the type
A〈Int → a, a → Bool〉 is in normal form, while A〈Int, a〉 → A〈a, Bool〉 is not.

(2) The type does not contain dominated choices. For example, the type A〈A〈Int,
Bool〉, α〉 is not in normal form. It can be simplified to A〈Int, a〉, which is in nor-
mal form.

(3) The nesting of choices adheres to the ordering relation � on their dimension names.

(4) The type contains no choice types with equivalent alternatives.

(5) Finally, a function type is in normal form if both its argument and result types are
in normal form; a choice type is in normal form if all its alternatives are in normal
form.

Figure 7 shows an example transformation of the type B〈A〈τ1, τ2〉, A〈τ1, τ2〉〉 into its
corresponding normal form A〈τ1, τ2〉 (we assume A � B). Note that in the applica-
tion of the S-C-SWAP1 rule, we arbitrarily chose to swap the nested choice in the first
alternative. We could have also applied S-C-SWAP2, or applied S-C-IDEMP to the alter-
natives of the A choice type. An important property of the �∗ relation, however, is that
our decisions at these points do not matter. No matter which rule we apply, we will
still achieve the same normal form. This is the property of confluence, expressed in
Theorem 4.3 next.

THEOREM 4.3 (CONFLUENCE). If T �∗ T1 and T �∗ T2, then there exists a T′ such
that T1 �∗ T′ and T2 �∗ T′.
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Extending Type Inference to Variational Programs 1:13

B〈A〈τ1, τ2〉, A〈τ1, τ2〉〉
�A〈B〈τ1, A〈τ1, τ2〉〉, B〈τ2, A〈τ1, τ2〉〉〉 (S-C-SWAP1)
�A〈B〈τ1, τ1〉, B〈τ2, τ2〉〉 (S-C-DOM)
�A〈τ1, B〈τ2, τ2〉〉 (S-C-IDEMP/S-C-ALT1)
�A〈τ1, τ2〉 (S-C-IDEMP/S-C-ALT2)

Fig. 7. Example transformation into normal form.

A rewriting relation is confluent if it is both locally confluent and terminating. These
properties are expressed for the �∗ relation next in Lemmas 4.4 and 4.5. From these
two lemmas, Thorem 4.3 follows directly.

LEMMA 4.4 (LOCAL CONFLUENCE). For any type T, if T � T1 and T � T2, then
there exists some type T′ such that T1 �∗ T′ and T2 �∗ T′.

The proof of this lemma is given in the appendix, in Section A.3.2.

LEMMA 4.5 (TERMINATION). Given any type T, T �∗ T′ is terminating.

We give an informal proof of termination here to convince the reader. A formal proof
based on a counting mechanism is presented in the appendix, in Section A.3.3.

PROOF SKETCH. The �∗ relation will terminate when we reach a normal form (as
defined by the criteria listed earlier) because an expression satisfying these criteria
will not match any rule in the � relation, by construction. Therefore, we must show
that these criteria will be satisfied in a finite number of steps.

Trivially, the two S-C-DOM rules eliminate dominated choices, and the S-C-IDEMP

rule eliminates equivalent alternatives, in a finite number of steps. The S-F-C-RES

and S-F-C-ARG lift choice types over function types, and no rule can lift function types
back out. The S-C-SWAP1 and S-C-SWAP2 rules define a similarly one-way relation for
choice nestings, according to the � relation on choice names. Thus, we can see that all
rules make progress toward satisfying one of the criteria, and that in isolation they
can achieve this in a finite number of steps.

A potential challenge to termination arises via the duplication of type subexpres-
sions in the S-F-C and S-C-SWAP rules. For example, the right alternative T3 of the
original choice type is duplicated in the application of the S-C-SWAP1 rule. However,
observe that these can only create a finite amount of additional work since the rules
otherwise make progress as described before.

A terminating rewriting relation is by definition normalizing. Since rewriting is both
confluent and normalizing, any variational type can be transformed into a unique nor-
mal form [Baader and Nipkow 1998, page 12]. We write norm(T) for the unique normal
form of T. We capture the fact that a normal form represents an equivalence class by
stating in the following theorem that two types are equivalent if and only if they have
the same normal form.

THEOREM 4.6. T ≡ T′ ⇔ norm(T) = norm(T′).

PROOF. This follows from Theorem 4.3, the fact that �∗ is normalizing, and the
observation that the ≡ relation is the symmetric, reflexive, and transitive closure
of �.

This is the essential result needed for checking type equivalence.
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1:14 S. Chen et al.

5. TYPE PRESERVATION

An important property of the type system is that any plain expression that can be
selected from a well-typed variational expression is itself well typed, and that the plain
type of the variant can be obtained by the same selection on the variational type. This
result can be proved with the help of the following lemma, which states that variational
typing is preserved over a single selection.

LEMMA 5.1. �, � � e : T =⇒ e is plain or ∀s : �, � � �e�s : �T�s.

PROOF. The proof is based on induction over the typing rules. We show only the
cases for the T-APP rule and the T-CHOICE rule. The cases for the other rules can be
constructed similarly. Also, we write the typing judgment �, � � e : T more succinctly
as e : T when the environments are not significant.

We consider the T-APP rule first. Assume that e e′ : T, then we must show that
�e e′�s : �T�s. We do this through the following sequence of observations.

(1) e : T′′, e′ : T′, and T′′ ≡ T′ → T by the definition of T-APP

(2) �e e′�s = �e�s �e′�s by the definition of �·�s

(3) �e�s : �T′′�s and �e′�s : �T′�s by the induction hypothesis
(4) �T′′�s ≡ �T′ → T�s by 1 and Lemma 4.2
(5) �T′′�s ≡ �T′�s → �T�s by 4 and the definition of �·�s

(6) Therefore, �e e′�s : �T�s by 2, 3, 5, and the definition of T-APP

For the T-CHOICE rule, assume that D〈e1, e2〉 : D〈T1, T2〉. Then we must show that
�D〈e1, e2〉�s : �D〈T1, T2〉�s. There are two cases to consider: either s represents a selec-
tion in choice D, or it does not.

If s represents a selection in choice D, the proof follows directly from the induction
hypothesis and the definitions of selection on expressions and types. For example, if s
selects the first alternative in D, then selecting the first alternative on both sides of
the typing relation leaves us with �e1�s : �T1�s, which is the induction hypothesis.

If s does not represent a selection in D, then applying selection to each side of the typ-
ing relation yields D〈�e1�s, �e2�s〉 : D〈�T1�s, �T2�s〉. Since �e1�s : �T1�s and �e2�s : �T2�s
by the induction hypothesis, the claim follows through a direct application of the
T-CHOICE rule.

By induction it follows that for any set of selectors δ that yields a plain expression
from e, δ also selects the corresponding plain type from T. Therefore, the following
theorem, which captures the type preservation property described at the beginning of
this section, follows directly from Lemma 5.1.

THEOREM 5.2 (TYPE PRESERVATION). If ∅, � � e : T and (δ, e′) ∈ �e�, then � � e′
: T′ where (δ, T′) ∈ �T�.

With Theorem 5.2, the type of any particular variant of e can be easily selected
from its inferred variational type T. For example, suppose ∅, � � e : T with T =
A〈B〈T1, T2〉, T3〉, then the type of e′ = ��e�A�B̃ is ��T�A�B̃ = T2.

Type preservation demonstrates that the type system is correct. We must also show
that it is complete. That is, if every plain variant encoded by a variational expression e
is type correct, then our type system will assign a variational type to e. The complete-
ness property is stated in the following theorem.

THEOREM 5.3 (COMPLETENESS). If ∀(δ, e′) ∈ �e�, ∃T′ such that ∅, � � e′ : T′, then
∃T such that ∅, � � e : T.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 1, Publication date: March 2014.



�

�

�

�

�

�

�

�

Extending Type Inference to Variational Programs 1:15

This theorem can be proved by simple induction over the structure of e, with the
help of the following lemma.

LEMMA 5.4. If D is a dimension used in a choice in e, and ∃T1 such that �, � �
�e�D : T1, and ∃T2 such that �, � � �e�D̃ : T2, then ∃T such that �, � � e : T.

PROOF. This follows from induction over the structure of e and the typing deriva-
tions of �e�D and �e�D̃.

6. EXTENSIONS

This section considers two different ways of extending VLC and its type system (two
dimensions of variability, if you will). Section 6.1 discusses the interaction of choice
types and other traditional typing features, such as sum types. Section 6.2 extends the
variation metalanguage of VLC with dimension declarations.

6.1. Type System Extensions

To extend the VLC type system from lambda calculus to a full-fledged functional lan-
guage such as Haskell we need to add more features. In this section we briefly outline
the necessary steps with a few examples to illustrate how to deal with the interaction of
variational types with standard features of type systems. Specifically, we consider how
to add sum types, which are the basis for data types in functional languages. Adding
support for variational declarations and structure fields requires extending the VLC
syntax, but this can be done in a similar way.

Adding a new typing feature requires at least the extension of VLC’s expression syn-
tax, variational types, and the typing rules. In the case of sum types we add expres-
sions inl e and inr e as well as a case expression for pattern matching expressions
built using inl e and inr e [Pierce 2002]. We add the type T1 + T2 to denote a sum
type, and we need to add typing rules for all new syntactic forms. The rules for inl
and inr are exactly the same as presented by Pierce [2002], except for the additional
environment used in the typing judgment. The typing rule for case, which is slightly
different, is shown next.

T-CASE
�, � � e0 : T1 + T2 �, � ⊕ (x1, T1) � e1 : T′

1 �, � ⊕ (x2, T2) � e2 : T′
2 T′

1 ≡ T′
2

�, � � case e0 of inl x1 ⇒ e1 | inr x2 ⇒ e2 : T′
1

Much like in the case of function application, the branches of a case statement do not
need to have the same type. Instead, we only require that their types be equivalent.

The next step is the extension of the type equivalence relation and type simplifica-
tion rules. For sum types, we get two new equivalence rules. The rule SUM states that
two sum types are equivalent if their corresponding left and right types are equivalent.
Also, sum types are distributive over choice types, as shown by the rule S-C.

SUM
T1 ≡ T′

1 T2 ≡ T′
2

T1 + T2 ≡ T′
1 + T′

2

S-C
D〈T1 + T′

1, T2 + T′
2〉 ≡ D〈T1, T2〉 + D〈T′

1, T′
2〉

The new simplification rules can be straightforwardly derived from the equivalence
rules.

S-S-L
Tl � T′

l

Tl + Tr � T′
l + Tr

S-S-R
Tr � T′

r

Tl + Tr � Tl + T′
r

S-S-C
D〈T1, T2〉 + D〈T′

1, T′
2〉 � D〈T1 + T′

1, T2 + T′
2〉
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1:16 S. Chen et al.

Extensions with tuple types, recursive types, and parametric types follow the same
pattern and require the extension of expressions, types, typing rules, equivalence rules,
and rewriting rules, as discussed previously. All these extensions are rather straight-
forward and don’t present any problems as far as the interaction with choice types is
concerned.

6.2. Local Dimension Declarations

A distinguishing feature of the choice calculus, not present in VLC, is that the dimen-
sion names associated with choices are locally bound and scoped. This is achieved
through an additional dimension declaration construct. A dimension declaration
dim D〈t, u〉 in e introduces a dimension named D, which can be used by choices only
within the expression e (called the dimension’s scope). The names t and u are called
tags and give names to the left and right alternatives that we can select in dimension
D. So we can refer to the selector D with the dimension-qualified tag D.t, and the selec-
tor D̃ with the dimension-qualified tag D.u. Each dimension declaration corresponds to
a single decision that must be made in order to resolve a variational expression into a
plain one. This means that if there are multiple declarations of the dimension D, each
of these dimensions of variability will be independent.

Local dimension declarations promote modularity since they allow subexpressions
to be composed without the risk of choices becoming unintentionally synchronized.
For example, in a language without local dimension declarations, suppose a library
defines a function f that varies in dimension A. A client of the library, unaware of its
implementation, applies f to an argument e that also varies in a dimension A. When
the user applies f to e, these two dimensions will be unintentionally synchronized. This
can be observed in the semantics of f e, which has only two entries, one for selecting
the first alternative in A, the other for selecting the second.

f = A〈f1, f2〉
e = A〈e1, e2〉

�f e� = {(A, f1 e1), (Ã, f2 e2)}
By making the scope of dimensions explicit, local dimension declarations avoid this
problem. The semantics of f e that follows has four alternatives since the decisions
about the two A dimensions are independent.

f = dim A〈t, u〉 in A〈f1, f2〉
e = dim A〈x, y〉 in A〈e1, e2〉

�f e� = {([ A.t, A.x] , f1 e1), ([ A.t, A.y] , f1 e2), ([ A.u, A.x] , f2 e1), ([ A.u, A.y] , f2 e2)}
Note that in the presence of dimension declarations, we represent decisions by a list of
qualified tags.2

Local dimension name scoping is an obviously desirable quality, but it turns out to
pose several challenges in the context of typing. In order to provide continuity with
our previous work and clarify the relationship of VLC to the choice calculus, we out-
line those challenges here. Then we describe how the type system can be extended to
support local dimension declarations. Since this extension adds complexity that is in-
cidental to the core issue of variational typing, we confine this extension to this section
and assume global dimension names throughout the rest of the article.

2There are at least two ways to cope with the ambiguity of independent dimensions with overlapping tag
names. One is to disallow it, enforcing that tag names in like-named dimensions must be distinct. The other,
which we use in our previous work, is to enforce that tags must be selected from dimensions in a fixed order
[Erwig and Walkingshaw 2011].
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We can extend the syntax of VLC expression to support local dimension declarations
by just adding the dim construct to the existing syntax, as shown next.

e ::= . . . (VLC syntax as before)
| dim D〈t, t〉 in e Dimension declaration

We also add the constraint that every choice D〈e1, e2〉 be within the scope of a corre-
sponding dimension declaration dim D〈t, u〉 in e.

Initially, it seems we can just make a corresponding extension at the type level,
adding dimension declarations to types, just as we extended them with choices.

T ::= . . . (VLC types as before)
| dim D〈t, t〉 in T Type-level dimension declaration

We will enforce that all choices are bound by dimension declarations directly in the typ-
ing rules. To do this, we introduce a new environment 	. The new T-DIM rule extends
	 with the name of the declared dimension, and the revised T-CHOICE rule enforces the
constraint by referring to 	. Just as with choices, the type of a dimension declaration
is a corresponding dimension declaration at the type level. The following typing rules
are marked with stars since we will show later that they are not correct.
T-DIM*

	 ⊕ D, �, � � e : T
	, �, � � dim D〈t1, t2〉 in e : dim D〈t1, t2〉 in T

T-CHOICE*
	, �, � � e1 : T1 	, �, � � e2 : T2 D ∈ 	

	, �, � � D〈e1, e2〉 : D〈T1, T2〉
One problem we can observe with this extension is that typing can result in dimen-

sion duplication at the type level. Consider the following simple example, where c1 : τ1
and c2 : τ2.

(λ x.λ f .f x x) (dim A〈t, u〉 in A〈c1, c2〉)
This example represents two variants. If we select A.t, we get the expression
(λ x.λ f .f x x) c1. If we select A.u, we get (λ x.λ f .f x x) c2. However, the extended type
system identifies the following variational type with four type variants!

(dim A〈t, u〉 in A〈τ1, τ2〉 → dim A〈t, u〉 in A〈τ1, τ2〉 → a) → a

The problem is that after the dimension type is added to the typing environment � by
the T-ABS rule, it is retrieved and inserted by the T-VAR rule twice, once each time the
variable x is referenced.

The proper type for the preceding expression, in which the dimension type is not
duplicated, can be achieved by factoring the dimension declaration out of the type as
shown next.

dim A〈t, u〉 in (A〈τ1, τ2〉 → A〈τ1, τ2〉 → a) → a

Unfortunately, this solution does not work in general. This is demonstrated by the
next example, which declares two independent dimensions named A (we underline
one of these dimension names for illustrative purposes only), and which cannot be
correctly typed using type-level dimension declarations without resorting to dimension
renaming.

(λ x.dim A〈r, s〉 in λ f .f A〈x, c1〉 x) dim A〈t, u〉 in A〈c1, c2〉
If we naively apply our extended typing rules to this example, we get the following
type.

dim A〈r, s〉 in
(A〈dim A〈t, u〉 in A〈τ1, τ2〉, τ2〉 → dim A〈t, u〉 in A〈τ1, τ2〉 → a) → a
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Here we have again duplicated the dimension declaration in the argument, which de-
clares dimension A. This time, however, we cannot factor out the repeated dimension
type because doing so would capture the outermost choice in dimension A. Since the
scope of a dimension in an expression is not preserved through the process of typing,
there is no way to represent the desired type with locally scoped dimensions. The best
we can do is a type that is equivalent up to dimension renaming, such as the following.

dim A〈r, s〉 in dim A′〈t, u〉 in

(A〈A′〈τ1, τ2〉, τ2〉 → A′〈τ1, τ2〉 → a) → a

This fact significantly weakens any argument in favor of locally scoped dimensions
in types. Additionally, the constraint of avoiding dimension duplication in the typing
rules is extremely arduous. Typing naturally involves a great deal of type duplication—
types are duplicated whenever variables are referenced multiple times and frequently
during the unification of type variables (see Section 7). Furthermore, the simple factor-
ing transformation shown before often fails in the presence of dependent dimensions
and dimensions of the same name, forcing us to resort to dimension renaming for many
kinds of expressions.

To solve these problems, our extension to support locally scoped dimensions in ex-
pressions still uses globally scoped dimension names in types. This means that we
extend the language of VLC with dimension declarations, as shown earlier, but we do
not extend the language of VLC types. The correct typing rules for this extension are
given shortly. Compared to the discarded starred typing rules, T-DIM* and T-CHOICE*,
we do not introduce dimension declarations into types and we have some extra machin-
ery to support the mapping of expression-level dimensions names to the corresponding
names at the type level.
T-DIM
	 ⊕ (D, D′), �, � � e : T D′ is fresh

	, �, � � dim D〈t1, t2〉 in e : T

T-CHOICE’
	, �, � � e1 : T1 	, �, � � e2 : T2 	(D) = D′

	, �, � � D〈e1, e2〉 : D′〈T1, T2〉
The T-DIM rule generates a fresh dimension name D′ for the newly declared dimension
D and stores a mapping from D to D′ in 	. This is used by the T-CHOICE’ rule to
produce a corresponding choice type with the appropriate type-level dimension name.
The resulting type of a dimension declaration is just the type of its scope.

This provides a simple solution to the problem of typing variation in a metalanguage
with locally scoped dimensions. This is relevant both because of VLC’s relationship to
the choice calculus and because local dimension scoping has other desirable qualities
unrelated to typing. The main advantage of this solution is that the extension is mod-
ular in the sense that it does not require any significant changes to the rest of the
type system. We must only extend the other typing rules to propagate the dimension
environment along. Therefore, we do not consider local dimension declarations further.

7. UNIFYING VARIATIONAL TYPES

The type inference algorithm for VLC is an extension of the traditional algorithm W
by Damas and Milner [1982]. The extension consists mostly of an equational unifi-
cation for variational types that respects the semantics of choice types and allows a
less strict typing for function application. The equational theory is defined by the type
equivalence relation in Figure 5. We call this unification problem Choice Type (CT).

The properties of the CT-unification problem are described in Section 7.1, while the
unification algorithm that solves it is presented in Section 7.2. In Section 7.3 we for-
mally evaluate the correctness of the unification algorithm, and we analyze its time
complexity in Section 7.4. Once this groundwork has been laid, the variational type
inference algorithm itself is straightforward. It is is given in Section 8.
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7.1. The Choice Type Unification Problem

If we view a choice as a binary operator on its two subexpressions, then CT’s equational
theory contains both distributivity (introduced by the C-C-SWAP rule) and associativity
(which follows from the C-C-MERGE rules). Usually, this yields a unification problem
that is undecidable [Anantharaman et al. 2004]. CT-unification, however, is decidable.
The key insight is that a normalized choice type cannot contain nested choice types
in the same dimension, effectively bounding the number of choice types a variational
type can contain.

To get a sense for CT-unification, consider the following unification problem.

A〈Int, a〉 ≡? B〈b, c〉 (1)

Several potential unifiers for this problem are given next. In each mapping, type vari-
ables other than a, b, and c are assumed to be fresh.

σ1 = {a �→ Int, b �→ Int, c �→ Int}
σ2 = {b �→ A〈Int, a〉, c �→ A〈Int, a〉}
σ3 = {a �→ B〈Int, f 〉, b �→ Int, c �→ A〈Int, f 〉}
σ4 = {a �→ B〈f , Int〉, b �→ A〈Int, f 〉, c �→ Int}
σ5 = {a �→ B〈d, f 〉, b �→ A〈Int, d〉, c �→ A〈Int, f 〉}
σ6 = {a �→ B〈A〈i, d〉, A〈j, f 〉〉, b �→ B〈A〈Int, d〉, g〉, c �→ B〈h, A〈Int, f 〉〉}

These mappings are unifiers since, after applying any one of these mappings to the
types in problem (1), the types of the LHS and RHS of the problem are equivalent. We
observe that σ6 is the most general of these unifiers. In fact, it is the most general uni-
fier (mgu) for this CT-unification problem. This means that by assigning appropriate
types to the type variables in σ6, we can produce any other unifier. For example, com-
posing σ6 with {i �→ d, j �→ f , g �→ A〈Int, d〉, h �→ A〈Int, f 〉} yields σ5, which is in turn
the most general among the first five unifiers.

Although σ6 is more general than σ5, if we apply either one to the types in prob-
lem (1), then simplify dominated choices, we will get the same result. Therefore, it may
seem that the generality provided by σ6 is superficial. But in fact, σ6 solves strictly
more unification problems than σ5. For instance, assume e1 : A〈Int, a〉 → c → c,
e2 : B〈b, c〉, and e3 : B〈Bool, Int〉. Using σ5 the expression e1 e2 has type A〈Int, f 〉 →
A〈Int, f 〉 , so the expression e1 e2 e3 will be ill-typed since A〈Int, f 〉 does not unify with
B〈Bool, Int〉. On the other hand, if we use σ6, then e1 e2 has type B〈h, A〈Int, f 〉〉 →
B〈h, A〈Int, f 〉〉, so the expression e1 e2 e3 is type correct since the unification problem
B〈h, A〈Int, f 〉〉 ≡? B〈Bool, Int〉 has the mgu {f �→ B〈l, A〈m, Int〉〉, h �→ B〈Bool, k〉}, where
k, l and m are fresh type variables.

An equational unification problem is said to be unitary if there is a unique unifier
that is more general than all other unifiers [Baader and Snyder 2001]. This is im-
portant to make type inference feasible since we need only maintain the unique mgu
throughout the inference process.

It is not immediately obvious that CT-unification is unitary. Usually, equational uni-
fication problems with associativity and distributivity are not unitary. However, the
same bounds that make CT-unification decidable (that is, the normalization process
ensures that there are no nested choices in the same dimension, via the S-C-DOM

rules) also make the problem unitary. Specifically, choice dominance ensures that a
CT-unification problem can be decomposed into a finite number of simpler unification
problems that are known to be unitary. Furthermore, the mgus of these subproblems
can be used to construct the unique mgu of the original CT-unification problem.

That the CT-unification problem is unitary is captured in the following theorem.
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1:20 S. Chen et al.

THEOREM 7.1. Given a CT-unification problem U, there is a unifier σ such that for
any unifier σ ′, there exists a mapping θ such that σ ′ = θ ◦ σ .

The proof of this theorem relies on definitions from the rest of this section and so
is delayed until the appendix, in Section A.1. We give a high-level description of the
argument here.

A CT-unification problem encodes a finite number of plain subproblems, where a
plain unification problem is between two plain types. For example, problem (1) en-
codes the plain subproblems Int ≡? b, Int ≡? c, a ≡? b, and a ≡? c. In principle, solving
a variational unification problem requires solving all of the plain unification problems
it encodes. One challenge of CT-unification is that different plain subproblems may
share the same type variables, and these may be incorrectly mapped to different types
when solving the different subproblems. However, CT-unification problems whose
plain subproblems share no common type variables are easy to solve. We just gen-
erate all of the plain subproblems, solve each of them using the traditional Robinson
unification algorithm [Robinson 1965], then take the union of the resulting set of uni-
fiers as the solution to the original problem.

The basic structure of the argument that CT-unification is unitary is therefore to
demonstrate the following.

(1) We can transform any CT-unification problem U into an equivalent unification
problem U′, such that the plain subproblems of U′ share no type variables.
This can be done through the process of type variable qualification, described in
Section 7.2.

(2) These subproblems are plain and therefore themselves unitary.

(3) We can construct a unique mgu for U from the mgus of the individual subprob-
lems of U′. This is achieved through the process of completion, also described in
Section 7.2.

Of course, we do not actually solve CT-unification problems by solving all of the cor-
responding plain subproblems separately since it would be very inefficient. Type vari-
able qualification and completion all do play a role in the actual algorithm, however,
which is developed and presented in the next section.

7.2. Qualified Type Unification

This section will present our approach to unifying variational types. Since there is no
general algorithm or strategy for equational unification problems [Baader and Snyder
2001], we begin by motivating our approach. Consider the following example unifica-
tion problem.

A〈Int, a〉 ≡? A〈a, Bool〉 (2)

We might attempt to solve this problem through simple decomposition, by unifying
the corresponding alternatives of the choice types. This leads to the unification problem
{Int ≡? a, a ≡? Bool}, which is unsatisfiable. However, notice that {a �→ A〈Int, Bool〉} is
a unifier for the original problem (through choice domination), so this approach to
decomposition must be incorrect.

The key insight is that there is a fundamental difference between the type variables
in the types a, A〈a, T〉, and A〈T, a〉, even though all three are named a. A type variable
in one alternative of a choice type is partial in the sense that it applies only to a subset
of the type variants. In particular, it is independent of type variables of the same name
in the other alternative of that choice type. In example (2), the two occurrences of a
can denote two different types because they cannot be selected at the same time. The
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Extending Type Inference to Variational Programs 1:21

A〈Int, aÃ〉 ≡?
q B〈bB, cB̃〉

split↓
A〈Int, B〈aÃB, aÃB̃〉〉 ≡?

q B〈bB, cB̃〉
hoist↓

B〈A〈Int, aÃB〉, A〈Int, aÃB̃〉〉 ≡?
q B〈bB, cB̃〉

A〈Int, aÃB〉 ≡?
q bB

A〈Int, aÃB̃〉 ≡?
q cB̃

Fig. 8. Example of qualified unification.

important fact that a appears in two different alternatives of the A choice type is lost
in the decomposition by alternatives.

We address this problem with a notion of qualified type variables, where each type
variable is marked by the alternatives in which it is nested. A qualified type vari-
able a is denoted by aq, where q is the qualification and is given by a set of selec-
tors (see Section 4), rendered as a lexicographically sorted sequence. For example, the
type variable a in B〈T1, A〈a, T2〉〉 corresponds to the qualified type variable aAB̃. Like-
wise, the (nonqualified) unification problem in example (1) can be transformed into the
qualified unification problem and the problem in example (2) can be transformed into
A〈Int, aÃ〉 ≡?

q A〈aA, Bool〉.
In addition to the traditional operations of matching and decomposition used in

equational unification, our unification algorithm uses two other operations: choice type
hoisting and type variable splitting. These are needed to transform the types being
unified into more similar structures that can then be matched or decomposed.

Hoisting is applied when unifying two types that have top-level choice types with
different dimension names. To illustrate, consider the following unification problem.

A〈B〈Int, Bool〉, aÃ〉 ≡?
q B〈aB, Bool〉

We cannot immediately decompose this problem by alternatives since the dimen-
sions of the top-level choice types do not match. However, this problem can be solved
by applying the C-C-SWAP1 rule to the LHS, thereby hoisting the B choice type to
the top.

B〈A〈Int, aÃB〉, A〈Bool, aÃB̃〉〉 ≡?
q B〈aB, Bool〉

Notice that we must add a qualification to all of the duplicated type variables that
were originally in the alternative opposite the hoisted choice type, but are now nested
beneath it, such as the aÃ variable in the example. Now we can decompose the problem
by unifying the corresponding alternatives of the top-level choice type.

Splitting is the expansion of a type variable into a choice type between two quali-
fied versions of that variable. It is used whenever decomposition cannot proceed and
the problem cannot be solved by hoisting. For example, to decompose the problem
a ≡?

q A〈aA, Int〉, we first split a into the choice type A〈aA, aÃ〉, then decompose by al-
ternatives. To decompose the problem A〈Int, aÃ〉 ≡?

q B〈Int, bB̃〉, we can split either aÃ
into a choice in B or bB̃ into a choice in A. In either case, we must then apply hoisting
once before the problem can be decomposed by alternatives.

Figure 8 presents an example in which split and hoist are used to prepare a qualified
unification problem for decomposition. Note that after decomposition, we do not need
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comp(Dq, T, D〈T1, T2〉) = D〈comp(q, T, T1), T2〉
comp(D̃q, T, D〈T1, T2〉) = D〈T1, comp(q, T, T2)〉

comp(Dq, T, T′) = D〈comp(q, T, T′), fresh(T′)〉
comp(D̃q, T, T′) = D〈fresh(T′), comp(q, T, T′)〉

comp(ε, T, a) = T

Fig. 9. Helper function used in the completion process.

to split bB into a choice in A because bB is isolated and occurs on only one side of the
subtask; instead we can return the substitution {bB �→ A〈Int, aÃB〉} for this subtask
directly. Likewise for cB̃ in the second subtask.

To solve a unification problem U, we solve the corresponding qualified unification
problem Q, then transform the solution of Q, σQ, into a solution for U, σU . Each
mapping a �→ T in σU is derived through a process called completion from the re-
lated subset of mappings in σQ, {aq1 �→ T1, . . . , aqn �→ Tn}. Each qualified mapping
aqi �→ Ti describes a leaf in a tree of nested choice types that makes up the result-
ing type T. Building and populating this tree is the goal of completion. For exam-
ple, given the qualified mappings {aA �→ Int, aÃB �→ b, aÃB̃ �→ Bool}, completion
yields the unqualified mapping a �→ A〈Int, B〈b, Bool〉〉. When the qualified mappings
do not describe a complete tree, the completion process introduces fresh type vari-
ables to represent the unconstrained parts of the type. For example, given the qual-
ified mappings {aA �→ Int, aÃB̃ �→ Bool}, completion yields the unqualified mapping
a �→ A〈Int, B〈c, Bool〉〉, where c is a fresh type variable.

Formally, we define completion by folding the helper function comp, defined in
Figure 9, across the mappings in σQ. This function produces a partially completed type
given: (1) a type variable qualification q, (2) the type to store at the path described by
q, and (3) the type that is being completed. The definition of comp relies on top-down
pattern matching on the first and third arguments (ε matches the empty qualification),
and on a second helper function fresh that renames every type variable in its argument
type to a new, fresh type variable.

In the first two cases of comp, if the partially completed type already contains a
choice type in the dimension D referred to by the first selector in the qualification, the
function consumes the selector and propagates the completion into the appropriate al-
ternative. Note that these choice types will have been created by a previous invocation
of comp on a different qualification, as we’ll see shortly. In the third and fourth cases,
the partially completed type does not already contain a choice type in D, so we cre-
ate a new one and propagate the completion into the appropriate branch, freshening
the type variables in the duplicated alternative. In these first four cases, we traverse
and create a tree structure of choice types. This relies on the fact that selectors are
sorted in the qualification q, avoiding the creation of choice types in the same dimen-
sion. However, it is possible that types stored at the leaves of this tree will contain
choice types in dimensions created by comp; these can be eliminated by a subsequent
normalization step.

Finally, the completion of a �→ T from {aq1 �→ T1, . . . , aqn �→ Tn} is defined as
follows.

T = comp(q1, T1, comp(q2, T2, . . . comp(qn, Tn, b) . . . ))

The initial argument to the folded completion function is a fresh type variable b, and
the order in which we process the qualifications q1, . . . , qn does not matter. Also note
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unify : (TL, TR) → σ

unify(p, p′) = robinson(p, p′) (1)

unify∗
(aq, D〈T1, T2〉) = unify(D〈aDq, aD̃q〉, D〈T1, T2〉) (2)

unify(D〈T1, T2〉, D〈T′
1, T′

2〉) = σ1 ← unify(T1, T′
1)

σ2 ← unify(T2σ1, T′
2σ1)

return σ1 ◦ σ2

(3)

unify∗
(D1〈T1, T2〉, D2〈T′

1, T′
2〉) | D2 ∈ choices(TL) = unify(hoist(TL, D2), TR) (4)

unify∗
(D1〈T1, T2〉, D2〈T′

1, T′
2〉) | splittable(TL) �= ∅ ∧

D2 /∈ choices(TL) = aq ← splittable(TL)

θ ← {aq �→ D2〈aD2q, aD̃2q〉}
return unify(hoist(TLθ , D2), TR)

(5)

unify(D1〈T1, T2〉, D2〈T′
1, T′

2〉) (6)
| splittable(TL) = ∅ ∧ D2 /∈ choices(TL) ∧

splittable(TR) = ∅ ∧ D1 /∈ choices(TR) = unify(D2〈TL, TL〉, TR)

unify∗
(g, D〈T1, T2〉) = σ1 ← unify(g, T1)

return σ1 ◦ unify(g, T2σ1)

(7)

unify∗
(T → T′, D〈T1, T2〉) = unify(D〈T → T′, T → T′〉, D〈T1, T2〉) (8)

unify(T1 → T2, T′
1 → T′

2) = σ ← unify(T1, T′
1)

return σ ◦ unify(T2σ , T′
2σ)

(9)

unify∗
(aq, T → T′) | occurs(aq, TR) = fail (10)

| otherwise = {aq �→ TR}
Fig. 10. The qualified unification algorithm.

that, although comp is not specified for all argument patterns, the completion process
cannot fail on any unifier produced by our unification algorithm. This is because we do
not produce mappings for “overlapping” qualified type variables (see the discussion of
occurs later in this section).

The final and most important piece of the variational-type-unification puzzle is the
algorithm for solving qualified unification problems. The definition of this algorithm,
unify, is given in Figure 10. In this definition, we use p to range over plain types
(which do not contain choice types), and g to range over ground plain types, which do
not contain choice types or type variables. We also assume that D1 �= D2 and use TL
and TR to refer to the entire LHS and RHS of the unification problem, respectively.
Cases marked with an asterisk represent two symmetric cases. That is, the definition
of unify∗

(T, T′) implies the definition of both unify(T, T′), as written, and a dual case
unify(T′, T) = unify(T, T′).

The definition of unify will be explained in detail next. The algorithm relies on sev-
eral helper functions. The function hoist implements a deep form of the C-C-SWAP rule.
It takes as arguments a choice type T and a dimension name D of a (possibly nested)
choice type in T, returning a type equivalent to T but with a D choice type at the root.
For example, hoist(A〈B〈a, Int〉, Bool〉, B) yields B〈A〈a, Bool〉, A〈Int, Bool〉〉. The function
choices takes a type and returns the set of dimension names of all choice types it con-
tains. The function splittable returns the type variables that can be split into a choice
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type. A variable is splittable if the path from itself to the root consists only of choice
types; that is, there are no function types between the root of the type and the type
variable. For example, splittable(A〈Int → b, c〉) = {c}. The final helper function, occurs,
performs an operation similar to an occurs check, described in the final case given
shortly.

Finally, we can describe each case of the unify algorithm as follows.

(1) When unifying two plain types, we defer to Robinson’s unification algorithm
[Robinson 1965].

(2) To unify a type variable with a choice type, we split the type variable as described
earlier in this section.

(3) To unify two choice types in the same dimension, we decompose the problem and
unify their corresponding alternatives.

(4) To unify two choice types in different dimensions, we try to hoist a choice type so
that both types are rooted by a choice in the same dimension.

(5) If this is impossible, then a splittable type variable is split into a choice in that
dimension, which can then be hoisted.

(6) To unify two choice types in different dimensions, where there is no splittable
type variable, we partially decompose the problem by unifying each alternative of
one choice type with the other choice type.

(7) To unify a ground plain type g with a choice type, we again decompose the prob-
lem, unifying g with each alternative of the choice type.

(8) To unify a function type with a choice type in dimension D, we first expand the
function type into a choice type in D, similar to the splitting operation on type
variables. We then decompose the problem by alternatives.

(9) To unify two function types, we unify their corresponding argument types and
return types, composing the results.

(10) Finally, to unify a type variable with a function type, a process similar to an
occurs check is needed. The operation occurs(aq, T) returns true if there exists a
type variable aq′ in T such that q ⊆ q′. This ensures that we do not assign over-
lapping type variables to different types, supporting the completion of a qualified
unifier back into an unqualified unifier.

7.3. Correctness of the Unification Algorithm

In this section we collect several results to demonstrate the correctness of the qualified
unification algorithm.

We begin by observing that the operations of decomposition, splitting, and hoisting
form the core of the algorithm. In the following lemmas we establish the correctness of
these operations. First, we show that the decomposition by alternatives of a qualified
unification problem is correct.

LEMMA 7.2 (DECOMPOSITION). Let TL = D〈T1, T2〉 and TR = D〈T′
1, T′

2〉. Then
TL ≡?

q TR is unifiable iff T1 ≡?
q T′

1 and T2 ≡?
q T′

2 are unifiable. Moreover, if the problem
is unifiable, then σ1 ∪ σ2 is a unifier for TL ≡?

q TR, where σ1 and σ2 are unifiers for
T1 ≡?

q T′
1 and T2 ≡?

q T′
2, respectively.

PROOF. Observe that qualified type variables with the same variable name but dif-
ferent qualifiers are treated as different type variables. Therefore, given a choice type
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Extending Type Inference to Variational Programs 1:25

D〈Tl, Tr〉, it is always the case that vars(Tl) ∩ vars(Tr) = ∅, by the definition of quali-
fication. Specifically, the qualifier of every type variable in Tl will contain the selector
D, while the qualifier of every type variable in Tr will contain the selector D̃. Since this
property holds for both choice types in the lemma, the unification subproblems do not
share any common type variables and are therefore independent.

Next we show that splitting a type variable is variable independent. This means that
when more than one type variable is splittable, we will achieve an equivalent unifier
no matter which type variable we choose to split.

LEMMA 7.3 (VARIABLE INDEPENDENCE). Let TL = D1〈T1, T2〉 and TR = D2〈T′
1,

T′
2〉. Assume aq, br ∈ splittable(TL), where qualifiers q and r do not contain selectors in

dimension D2. Let θa = {aq �→ D2〈aD2q, aD̃2q〉} and θb = {br �→ D2〈bD2r, bD̃2r〉}. Then
unify(TLθa, TR) = unify(TLθb, TR).

PROOF. After splitting a type variable aq (or br) in TL, the newly formed choice
type must be hoisted to the top so that the unification problem can be decomposed
by alternatives. After applying this series of hoists, we obtain a new type T′

L with a
choice type in dimension D2 at the top level. The lemma depends crucially on the fact
that no matter which type variable we split, T′

L will be the same, and therefore the
result of the unfication will be the same. This is true because the process of hoisting
the new D2 choice type will essentially cause every other type variable in TL to be split
in dimension D2. This process is described next.

By the definition of splittable, the path from the top of TL to aq (or br) consists of only
choice types. For each choice type Di〈. . .〉 along this path, we must apply hoist once in
order to lift the D2 choice type outward one level. Without loss of generality, assume
that the D2 choice type is in the left alternative, so Di〈D2〈T1, T2〉, T3〉. After applying
hoist, we have D2〈Di〈T1, T3〉, Di〈T2, T3〉〉. Since T3 was copied into both alternatives of
the D2 choice type, every type variable in the first T3 will be qualified by D2 while
every type variable in the second T3 will be qualified by D̃2. In this way, the process of
hoisting the D2 choice type to the top level will cause every other type variable to be
split into two type variables qualified by selectors for dimension D2.

The process described in the proof of Lemma 7.3 is illustrated in Figure 11 with a
small example. In this example, TL = D1〈aq, D3〈T1, br〉〉 and TR = D2〈T2, T3〉, where q
does not contain qualifiers in D2 or D3 and r does not contain a qualifier in D2. In the
top case, we split aq in dimension D2, while in the bottom, we split br. Observe how
type variables are copied and qualified when a choice type is hoisted over them.

Just as it does not matter which splittable type variable we choose, it does not matter
which dimension we choose to split it in, as long as the type variable is not already
qualified by that dimension.

LEMMA 7.4 (CHOICE INDEPENDENCE). Let TL = D1〈T1, T2〉 and TR = D2〈T′
1, T′

2〉.
Assume Dm, Dn ∈ choices(TR) and aq ∈ splittable(TL), where qualifier q does not
contain selectors in Dm or Dn. Let θ1 = {aq �→ Dm〈aDmq, aD̃mq〉} and θ2 = {aq �→
Dn〈aDnq, aD̃nq〉}. Then unify(TLθ1, TR) = unify(TLθ2, TR).

PROOF. Assume without loss of generality that we split aq in dimension Dm. If Dm =
D2, we can make progress by hoisting the newly created choice type in Dm to the top
of TL and decomposing the resulting unification problem by alternatives. Otherwise,
we will have to also hoist the choice in Dm to the top of TR, then decompose. Either
way, this will result in at least two new type variables, aDmq′ (in the left decomposition
of TL) and aD̃mq′′ (in the right decomposition of TL). Since q did not contain a selector
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D1〈aq, D3〈T1, br〉〉 ≡?
q D2〈T2, T3〉

split↓
D1〈D2〈aD2q, aD̃2q〉, D3〈T1, br〉〉 ≡?

q D2〈T2, T3〉
hoist↓

D2〈D1〈aD2q, D3〈T1, bD2r〉〉, D1〈aD̃2q, D3〈T1, bD̃2r〉〉〉 ≡?
q D2〈T2, T3〉

D1〈aq, D3〈T1, br〉〉 ≡?
q D2〈T2, T3〉

split↓
D1〈aq, D3〈T1, D2〈bD2r, bD̃2r〉〉〉 ≡?

q D2〈T2, T3〉
hoist↓

D1〈aq, D2〈D3〈T1, bD2r〉, D3〈T1, bD̃2r〉〉〉 ≡?
q D2〈T2, T3〉

hoist↓
D2〈D1〈aD2q, D3〈T1, bD2r〉〉, D1〈aD̃2q, D3〈T1, bD̃2r〉〉〉 ≡?

q D2〈T2, T3〉
Fig. 11. Demonstration of variable independence.

in Dn, there is no choice type on the path from aq to the root of TL, so neither q′ nor
q′′ will contain a selector in Dn, which might otherwise have been introduced during
the hoisting process. However, since a choice type in Dn still exists in at least one of
the two subproblems, we will have to split one or both of aDmq′ and aD̃mq′′ in dimension
Dn in order to complete the unification. Therefore, since we must eventually split the
original aq in both Dm and Dn, proving choice independence is equivalent to proving
that the order in which we perform these splits does not affect the unification result.

Suppose we perform both splits before doing any decompositions. If we split aq in
Dm first and then Dn, aq will be replaced by the type Ta given next. If we split aq in Dn
and then Dm, it will be replaced by the type T′

a.

Ta = Dm〈Dn〈aDmDnq, aDmD̃nq〉, Dn〈aD̃mDnq, aD̃mD̃nq〉〉
T′

a = Dn〈Dm〈aDmDnq, aD̃mDnq〉, Dm〈aDmD̃nq, aD̃mD̃nq〉〉
It is easy to see that Ta ≡ T′

a by the equivalence rules in Figure 5. We can trans-
form Ta into T′

a by applying the C-C-SWAP rules to each alternative, then applying the
C-C-MERGE rules to eliminate the dominated choice types. Since Ta and T′

a are equiva-
lent, then T′

L = TL{aq �→ Ta} and T′′
L = TL{aq �→ T′

a} are also equivalent, so the results
of unifying T′

L ≡?
q TR and T′′

L ≡?
q TR will be the same.

The process described in the proof of Lemma 7.4 is illustrated in Figure 12. In this
example, TL = D1〈aq, T1〉 and TR = D2〈T2, D3〈T3, T4〉〉, where the qualifier q does
not contain qualifiers in dimensions D2 or D3. In the top case we split aq into a choice
type in dimension D2, eventually yielding three unification subproblems. In the bottom
case we split aq in dimension D3, eventually yielding four subproblems. (The vertical
ellipses in each of these derivations represent further splitting the type variable in
dimension D3, hoisting this choice to the top level, and decomposing by alternatives.)
However, observe that the subproblem on the left branch of the top case is equivalent
to the two subproblems in the bottom case that have T2 on their RHS. In order to
obtain the subproblems in the bottom case, we can use choice idempotency to rewrite
T2 to D3〈T2, T2〉, then decompose by alternatives.

Since the hoisting operation only restructures a type in a semantics-preserving way,
its correctness is obvious.
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D1〈aq, T1〉 ≡?
q D2〈T2, D3〈T3, T4〉〉

split↓
D1〈D2〈aD2q, aD̃2q〉, T1〉 ≡?

q D2〈T2, D3〈T3, T4〉〉
hoist↓

D2〈D1〈aD2q, T1〉, D1〈aD̃2q, T1〉〉 ≡?
q D2〈T2, D3〈T3, T4〉〉

�

D1〈aD2q, T1〉 ≡?
q T2 D1〈aD̃2q, T1〉 ≡?

q D3〈T3, T4〉
...

D1〈aD̃2D3q, T1〉 ≡?
q T3

D1〈aD̃2D̃3q, T1〉 ≡?
q T4

D1〈aq, T1〉 ≡?
q D2〈T2, D3〈T3, T4〉〉

split↓
D1〈D3〈aD3q, aD̃3q〉, T1〉 ≡?

q D2〈T2, D3〈T3, T4〉〉
hoist↓

D3〈D1〈aD3q, T1〉, D1〈aD̃3q, T1〉〉 ≡?
q D2〈T2, D3〈T3, T4〉〉

↓hoist

D3〈D1〈aD3q, T1〉, D1〈aD̃3q, T1〉〉 ≡?
q D3〈D2〈T2, T3〉, D2〈T2, T4〉〉

�

D1〈aD3q, T1〉 ≡?
q D2〈T2, T3〉 D1〈aD̃3q, T1〉 ≡?

q D2〈T2, T4〉
...

...
D1〈aD2D3q, T1〉 ≡?

q T2 D1〈aD2D̃3q, T1〉 ≡?
q T2

D1〈aD̃2D3q, T1〉 ≡?
q T3 D1〈aD̃2D̃3q, T1〉 ≡?

q T4

Fig. 12. Demonstration of choice independence.

Our unification algorithm is terminating through decomposition that eventually pro-
duces calls to Robinson’s unification algorithm (which is terminating). The only chal-
lenge to termination is that the splitting of type variables introduces new choice types
to the types that are being unified. However, two facts ensure that this does not pre-
vent termination: (1) a variable can only be split into a choice type whose dimension
occurs in the type being unified against and (2) immediately after a split is performed
the new choice type is hoisted and decomposed, producing two subtasks that are each
smaller than the original task.

The qualified unification algorithm is sound, meaning the mappings it produces al-
ways unify its arguments. It is also complete and most general, which means that if
the two types are unifiable, then the algorithm will return the most general mapping
that unifies them. We express each of these results in the following theorems.

THEOREM 7.5 (SOUNDNESS). If unify(T1, T2) = σ , then T1σ ≡ T2σ .

THEOREM 7.6 (COMPLETE AND MOST GENERAL). If T1σ ≡ T2σ , then unify (T1,
T2) = σ ′ where σ = σ ′′ ◦ σ ′ for some σ ′′.

A proof of Theorem 7.5 is given in the appendix in Section A.2.1.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 1, Article 1, Publication date: March 2014.



�

�

�

�

�

�

�

�
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In order to prove the correctness of CT-unification, we must relate the preceding
theorems on qualified unification to the problem of variational unification. To do this,
we must first establish the relationships between the comp function, the qualifiers, the
unification problem, and the qualified unification problem.

The following lemma states the expectations for the comp function, which trans-
forms a mapping from a single qualified type variable into a mapping from an unqual-
ified type variable to a partially completed type. The lemma is proved in the appendix
in Section A.2.2, demonstrating that comp is correct.

LEMMA 7.7. Given a mapping {aq �→ T′}, if T = comp(q, T′, b) is the completed type
(where b is fresh), then �T�q = �T′�q. More generally, given {aq1 �→ T1, . . . , aqn �→ Tn},
if T = comp(q1, T1, comp(q2, T2, . . . comp(qn, Tn, b) . . . )), then for every qi ∈ {q1 . . . qn},
we have �T�qi = �Ti�qi .

Using this result, we can prove the correctness of the completion process. Given a so-
lution to a qualified unification problem, completion produces a solution to the original
unqualified version. The lemma given next states the expectation of completion with
respect to the selection semantics. It is also proved in the appendix, in Section A.2.3.

LEMMA 7.8 (COMPLETION). Given a CT-unification problem TL ≡? TR and the cor-
responding qualified unification problem T′

L ≡?
q T′

R, if σQ is a unifier for T′
L ≡?

q T′
R and

σU is the unifier attained by completing σQ, then for any supercomplete decision δ,
�TLσU�δ ≡ �T′

LσQ�δ and �TRσU�δ ≡ �T′
RσQ�δ.

Completion also preserves principality since the comp function adds fresh type vari-
ables everywhere except at the leaf addressed by the path q (maximizing generality),
and the principal type inferred during qualified unification is inserted directly at q.

The following theorem generalizes Lemma 7.8, stating that through qualification
and completion, we can solve CT-unification problems. We call this process variational
unification.

THEOREM 7.9. Given a CT-unification problem U and the corresponding qualified
unification problem Q, if σQ is a unifier for Q, then we can attain a unifier σU for U
through the process of completion.

Variational unification is sound, complete, and most general since the underlying
qualified unification algorithm has these properties and since completion preserves
principality.

7.4. Time Complexity of the Unification Algorithm

Solving the unification problem U consists of three steps: (1) transforming U into the
corresponding qualified unification problem Q, (2) solving Q with the qualified unifi-
cation algorithm unify, and (3) transforming the qualified unifier into the variational
unifier through completion. To determine the time needed to solve U, we will consider
the time complexity of each step in turn. As before, we use TL and TR to denote the
LHS and RHS of U. We use σU and σQ to denote the unifier for U and Q, respectively.
The size of a type T, denoted by |T|, is the number of nodes in its AST (as defined
by the grammar in Section 3.1). We assume that |TL| = l and |TR| = r. The size of a
unification problem is the sum of the sizes of the types being unified.

The process of transforming U to Q qualifies each type variable in U. This can be
achieved by a top-down traversal of the ASTs of TL and TR. Thus, the complexity of
this process is O(l + r). Note that the resulting qualified problem Q is the same size as
the original U.
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For the second step of solving Q, we do a worst-case complexity analysis. For sim-
plicity, assume that the internal nodes of TL and TR are all choice types. Then the
worst case for unification is when choices(TL) ∩ choices(TR) = ∅. When TL and TR
have no choices in common, we proceed by: (1) splitting a type variable in one of the
types, say TL, into a choice type in the dimension of the root choice of the other type,
TR; (2) hoisting the new choice type to the root of TL; and (3) decomposing the problem
by alternatives. Splitting and hoisting the new choice type increases the size of the
LHS to 1 + 2l: 1 for the new choice type plus 2l for the copy of TL in each alternative
with extended qualifications on its type variables. The splitting and hoisting process
can be performed in O(l) time by introducing the new choice type, copying TL into
each alternative, and then traversing each alternative, qualifying the type variables
accordingly.

After decomposing the problem by alternatives, we are left with two smaller sub-
problems TL1 ≡?

q TR1 and TL2 ≡?
q TR2 . We know that |TL1 | = |TL2 | = |TL| since

TL1 and TL2 are just copies of TL with different type variable qualifiers. Moreover,
|TR1 |+ |TR2 | = |TR|−1 since TR1 and TR2 are the left and right branch of the root node
of TR, respectively. The split-hoist-decompose process will be recursively applied to the
subproblems TL1 ≡?

q TR1 and TL2 ≡?
q TR2 . After two more decompositions, there will

be four unification subproblems. Since there are (r − 1)/2 internal nodes, there will
be (r − 1)/2 decompositions, and since each decomposition takes O(l) time, the whole
decomposition takes O(l · (r − 1)/2) time.

We can also observe that each decomposition by alternatives creates two subprob-
lems from one. This will result in (r + 1)/2 subproblems, one from the decomposition
corresponding to each choice node in the tree. Based on the decomposition process,
each resulting subproblem is either of the form T′

L ≡?
q g or T′

L ≡?
q aq, where T′

L differs
from TL only in type variable qualifications, g is a ground type, and aq is a qualified
type variable. Based on cases (2) and (7) of the unification algorithm, each final sub-
problem therefore takes O(|T′

L|) = O(|TL|) = O(l) to solve. Thus the time needed to
solve all subproblems is O(l · (r + 1)/2).

Summing the time needed for decomposition, O(l · (r − 1)/2), and the time needed
for solving the resulting unification problems, O(l · (r + 1)/2), the time complexity of
solving Q is O(lr).

Finally, we consider the complexity of the third step of the unification process, trans-
forming the solution σQ for Q into a solution σU for U through the process of comple-
tion. Again, we perform a worst-case analysis. Completion is performed by folding the
mappings in σQ with the function comp. We can establish an upper bound on the num-
ber of mappings in σQ by following the decomposition process in the previous step and
counting the number of potential type variables. At the end of this process we have at
most (r − 1)/2 subproblems of the form T′

L ≡?
q T. Each T′

L is of size l and contains at
most (l + 1)/2 type variables at the leaves; each T is either a type variable or a ground
plain type. Therefore, after some simplification, σQ contains at most (1/2)(r − 1)(l + 1)
mappings.

If we think of the completion process as incrementally building up a tree of nested
choices that describe the result type T, then each mapping aqi �→ Ti ∈ σQ essentially
describes a leaf in that tree. Applying comp to such a mapping constitutes traversing
T according to the path described by qi, possibly generating at most one new choice
type and one new type variable (if this is the first traversal along this path) at each
step of the way; this takes O(|qi|) time, where |qi| is the length of the qualifier. The
length of the qualifier is in turn bounded by the total number n of dimensions present
in the unification problem. An upper bound on n can be expressed in terms of l and
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r as (l − 1)/2 + (r − 1)/2 since there is at most one dimension name for each internal
node in the original types TL and TR. Finally, since a single completion step takes time
O(n) = O(l + r) and we will perform O(lr) completion steps (one for each mapping), the
total time for completion is O(l2r + lr2).

Summing these three steps, we see that the completion step dominates the others,
so the unification of variational types takes cubic time, in the worst case, with respect
to the size of the types. When unifying types that contain choice types in the same
dimension, we can expect the complexity of unification to be much lower.

8. TYPE INFERENCE ALGORITHM

Although the unification algorithm for VLC differs significantly from the Robinson uni-
fication algorithm, the type inference algorithm is only a simple extension of algorithm
W for lambda calculus [Damas and Milner 1982]. We call this algorithm infer and its
type is given next.

infer : � × � × e → σ × T

The function takes three arguments: the two environments maintained in the typing
rules (the share-bound variable environment � and the typing environment �) and
the expression to type. It returns a type substitution and the inferred type.

The cases of the infer algorithm can be derived from the typing rules in Section 3.2.
The cases for choices and applications are given next.

infer(�, �, D〈e1, e2〉) =
(σ1, T1) ← infer(�, �, e1)
(σ2, T2) ← infer(�, �σ1, e2)
return (σ2 ◦ σ1, D〈T1, T2〉)

infer(�, �, e1 e2) =
(σ1, T1) ← infer(�, �, e1)
(σ2, T2) ← infer(�, �σ1, e2)
σ ← unify′

(T1σ2, T2 → a) {- a is a fresh type variable -}
return (σ ◦ σ2 ◦ σ1, aσ)

On a choice, we determine the alternative types in the result by inferring the type of
each alternative expression. Note that we apply the mapping produced by inferring
the type of e1 to the typing environment used to infer the type of e2. This ensures that
the result types and mappings will be consistent. Finally, the result mapping is just a
composition of the mappings produced during type inference of the two alternatives.

The infer algorithm types applications as in W , except replacing the unification algo-
rithm with our own variational unification algorithm (and propagating the additional
environments). We use unify′ to represent the combined qualification, unification, and
completion process. That is, first the type variables in T1 and T2 are qualified, then
unify is invoked on the transformed types, and finally the resulting mapping is com-
pleted to produce σ , the solution to the original unqualified unification problem.

The remaining cases are similarly straightforward. Abstractions and λ-bound vari-
ables are exactly as in W , while share expressions and share-bound variables can be
derived from the typing rules in the same way as the choice case given before.

The following theorem expresses the standard property of soundness for the varia-
tional type inference algorithm.

THEOREM 8.1 (TYPE INFERENCE IS SOUND). infer(�, �, e) = (σ , T) =⇒ �, �σ �
e : T.
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PROOF. The infer algorithm is directly derived from the typing rules and based on
algorithm W , which is sound. The only challenge to soundness comes from the diver-
gence from W on applications, where we replace the standard unification algorithm
with unify′. However, since variational unification is also sound per Theorem 7.9, this
property is preserved.

The type inference algorithm also has the principal type property, which follows from
Theorems 7.6 and 7.9.

THEOREM 8.2 (TYPE INFERENCE IS COMPLETE AND PRINCIPAL). For every map-
ping σ and type T such that �, �σ � e : T, there exists a σ ′ and T′ such that
infer(�, e) = (σ ′, T′) where σ = σ ′′ ◦ σ ′ for some σ ′′ and T = T′σ ′′′ for some σ ′′′.

These results are important because they demonstrate that properties from other type
systems can be preserved in the context of variational typing.

9. EFFICIENCY

For any static variation representation (such as the choice calculus) applied to a stati-
cally typed object language, there exists a trivial typing algorithm: generate every pro-
gram variant, then type each one individually using the nonvariational type system
of the object language. We call this the “brute-force” strategy. There are two significant
advantages of a more integrated approach using variational types. The first is that we
can characterize the variational structure of types present in variational software—
this is useful for aiding understanding of variational software and informing decisions
about which program variant to select. The second is that we can gain significant effi-
ciency improvements over the brute-force strategy. Due to the combinatorial explosion
of program variants as we add new dimensions of variation, separately inferring or
checking the types of all program variants quickly becomes infeasible. In this section
we describe how variational type systems, and our type system for VLC in partic-
ular, can increase the efficiency of type inference for variational programs, making
typing possible for massively variable systems. We do this in two ways: by analytically
characterizing the opportunities for efficiency gains, and by demonstrating these gains
experimentally.

9.1. Analytical Characterization of Efficiency Gains

Although we have considered only binary dimensions so far, we assume in this dis-
cussion that the variational type system has been extended to support arbitrary n-ary
dimensions. While this extension is not interesting from a technical perspective, it is
important for practical use and accentuates the potential for efficiency gains.

An important observation is that the worst-case performance of any variational type
system is guaranteed to be no better than the brute-force strategy, assuming the vari-
ation representation is sufficiently general. Consider the following VLC expression.

A〈B〈e1, e2〉, B〈e3, e4〉〉
If e1, e2, e3, and e4 contain no common parts that can be factored out, there is simply no
improvement to be made over the brute-force strategy. We must type each of the four
expressions separately, and the type of each one provides no insight into the types of
others. Fortunately, we expect there to be many more opportunities for improvement
in actual software. In this section, we describe the two basic ways that variational
typing can save over the brute-force strategy, characterizing the efficiency gains by
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expression dims variants one brute vlc

e1 A〈λ x.3, λ x.true〉 B〈3, 5〉 2 4 2.6 10.2 10.1
e2 A〈λ x.3, λ x.true〉 B〈3, 5, 7, 9〉 2 8 2.5 20.4 10.2
e3 if true e1 e′

1 4 16 21.2 334.7 34.3

e4 A〈B〈succ, λ x.true〉, B〈λ x.3, not〉〉 B〈3, true〉 2 4 2.6 10.1 15.7
e5 id id id e4 2 4 31.9 125.1 63.0
e6 if true e4 e′

4 4 16 24.0 380.5 55.0

Fig. 13. Running times of type inference strategies on several examples. Each test was run 200,000 times
on a 2.8 GHz dual core processor with 3GB of RAM. All times are in seconds.

each. Since these patterns are expected to be ubiquitous in practice, variational typing
can likewise be expected to be much more efficient.

The first opportunity for efficiency gains arises because choices capture variation lo-
cally. This allows the type system to reuse the types inferred for the common context
of the alternatives in a choice. Suppose we have a choice D〈e1, . . . , en〉 in a nonvaria-
tional context C. Conceptually, a context is an expression with a hole; we can fill that
hole with the choice given earlier to produce the overall expression, which we write as
C[ D〈e1, . . . , en〉]. Our algorithm types the contents of C only once, whereas the brute-
force strategy would type each C[ ei] separately, typing C a total of n times. While
the work performed on C by our algorithm is constant, the extra work performed by
the brute-force strategy obviously grows multiplicatively with the size of each new di-
mension of variation. We can maximize the benefits of choice locality gains by ensuring
that choices are maximally factored. In our previous work we say that such expressions
are in choice normal form, and we provide a semantics-preserving transformation to
achieve this desirable state [Erwig and Walkingshaw 2011].

The second, more subtle opportunity involves the typing of applications between two
choices, for example, A〈e1, . . . , en〉 B〈e′

1, . . . , e′
m〉. Since the brute-force strategy considers

every variant individually, it must unify the type of every alternative in the first choice
with the type of every alternative in the second choice, for a total of n · m unifications.
The ability to see all variants together provides substantial opportunity for speed-
up if several alternatives in either choice have the same type. For example, if the
alternatives of the choice in dimension A have k < n unique types and the alternatives
of the choice in B have l < m unique types, then the type inference algorithm must
invoke unification at most k · l times (and often less, depending on the structure of the
types). Since we expect it to often be the case that all alternatives of a choice have the
same type (consider varying the values of constants, the names of variables, or only
the implementation of a function), this offers a dramatic opportunity for efficiency
gains.

9.2. Experimental Demonstration

In this section we continue the efficiency discussion through a series of three experi-
mental demonstrations of the performance of our variational type inference algorithm,
infer. First, we illustrate the savings described in the analytical evaluation. Second, we
describe a degenerate scenario that induces poor performance in infer, but show that
it can still exploit sharing to perform better than the brute-force algorithm. Third, we
demonstrate the performance of infer on large and complex, randomly generated ex-
pressions. These experiments are not intended as a rigorous or real-world experimen-
tal evaluation of the variational type inference algorithm, but as a vehicle to further
the discussion.
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Extending Type Inference to Variational Programs 1:33

The experiments are based on a Haskell prototype that implements the ideas
and algorithms presented in this article. The prototype consists of three parts: the
variational type normalizer, the equational unification algorithm, and the type infer-
ence algorithm. The prototype implements most of the features described in this arti-
cle. One exception is that the second opportunity for efficiency gains, described in the
previous section, is exploited only in the special case when all variants of a choice have
the same type.

9.2.1. Illustration of Efficiency Gains. In this part, we will be referring to the expressions
and results in Figure 13. The leftmost column names each expression and the next
column defines it. The dims column indicates the number of dimensions in the ex-
pression. The variants column indicates the total number of variants, which can be
calculated by multiplying the arity of each of the dimensions. The timing results are
given in the final three columns. The one column indicates the time needed to infer the
type of a single program variant. This is intended as a reference point for comparison
with the other two timing results. The brute column gives the time to infer the type of
each variant separately using the brute-force strategy, and vlc gives the time taken by
infer to infer a variational type for the expression.

All times are calculated within our prototype. In the absence of variation (when
inferring types for one and brute), the prototype reduces to a standard implementation
of algorithm W . The typing environment is seeded with boolean and integer values
that map to constant types Bool and Int, and several simple functions like id, not, succ,
and even that map to the expected types. The function if has type Bool → a → a → a.

The first group of expressions demonstrates some basic relationships between the
number and arity of dimensions and the potential efficiency gains of variational type
inference. In e1 we present a simple unification problem with an opportunity for shar-
ing (both alternatives of the B choice have type Int). Since the number of variants is
so small, the overhead of infer negates the gains made by sharing, and the algorithm
performs equivalently to the brute-force strategy. However, this quickly changes as we
add variants and additional context. In e2 we have doubled the number of variants
by increasing the number of alternatives in the B dimension from 2 to 4. While the
running time for the brute-force strategy correspondingly doubles, variational type in-
ference does not since the new alternatives can also be shared. Finally, in e3 we double
the number of dimensions to increase the number of variants by a factor of four. The
expression e′

1 is identical to e1, except with unique dimension names. This example
also adds some additional, unvaried context (if True). Now we can see the exponen-
tial explosion of the brute-force strategy (which must also type the common context
16 times), while infer scales essentially linearly with respect to the size of the expres-
sion. We can also observe that the ratio of overhead for infer, relative to the reference
single-variant inference time, decreases as we increase the size of the expression.

In the second group we begin with a more complex variational structure with no
opportunities for sharing, e4. As expected, infer performs worse than brute force due
to the overhead. With e5, however, we demonstrate how even a very small amount of
common context can tip the scale back in infer’s favor. If we again duplicate the initial
expression and rename the dimension names, as in e6, we introduce an opportunity for
sharing, allowing infer to scale nicely while brute force does not.

9.2.2. Cascading Choice Problem. In this part, we analyze the impact of a difficult case
for our algorithm that we call cascading choices. This occurs when we have a long se-
quence of choices, each in a different dimension, connected by applications. If there
are few opportunities for sharing, the result type produced from the first unification
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Fig. 14. Performance comparison for the cascading choice problem.

size dims c/d a/s nesting cascading one brute vlc
569 27 5.38 0.070 11(1) 11(1) 0.0011 148504 0.52

3505 57 6.61 0.279 12(1) 11(2) 0.0236 - 0.57
8153 168 6.21 0.250 12(4) 12(4) 0.0583 - 2.14
9429 215 6.67 0.218 12(7) 12(5) 0.0510 - 3.16

29481 681 6.87 0.210 12(25) 12(17) 0.154 - 10.16
61345 1434 7.05 0.203 12(56) 12(37) 0.321 - 21.67

213521 4983 7.03 0.203 12(183) 12(119),13(3) 1.10 - 76.98
429586 10002 7.08 0.202 17(2),12(287) 19(1),12(229) 2.17 - 142.33

Fig. 15. Running times of type inference for large expressions (in seconds).

can be expanded by the second, third, and so on, potentially building up a re-
sult type exponentially and making each successive unification more expensive than
the last.

Figure 14 demonstrates the performance of infer and the brute-force algorithm on
expressions designed to induce the cascading choice problem. In the left graph, the
x-axis indicates the number of dimensions in the expression, and the y-axis gives the
running time on a logarithmic scale. The leftmost expression with 14 dimensions has
16384 variants and produces a result type with 14335 different variants. We can ob-
serve that the running time of infer is exponential with regard to the number of dimen-
sions. However, it still performs slightly better than the brute-force strategy because
it takes advantage of the few opportunities for sharing available.

While infer is sensitive to the number of dimensions in expressions inducing the
cascading choice problem, it is less sensitive to the overall size of the expression. This
is in stark contrast to the brute-force strategy, as illustrated in the right graph in
Figure 14. Here, we fix the length of cascading choices at 21 but increase the size of the
expression by making the alternatives in each choice more complex. The x-axis shows
this size (in number of AST nodes) and the y-axis shows the running time in seconds.
We observe that the brute-force strategy grows sharply as the size of the alternatives
increases since each will be typed several times. This additional work will be shared in
infer, however, and so the running time grows much less (increasing from 338 seconds
to 461).

9.2.3. Performance on Large Expressions. Finally, in Figure 15, we demonstrate the effi-
ciency of type inference on several large, randomly generated expressions. These ex-
pressions are generated in several steps. First, we add several functions and their
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Extending Type Inference to Variational Programs 1:35

corresponding types to an initial environment. Then we manually build up a library of
small (potentially variational) expressions and add these to the environment. We use
these seeded expressions as building blocks for randomly constructing larger expres-
sions by picking a random function from the environment, picking random arguments
that will satisfy its type, possibly changing the dimension names, then joining these
expressions with applications. Finally, we add this new expression back into the en-
vironment and repeat until the environment contains expressions of the desired size
and complexity.

The table reports the running time for many large expressions. It gives the size of
each expression as the number of AST nodes and the number of contained dimen-
sions. Each dimension is binary, so an expression with d dimensions will describe 2d

total variants. The next four columns characterize the composition and structure of
the expression. We indicate the ratio c/d of choices to dimensions, and the ratio a/s of
application nodes to the size of the expression. In general, we would expect a higher
ratio of application nodes to present a greater challenge for the inference algorithm
(since unification must be invoked more often). The column nesting indicates the deep-
est choice-nestings in the expression, where d(n) indicates that the nesting depth d
occurs n times. Similarly, the column cascade indicates the longest occurrences of cas-
cading choices, as described before. In the last three columns we give the time required
to infer the type of a single variant, to infer the types of all variants using the brute-
force strategy, and to infer a variational type using infer. Note that it is impossible to
apply the brute-force approach to all but the first of these expressions.

These results demonstrate the feasibility of variational type inference on very large
expressions. Our results for type inference are consistent with those for type checking
demonstrated by Thaker et al. [2007]. While usually much larger in size, we would
expect real-world software to be considerably less complex. For example, in an analysis
of real variational software implemented with the AHEAD framework [Batory et al.
2004], Kim et al. [2008] found a maximum nesting depth of just 3 and an average
depth of 1.5.

10. RELATED WORK

There are many different ways of encoding variability in software. In VLC, variation
points are embedded directly into lambda calculus terms with choices. In Section 10.1
we compare this annotative approach to other ways of encoding variation and motivate
our decision to base our type system on annotative variation.

The rest of this section addresses work related to variational types, VLC’s type sys-
tem, typing variational programs, and the variational type inference algorithm. This
work falls roughly into two categories. In Section 10.2 we discuss related theoretical
work in the area of programming languages and type systems. In Section 10.3 we re-
late our approach to other work done in the area of software product lines.

10.1. Approaches to Variation Management

In general, there are three main ways to manage software variation, which we will re-
fer to in the following as: (1) annotative, (2) compositional, and (3) metaprogramming.

(1) In the annotative approach, object language code is varied in-place through the
use of a separate annotation metalanguage. Annotations delimit code that will
be included or not in each program variant. When selecting a particular variant
from an annotated program, the annotations and any code not associated with
that variant are removed, producing a plain program in the object language. The
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1:36 S. Chen et al.

most widely used annotative variation tool is the C PreProcessor (CPP) [GNU
Project 2009], which supports static variation through its conditional compilation
constructs (#ifdef and its relatives).

(2) The compositional approach emphasizes the separation of variational software into
its component features and a shared base program, where a feature represents
some functionality that may be included or not in a particular variant. Variants
are generated by selectively applying a set of features to the base program. This
strategy is usually applied in the context of object-oriented languages and relies
on language extensions to separate features that cannot be captured in traditional
classes and subclasses. For example, inheritance might be supplemented by mixins
[Batory et al. 2004; Bracha and Cook 1990], aspects [Elrad et al. 2001; Mezini and
Ostermann 2003], or both [Mezini and Ostermann 2004]. Relationships between
the features are described in separate configuration files [Batory et al. 2004], or
in external documentation, such as a feature diagram [Kang et al. 1990]. These
determine the set of variants that can be produced.

(3) The metaprogramming approach encodes variability using metaprogramming fea-
tures of the object language itself. This is a common strategy in functional pro-
gramming languages, such as MetaML [Taha and Sheard 2000], and especially in
languages in the Lisp family, such as Racket [Flatt and PLT 2010]. In these lan-
guages, macros can be used to express variability that will be resolved statically,
depending on how the macros are invoked and what they are applied to. Different
variants can be produced by altering the usage and input to the macros.

Annotative approaches provide a desirable foundation for developing general strate-
gies for extending existing analyses to variational programs. By providing a language-
independent, highly structured, and visible model of variation, annotative approaches
separate variational concerns from the object language. They can be applied to multi-
ple different object languages, and they enable the direct manipulation and analysis of
the variation within the software. These qualities feature prominently in the type sys-
tem for VLC presented in this article, allowing us to represent variation explicitly not
only in the language of expressions, but also in the language of types, and to correlate
the two.

10.2. Programming Languages and Type Systems

Choice types are in some ways similar to variant types [Kagawa 2006]. Variant types
support the uniform manipulation of a heterogeneous collection of types. A significant
difference between the two is that choices (at the expression level) contain all of the
information needed for inferring their corresponding choice type. Values of variant
types, on the other hand, are associated with just one label, representing one branch
of the larger variant type. This makes type inference very difficult. A common solution
is to use explicit type annotations; whenever a variant value is used, it must be an-
notated with a corresponding variant type. Typing VLC expressions does not require
such annotations.

Choice types are also somewhat similar to union types [Dezani-Ciancaglini et al.
1997]. A union type, as its name suggests, is a union of simpler types. For example,
a function f might accept as arguments the union of types Int and Bool. Function
application is then well typed if the argument’s type is an element of the union type; so,
f could accept arguments of type Int or type Bool. The biggest difference between union
types and choice types is that union types are comparatively unstructured. In VLC,
choices can be synchronized, allowing functions to provide different implementations
for different argument types, or for different sets of functions to be defined in the
context of different argument types. With union types, an applied function must be able
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Extending Type Inference to Variational Programs 1:37

to operate on all possible values of an argument with a union type. A major challenge in
type inference with union types is union elimination, which is not syntax directed and
makes type inference intractable. Therefore, as with variant types, syntactic markers
are needed to support type inference.

Type conditions are an extension to parametric polymorphism in the presence of
subtyping that have been studied in the contexts of both the Java generics system
[Huang et al. 2007] and C++ templates [Dos Reis and Stroustrup 2006]. They can be
used to conditionally include data members and methods into a class only when the
type parameters are instantiated with types that satisfy the given conditions (for ex-
ample, that the type is a subtype of a certain class). Often this can be used to produce
similar effects to the C PreProcessor, but in a way that can be statically typed. Type
conditions differ from VLC in that they capture a much more specific type of variation,
namely, conditional inclusion of code depending on the type of a class’s type parame-
ters; in contrast, VLC can represent arbitrary variation. Type conditions also have a
quite coarse granularity, varying only top-level methods and fields. A feature, relative
to VLC, is that different variants of the same code (class) can be used within the same
program (by instantiating the class’s type parameters differently).

When a new type system is designed or when new features are added to an exist-
ing system, a new unification algorithm and type inference algorithm must be coined
for the new system, and the correctness of the new system and algorithms have to
be demonstrated. As evidenced by this article, this is quite a lot of work. To reduce
this burden and promote reuse, Odersky et al. [1999] and Sulzmann [2001; Sulzmann
and Stuckey 2008] have proposed HM(X), a general framework for type systems with
constraints, including a type inference algorithm that computes principal types that
satisfy these constraints. By instantiating X to different extensions, different type sys-
tems can be generated from HM(X). For example, X can be instantiated to polymor-
phic records, equational theories, and subtypes. Variational type inference cannot be
implemented within HM(X), however, and we cannot therefore reuse its algorithms
and proofs. This is because HM(X) requires constraints to satisfy a regularity property
that does not hold in variational type inference. The regularity property states that two
sides of any equational theory must have the same free variables, but this is not true
in VLC’s type system because of choice domination. For example, A〈A〈a, b〉, c〉 ≡ A〈a, c〉
but {a, b, c} �= {a, c}.

Some aspects of the type system presented in this article can be simulated by depen-
dent types [Xi and Pfenning 1999]. However, there are limitations of this approach.
For one, type inference with dependent types is undecidable. Most dependent type sys-
tems also require programmers to supply complex type annotations or construct proof
terms to support type checking [Fogarty et al. 2007; Norell 2007; Paulin-Mohring 1993;
Xi and Pfenning 1999]. This is a significant burden that our type system does not im-
pose. A more restricted version of choice types could also be implemented with phan-
tom types and GADTs [Johann and Ghani 2008]. However, GADTs cannot express
arbitrary choice types since the type of each alternative would be constrained by the
requirement that the result type of each branch of a GADT must refine the data type
being defined.

Related to our process of variation type normalization, Balat et al. [2004] present
a powerful normalizer for terms in lambda calculus with sums. They make use of a
similar transformation for eliminating dead alternatives. Our type normalizer differs
from theirs in two technical details. First, choices in VLC are named and choices with
different names are treated differently. Their normalizer makes no such distinction
among sums, making it essentially equivalent to VLC in which all choices are in the
same dimension. Second, the order of choice nesting is significant in our normalization,
whereas the order of sum nesting is not in theirs.
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Program variation can also be expressed using program generation or metapro-
gramming techniques. Using MetaML [Taha and Sheard 2000] one could represent
variational code through the use of macros, which would be evaluated in one stage,
leading to nonvariational programs in the next. In this way one could simulate the
variation annotations of VLC, and MetaML’s static type system would ensure that all
represented variations would be type correct. However, a serious limitation of that ap-
proach is that MetaML’s type system would require that all alternatives in a choice
macro have the same type. Template Haskell [Sheard and Jones 2002] is more flexible
in this regard since it would allow alternatives of different types to be put into a choice
macro. However, this flexibility is achieved by delaying type checking until after macro
expansion, abandoning the static typing paradigm [Shields et al. 1998], and meaning
that program variants would not be typed until after they are generated.

In C++, generic programming [Austern 1998] and template metaprogramming
[Abrahams and Gurtovoy 2004] enable software variation through template instantia-
tion. By instantiating templates with different arguments, different program variants
can be generated. C++ templates provide a static type reflection mechanism [Garcia
2008] that allow metaprograms to query the type information of template parameters.
At the same time, C++ templates support specialization to customize generic imple-
mentations for particular type parameters. These features allow C++ to achieve both
maximum reusability and efficiency. However, since the complete type information of
the template parameters is not available statically, full type checking is delayed until
a particular program variant is generated [Stroustrup 1994]. This means it is not pos-
sible to statically type check all program variants without generating each one. This
has led to serious usability problems [Gregor et al. 2006].

Despite huge efforts devoted to address this issue [Dos Reis and Stroustrup 2006;
Garcia and Lumsdaine 2009; Gregor et al. 2006; Miao and Siek 2010; Reis and
Stroustrup 2005; Siek and Taha 2006], no satisfying solution has been proposed. Järvi
et al. [2006] conclude that to achieve modular type checking for C++ templates, ei-
ther the use or implementation of specialization must be constricted. Choice types
together with variational unification provide a possible mechanism for removing this
constriction, by encoding and synchronizing the different possible types for template
parameters.

SafeGen [Huang et al. 2005] and MorphJ [Huang and Smaragdakis 2008, 2011] pro-
vide a way to create generic Java classes whose methods are generated by iterating
over the fields and methods of other classes. This is particularly suited for defining
wrappers and proxies for existing classes. Method definition in MorphJ consists of
two parts: (1) the iteration pattern that determines which methods will be matched,
and the resulting method name, return type, and argument types, and (2) the method
body, which may refer to pattern-matching variables defined in the iteration pattern.
MorphJ checks that the operations applied to pattern-matching variables are sup-
ported by assumptions introduced in the iteration pattern. This is very similar to C++
concepts, which describe constraints on template parameters [Gregor et al. 2006]. Both
approaches ensure that the generated class will be well typed if they are instantiated
with arguments that satisfy the assumptions/constraints.

Many other techniques have been developed for ensuring the generation of well-
formed and well-typed programs in mainstream object-oriented languages. Fändrich
et al. [2006] propose a pattern-matching and template-based approach for writing
reflective code in C#. Work on Maven [Goldman et al. 2010] and subsequent work
[Disenfeld and Katz 2012] has addressed the problem of ensuring that specified behav-
iors are achieved after complex aspect-weaving operations. Finally, expanders [Warth
et al. 2006] provide a new language construct for updating the methods and fields of
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Extending Type Inference to Variational Programs 1:39

an existing Java class in a noninvasive way. This work achieves modular type checking
by statically scoping the usage of expanders.

A different perspective is the use of variants not as a part of a type system, but to im-
prove the precision of the type inference process. Employing the techniques proposed
in Chen et al. [2012], we have developed a new approach for debugging type errors
in functional programs that is based on the observation that in principle any part of
a program can potentially be the source of a type error [Chen and Erwig 2014]. We
represent the uncertainty about the location of type errors by assigning each leaf in
a program AST a choice type whose first alternative is the type it should have under
normal type inference and whose second alternative will have the type that the context
requires it to be. Leaves whose choice types have different alternatives are potential
causes of type errors. The use of choice types can reduce the bias often found in type in-
ference algorithms and can improve the precision of type-error localization by delaying
typing decisions.

10.3. Type Checking Software Product Lines

In the context of software product lines (SPLs), a lot of work has been done to improve
the type checking of generated products and avoid the brute-force strategy of typing
each product individually. One example is Thaker et al. [2007], who present an ap-
proach for type checking SPLs based on the safe composition of type-correct modules
Delaware et al. [2009a, 2009b]. This is given as a tool implemented in the AHEAD
framework for feature-oriented software development [Batory et al. 2004], where each
feature is implemented in a separate module. These modules can then be selectively
composed into products, and the set of all such possible products forms an SPL. Safe
composition of features is achieved in two steps. In the first, each module is compiled
and checked to see whether it satisfies a lightweight global consistency property. After
that, constraints between particular modules are checked. VLC does not consider these
constraints separately, yet it supports both kinds of constraints. Another important
difference between their approach and our own is that they represent variation at a
much coarser level of granularity. The finest granularity of variation in their work is
statements, while in VLC we support variation at arbitrarily fine-grained levels. Fi-
nally, their approach uses SAT solvers to ensure safe composition, whereas we infer
types directly.

Other work on ensuring the type correctness of generated products within the com-
positional approach include the work of Apel and Hutchins [2008], which describes
feature composition formally with a new calculus, and the work of Chae and Blume
[2008], which ensures that the types of composed features will match.

Also in the field of SPLs, Kästner et al. [2012a] describe a type system for Colored
Featherweight Java (CFJ). In CFJ, parts of a Featherweight Java (FJ) program can be
“colored”, marking it as optional and associating it with a particular feature. They use
the CIDE tool [Kästner et al. 2008] to enforce syntactic correctness of CFJ programs by
allowing only the coloring of syntactically optional code. A variant is generated by se-
lecting which features in the CFJ program to include. VLC and CFJ share many of the
properties of annotative approaches—for example, both type systems have the prop-
erty that variation selection preserves typing—but they differ in the kinds of variations
that are supported. Specifically, VLC supports alternative variation, whereas CFJ only
supports optional variation naturally and supports alternative variation only through
external tools. On a conceptual level, CFJ is a combination of the type system for FJ
and a path analysis that checks whether elements that are referred to are reachable.
This leads to qualitatively different typing rules in CFJ, which are extensions of those
for FJ with reachability checking and annotation propagation. In contrast, the type
system for VLC is quite similar to other type systems. Also, like the work mentioned
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before, CFJ captures variation only at a statement level of granularity and uses a SAT
solver to ensure type correctness, rather than inferring variational types.

While CFJ provides type checking support for annotative variation in Featherweight
Java, Feature Featherweight Java (FFJ) [Apel et al. 2008] and FFJPL [Apel et al. 2010]
provide type checking support for compositional variation in the language. The goal of
these languages is to explore the flexibility of class refinement and module composi-
tion and to ensure the type correctness of whole software product lines. Both FFJ and
FFJPL provide support for alternative types by supporting the definition of alterna-
tive classes; there are no constraints imposed on the implementations of alternative
classes, or their relationships with other classes. There are two important differences
between VLC and this line of work. First, choice types are associated with dimen-
sions in VLC, allowing synchronization between different variation points at the type
level, which cannot be expressed in FFJ or FFJPL. Second, choice types can be simpli-
fied (e.g., through choice idempotency), allowing for simpler variation at the type level
than at the expression level.

There has also been some work on statically checking variational C programs con-
taining CPP annotations. Initial work in this area was done by Aversano et al. [2002],
where they demonstrate the widespread use of conditionally declared variables with
potentially different types and the difficulty in ensuring that they are used correctly
in all variants. As a solution, they propose the construction of an extended symbol
table with the conditions in which each symbol is defined and has the corresponding
type. Kenner et al. [2010] and Kästner et al. [2012b] provide a working implemen-
tation of essentially this approach in TypeChef, although it currently ensures only
that symbol references are satisfied in all variants and that no symbols are redefined.
TypeChef ’s ultimate goal is to be able to efficiently ensure the type correctness of all
variants of CPP-annotated C programs, which becomes promising with the work of
variability-aware parsing [Gazzillo and Grimm 2012; Kästner et al. 2011]. There is
a huge amount of engineering overhead in such a project, not related to variational
type systems, because of CPP’s somewhat quirky semantics and highly unstructured
variation representation. For example, making a selection in VLC roughly corresponds
to setting a macro in CPP, but a macro’s setting can change several times throughout
a single run of the C preprocessor, making it much more difficult to even determine
which code corresponds to a particular variant. Therefore, this work is mostly com-
plementary to our own; we abstract these challenges away by focusing on a simple
formal language (VLC), allowing us to focus on the core issue of typing variational
programs. Also, like their previous work on CFJ, TypeChef is constraint based and re-
lies on a constraint solver for checking properties, while we can more generally infer
types.

In this article a VLC expression is typable only if all of its variants are well typed.
Thus a type error in one variant causes the entire variational program to be type incor-
rect. Elsewhere we have shown how to extend the approach described in this article to
be error tolerant [Chen et al. 2012]. The extension introduces partial variational types
that may also contain errors for some variants, which are introduced when unification
fails. This extension is useful not only for locating type errors, but also for support-
ing the incremental development of variational software. The results and techniques
related to this extension are mostly orthogonal to the results presented here.

Aside from type checking, many other static analyses on variational software have
been investigated. Through the composition of proofs for individual feature modules,
Delaware et al. [2011] provide a way to derive proofs for individual products. Other
work includes variability-aware dataflow analysis [Brabrand et al. 2012; Liebig et al.
2012], and variability-aware model checking [Apel et al. 2013; Classen et al. 2010,
2011; Cordy et al. 2012].
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11. CONCLUSIONS AND FUTURE WORK

We have presented a method to infer types for variational programs. Our solution
addresses both the issues of efficiently ensuring the type correctness of all program
variants, and effectively representing variational types. The contributions of this work
are as follows.

(1) The VLC language, a simple formal language that supports theoretical research on
variational software. Research in this area has so far been mostly tool-based, but
the success of lambda calculus in the programming languages community demon-
strates the utility of such a research tool.

(2) The notion of variational types, which solves the problem of effectively represent-
ing types in variational programs. This not only directly supports variational type
inference, but can also support the understanding of variational programs.

(3) A type system for VLC that maps VLC expressions onto variational types. The type
system relies on an equivalence relationship between types, which has a corre-
sponding confluent and normalizing rewrite relation that facilitates the checking
of type equivalence. As a fundamental result we have shown that types are pre-
served across variation elimination, which is an important precondition for the
correctness of the integrated type checking of variational software. In addition, we
have demonstrated how this type system can be extended to support new typing
features, in order to support the application of variational typing to real program-
ming languages.

(4) A type inference algorithm that infers variational types for VLC expressions, ex-
pressed as a straightforward extension of the well-known algorithm W .

(5) A unification algorithm for variational types, which is the most significant com-
ponent of the type inference algorithm. Part of our solution to this problem is
the concept of qualified type variables that allows the assignment of different
types to the same type variable when it occurs in different variational branches of
a type.

(6) A demonstration that, although the unification problem is equational and contains
distributivity and associativity laws, it is decidable and unitary, because we have
added type dominance as an additional equivalence relationship.

(7) A complexity analysis of the unification algorithm and a characterization of
the efficiency gains offered by variational type inference over typing individual
variants.

(8) A demonstration that important properties from other lambda calculus type sys-
tems are preserved in the type system for VLC, for example, that the type in-
ference algorithm is sound, complete, and has the principal type property. That
these properties can be preserved in a variational extension of lambda calculus
is encouraging for the addition of variational types to more sophisticated type
systems.

In future work, we will consider applying the choice calculus and variational unifi-
cation to other analyses. The ability to encapsulate different types in choice types and
unify them with our unification algorithm suggests several potential applications.

One possibility is increasing the type-safety guarantees in metaprogramming. The
challenge of a type system for an expressive metalanguage is how to represent and
reason about uncertain types for expressions. By capturing all potential types of an
expression as alternatives in a choice type, we can eliminate this uncertainty. We
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are currently investigating a type system for C++ template metaprogramming using
this approach. Relatedly, we can use this approach to infer constraints on metapro-
grams (such as C++ concepts [Gregor et al. 2006] and MorphJ assumption specifi-
cations [Huang and Smaragdakis 2008]), rather than requiring users to write these
constraints explicitly.

Another possible application is lifting existing unification-based pointer analyses
[Das 2000; Steensgaard 1996] to variational programs, allowing pointer analyses on
whole SPLs.

APPENDIXES

A. COLLECTED PROOFS

This appendix contains proofs that were too long to include in the body of the article.
Section A.1 provides a proof that the CT-unification problem is unitary, captured by
Theorem 7.1 and discussed in Section 7.1. The proof contains several intermediate
results. Section A.2 includes proofs for intermediate results related to the correctness
of the unification algorithm, captured in Theorem 7.6 and discussed in Section 7.3.
Finally, Section A.3 collects several other proofs from throughout the article. In each
case we first repeat the result being proved, for reference.

A.1. Proof that the CT-Unification Problem is Unitary

THEOREM 7.1. Given a CT-unification problem U, there is a unifier σ such that for
any unifier σ ′, there exists a mapping θ such that σ ′ = θ ◦ σ .

In the following, we use U and Q to denote unification problems. We use TL and TR
to denote the LHS and RHS of U, and T′

L and T′
R to denote the LHS and RHS of Q.

We use vars(U) to refer to all of the type variables in U. We also extend the notion of
selection to unification problems and mappings by propagating the selection along to
the types they contain, as defined next.

�TL ≡? TR�s = �TL�s ≡? �TR�s

�σ�s = {(a, �T�s) | (a, T) ∈ σ }
The following lemma states that selection further extends over type substitution in a
homomorphic way.

LEMMA A.1 (SELECTION EXTENDS OVER SUBSTITUTION). �Tσ�s = �T�s�σ�s.

PROOF OF LEMMA A.1. The proof is based on induction over the structure of T and
σ . We show the proof only for the most interesting cases where T is a choice type, and
where T is a type variable mapped to a choice type in σ .

(1) Given T = D〈T1, T2〉, assume s = D̃ (the case for s = D is dual).

�Tσ�s = �D〈T1, T2〉σ�D̃ by definition

= �D〈T1σ , T2σ 〉�D̃ type substitution

= �T2σ�D̃ selection

= �T2�D̃�σ�D̃ induction hypopethesis

= �D〈T1, T2〉�D̃�σ�D̃ selection

= �T�s�σ�s
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(2) Given T = a, assume aσ = D〈T1, T2〉 and s = D̃ (again s = D is dual).

�T�s�σ�s = �a�D̃�σ�D̃ by definition

= aσ ′[a = �T2�D̃] selection

= �T2�D̃

�Tσ�s = �aσ�D̃ by definition

= �D〈T1, T2〉�D̃ by assumption

= �T2�D̃ = �T�s�σ�s

The remaining cases can be constructed similarly.

From Lemma A.1, it follows by induction that the same result holds for decisions
as for single selectors: �Tσ�δ = �T�δ�σ�δ. Combining this with Lemma 4.2 (selection
preserves type equivalence), we see that if σ is a unifier for U then �TLσ�δ ≡ �TRσ�δ

for any δ. This is the same as saying that if TLσ �≡ TRσ , then ∃ δ : �TLσ�δ �≡ �TRσ�δ. A
direct consequence of this result is that if δ is supercomplete (it eliminates all choice
types in TL, TR, and σ ) and �TL�δ�σ�δ ≡ �TR�δ�σ�δ, then σ is a unifier for U.

PROOF OF THEOREM 7.1. Using the type splitting algorithm described in
Section 7.2, we can transform U into Q such that for all supercomplete decisions
δ1, δ2, · · · , δn, if δi �= δj, then vars(�Q�δi) ∩ vars(�Q�δj) = ∅.

Each subproblem �Q�δi corresponding to a supercomplete decision δi is plain. There-
fore, we can obtain (via Robinson’s algorithm) an mgu σi such that �T′

Lσi�δi ≡ �T′
Rσi�δi .

Let σ be the disjoint union of all of these mgus, σ = ⋃
i∈{1.. n} σi.

Since the type variables in each subproblem are different, for each subproblem we
have �T′

Lσ�δi ≡ �T′
Rσ�δi . Then based on the discussion after Lemma A.1, σ is a unifier

for T′
L ≡?

q T′
R. Moreover, it is most general by construction since each σi is most gen-

eral. Based on Theorem 7.9 (variational unification is sound) and Lemma 7.7 (comp is
correct and preserves principality), the completion of σ is the mgu for U, which proves
that variational unification is unitary.

A.2. Proofs that the Variational Unification Algorithm is Correct

This section contains several proofs related to the correctness of the unification algo-
rithm. The corresponding theorems appear in Section 7.3.

A.2.1. Proof of Theorem 7.5

THEOREM 7.5 (SOUNDNESS). If unify (T1, T2) = σ , then T1σ ≡ T2σ .

PROOF. The proof is by induction on the structure of T1 and T2. To make the proof
easier to follow, we do this by stepping through each case of the unify algorithm, briefly
describing why the theorem holds for each base case, or why it is preserved for recur-
sive cases. For many cases, correctness is preserved by unify being recursively invoked
on semantically equivalent arguments.

(1) Both types are plain. The result is determined by the Robinson unification algo-
rithm, which is known to be correct [Robinson 1965].

(2) A qualified type variable aq and a choice type. Correctness is preserved since aq ≡
D〈aDq, aD̃q〉.

(3) Two choice types in the same dimension. Decomposition by alternatives is correct
by the inductive hypothesis and Lemma 7.2.
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(4) The next three cases consider choice types in different dimensions. They preserve
correctness for the following reasons.
(a) Hoisting is semantics preserving.
(b) Splitting is variable independent by Lemma 7.3.
(c) Splitting is choice independent by Lemma 7.4.

(5) The next two cases consider unifying a choice type with a nonchoice type. Cor-
rectness is preserved in both cases since the recursive calls are on semantically
equivalent arguments, by choice idempotency.

(6) Two function types. Given the inductive hypotheses, T1σ ≡ T′
1σ and T2σ ≡ T′

2σ , we
can construct (T1 → T2)σ ≡ (T′

1 → T′
2)σ by an application of the FUN equivalence

rule in Figure 5.
(7) The last case considers a qualified type variable aq and a function type T → T′. If

the occurs check fails, the theorem is trivially satisfied since the condition of the
implication is not met. If it succeeds, the theorem is satisfied by the definition of
substitution.

A.2.2. Proof of Lemma 7.7

LEMMA 7.7. Given a mapping {aq �→ T′}, if T = comp(q, T′, b) is the completed type
(where b is fresh), then �T�q = �T�q. More generally, given {aq1 �→ T1, . . . , aqn �→ Tn}, if
T = comp(q1, T1, comp(q2, T2, . . . comp(qn, Tn, b) . . .)), then for every qi ∈ {q1 . . . qn, we
have �T�qi = �Ti�qi.

PROOF. We can prove the first part of this theorem by structural induction on
the qualifier q. The base case, where q is the empty qualifier ε, is trivial since
comp(ε, T′, b) = T′. We show the inductive case next for q = Dq′ (the case for q = D̃q′
is a dual). Note that the induction hypothesis is �comp(q′, T′, b)�q′ = �T′�q′ .

�T�q = �comp(Dq′, T′, b)�Dq′ by assumption

= �D〈comp(q′, T′, b), fresh(b)〉�Dq′ definition of comp

= ��comp(q′, T′, b)�D�q′ definition of repeated selection

= ��comp(q′, T′, b)�q′ �D selector ordering is irrelevant

= ��T′�q′ �D induction hypothesis

= �T′�q selector ordering is irrelevant

We can prove the second part by induction on the mapping of qualified type variables,
using the result from the first part and the observation that comp is commutative, for
example, comp(q1, T1, comp(q2, T2, b)) ≡ comp(q2, T2, comp(q1, T1, b)).

A.2.3. Proof Sketch of Lemma 7.8

LEMMA 7.8 (COMPLETION). Given a CT-unification problem TL ≡? TR and the cor-
responding qualified unification problem T′

L ≡?
q T′

R, if σQ is a unifier for T′
L ≡?

q T′
R

and σU is the unifier attained by completing σQ , then for any supercomplete decision δ,
�TLσU�δ ≡ �T′

LσQ�δ and �T′
RσQ�δ ≡ �T′

RσQ�δ.

PROOF SKETCH. The proof is based on induction over the structure of the types TL
and TR, the supercomplete decision δ, and the unifier σQ. We show the proof for several
cases; the remaining cases can be derived similarly.

(1) T′
L = TL, that is, TL is a plain type. There are many subcases; we show two

of them.
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(a) TL = a, a type variable. If (a, Ta) ∈ σQ, then by the definition of completion,
(a, Ta) ∈ σU . Thus, �TLσU�δ = �Ta�δ = �T′

LσQ�δ.
(b) TL = Targ → Tres. The induction hypothesis is that �TargσU�δ = �TargσQ�δ and

�TresσU�δ = �TresσQ�δ. Then �(Targ → Tres)σU�δ = �TargσU�δ → �TresσU�δ =
· · · = �(Targ → Tres)σQ�δ.

(2) TL = D〈T1, T2〉, δ = D̃δ1. Let T′
L = D〈T′

1, T′
2〉, the induction hypothesis is that

�T1σU�δ1 = �T′
1σQ�δ1 and �T2σU�δ1 = �T′

2σQ�δ1 for any δ1.

�TLσU�δ = �D〈T1, T2〉σU�D̃δ1
by assumption

= ��T2�D̃�σU�D̃�δ1 selection

= ��T2σU�D̃�δ1 by Lemma A.1

= ��T2σU�δ1�D̃ selector ordering is irrelevant

= ��T′
2σQ�δ1�D̃ induction hypothesis

�T′
LσQ�δ = . . . = ��T′

2σQ�δ1�D̃

(3) TL = D〈a, T2〉, δ = D. In this case, T′
L = D〈aD, T′

2〉.

�TLσU�δ = �D〈a, T2〉σU�D by assumption
= �aσU�D selection and Lemma A.1
= �aDσQ�D by Lemma 7.7

= �D〈aD, T′
2〉σQ�D selection

= �T′
LσQ�δ

The cases for TR are dual.

A.3. Other Collected Proofs

A.3.1. Proof Sketch of Lemma 4.2

LEMMA 4.2 (TYPE EQUIVALENCE PRESERVATION). If T1 ≡ T2, then �T1�s ≡ �T2�s.

PROOF SKETCH. The proof of this lemma proceeds by case, demonstrating that for
each equivalence rule defined in Figure 5, if we apply the same selector s to both
the LHS and the RHS of the rule, the resulting expressions are still equivalent. We
demonstrate this for only a few cases, but the other cases can be treated similarly.

First, we consider the F-C rule. There are two subcases to consider: either the di-
mension of the choice type matches that of the selector, or it does not. We consider the
subcase where the dimension name does not match first.

�D〈T1 → T′
1, T2 → T′

2〉�s = D〈�T1�s → �T′
1�s, �T2�s → �T′

2�s〉 selection in LHS

≡ D〈�T1�s, �T2�s〉 → D〈�T′
1�s, �T′

2�s〉 by the rule F-C

�D〈T1, T2〉 → D〈T′
1, T′

2〉�s = �D〈T1, T2〉�s → �D〈T′
1, T′

2〉�s selection in RHS

= D〈�T1�s, �T2�s〉 → D〈�T′
1�s, �T′

2�s〉 by definition

For the subcase where the dimension name matches, there are two further subcases,
depending on whether we are selecting the first or second alternatives in dimension D.
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Next we show the case for s = D̃ (selecting the second alternatives). The case for s = D
is dual to this.

�D〈T1 → T′
1, T2 → T′

2〉�D̃ = �T2 → T′
2�D̃ selection in LHS

= �T2�D̃ → �T2�D̃ by definition

�D〈T1, T2〉 → D〈T′
1, T′

2〉�D̃ = �D〈T1, T2〉�D̃ → �D〈T′
1, T′

2〉�D̃ selection in RHS

= �T2�D̃ → �T′
2�D̃ by definition

Next we consider the C-C-SWAP2 rule. Here there are three cases to consider: s makes
a selection in dimension D, in dimension D′, or in some other dimension. The case for
when s makes a selection in D follows.

�D′〈T1, D〈T2, T3〉〉�D̃ = D′〈�T1�D̃, �D〈T2, T3〉�D̃〉 selection in LHS

= D′〈�T1�D̃, �T3�D̃〉 by definition

�D〈D′〈T1, T2〉, D′〈T1, T3〉〉�D̃ = �D′〈T1, T3〉�D̃ selection in RHS

= D′〈�T1�D̃, �T3�D̃〉 by definition

The second case is a dual to this, and the third case can be proved in a similar way as
the first case for the F-C rule. The proofs of the remaining rules proceed in a similar
fashion.

A.3.2. Proof of Lemma 4.4

LEMMA 4.4 (LOCAL CONFLUENCE). For any type T, if T � T1 and T � T2, then
there exists some type T′ such that T1 �∗ T′ and T2 �∗ T′.

The proof requires the ability to address specific positions in a variational type. A
position p is given by a path from the root of the type to a particular node, where a path
is represented by a sequence of values L and R, indicating whether to enter the left
or right branch of a function or choice type. The root type is addressed by the empty
path ε. We use T|p to refer to the type at position p in type T. For example, given
T = Int → A〈Bool, Int〉, we can refer to the component types of T in the following way.

T|ε = Int → A〈Bool, Int〉
T|L = Int

T|R = A〈Bool, Int〉
T|RL = Bool

T|RR = Int

We use T[T′]p to indicate the substitution of type T′ at position p in type T. For exam-
ple, given the same T as before, T[Bool]R = Int → Bool. We use P(T) to refer to the set
of all positions in T.

We also need a way to abstractly represent the application of a simplification rule.
We use l � r to represent an arbitrary simplification rule from Figure 6. We represent
applying that rule somewhere in type T by giving a position p and a substitution σ
indicating how to instantiate it. Before we apply the rule, it must be the case that
T|p = lσ . The result of applying the rule will be T[rσ ]p. For example, given T = Int →
A〈Bool, Bool〉, we can apply the S-C-IDEMP rule (l = A〈x, x〉, r = x) at p = R with the
substitution σ = {x �→ Bool}, resulting in T′ = Int → Bool (note that we assume the
dimension name in the simplification rule is instantiated automatically).
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Fig. 16. Proof of local confluence.

PROOF. Given type T, assume that some rewrite rule l1 � r1 can be applied at
position p1 with substitution σ1, and another rewrite rule l2 � r2 can be applied at
position p2 with substitution σ2. Then T1 = T[r1σ1]p1 and T2 = T[r2σ2]p2 . Then we
must show that there is always a T′ such that T1 �∗ T′ and T2 �∗ T′. There are three
cases to consider.

First, the two simplifications are parallel. This occurs when neither p1 nor p2 is
a prefix of the other. It represents simplifications that are in different parts of the
type and therefore independent. The proof for this case is shown in the left graph in
Figure 16. If we apply l1 � r1 first, we can reach T′ by next applying l2 � r2, and vice
versa. This situation is encountered, for example, when we must choose between the
S-F-ARG and S-F-RES rules. Intuitively, it does not matter whether we first simplify the
argument type or result type of a function type. The situation is also encountered when
choosing between the S-C-DOM1 and S-C-DOM2 rules, and the S-C-ALT1 and S-C-ALT2
rules.

Second, one simplification may contain the other. This occurs when p1 is a prefix of
p2 and l2σ2 is contained in the range of σ1 (the case where p2 is a prefix of p1 is dual).
For example, consider the following type T.

T = A〈B〈Int, Bool〉, C〈Int, Int〉〉
We can apply the S-C-SWAP1 rule, A〈B〈x, y〉, z〉 � A〈B〈x, z〉, B〈y, z〉〉, at position p1 = ε
with the substitution σ1 = {x �→ Int, y �→ Bool, z �→ C〈Int, Int〉}. Or we can apply the
S-C-IDEMP rule, C〈w, w〉 � w, at position p2 = R with the substitution σ2 = {w �→ Int}.
Note that l2σ2 = D〈Int, Int〉, which is in the range of σ1. The proof for this example is
illustrated in the right graph of Figure 16, the labels (1) and (2) indicate the number
of times the associated rule must be applied. In general, if the variable at l1|p2 occurs
m times in l1 and n times in r1, then we need to apply the l2 � r2 rule n times in the
left branch of the graph and m times in the right branch. Intuitively, this case arises
when the simplifications are conceptually independent, but one is nested within the
other. If we apply the outer simplification first, it may increase or decrease the number
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of times we must apply the inner one (and vice versa). Many combinations of rules can
lead to this situation.

Third, the simplifications may critically overlap. This occurs when p1 is a prefix of
p2 and there is some p ∈ P(l1) such that l1|p is not a variable and l1|pσ1 = l2σ2. For
example, consider the following type T.

T = C〈A〈Int, Bool〉, B〈Bool, Int〉〉
Then both S-C-SWAP1 and S-C-SWAP2 are applicable at p1 = p2 = ε. To prove that
our choice between these rules doesn’t matter, we need to compute the critical pairs
between the two rules and decide the joinability of all such critical pairs [Baader and
Nipkow 1998]. If all critical pairs are joinable, then the two rules are locally confluent,
otherwise they are not. The critical pairs are computed as follows. Given any p ∈ P(l1)

such that l1|p is not a type variable, compute the mgu for l1|p ≡? l2 as θ , then r1θ and
l1θ [r2θ ]p form a critical pair. We show the proof process for the two S-C-SWAP rules
next.

First, we rewrite these rules in the following way, so they do not share any type
variables. (We also instantiate the dimension names and eliminate the premises.)

S-C-SWAP1
C〈A〈x, y〉, z〉 � A〈C〈x, z〉, C〈y, z〉〉

S-C-SWAP2
C〈l, B〈m, n〉〉 � B〈C〈l, m〉, C〈l, n〉〉

When p = ε, the unification problem is C〈A〈x, y〉, z〉 ≡? C〈l, B〈m, n〉〉. The computed
mgu θ is given next, where all previously undefined type variables are fresh.

θ = {x �→ C〈A〈l, b〉, c〉, y �→ C〈A〈d, l〉, e〉, z �→ C〈f , B〈m, n〉〉}
The critical pair consists of the following two types.

(1) A〈C〈C〈A〈l, b〉, c〉, C〈f , B〈m, n〉〉〉, C〈C〈A〈d, l〉, e〉, C〈f , B〈m, n〉〉〉〉
(2) B〈C〈l, m〉, C〈l, n〉〉
This pair is joinable by simplifying the first component of the pair into the second, as
demonstrated next.

A〈C〈C〈A〈l, b〉, c〉, C〈f , B〈m, n〉〉〉,
C〈C〈A〈d, l〉, e〉, C〈f , B〈m, n〉〉〉

= A〈C〈l, B〈m, n〉〉, C〈l, B〈m, n〉〉〉 S-C-DOM1 and S-C-DOM2

= C〈l, B〈m, n〉〉 S-C-IDEMP

= B〈C〈l, m〉, C〈l, n〉〉 S-C-SWAP2

When p = L, the unification problem is A〈x, y〉 ≡? C〈l, B〈m, n〉〉, and the computed mgu
θ is given next.

θ = {x �→ A〈C〈l, B〈m, n〉, a〉〉, y �→ A〈b, C〈l, B〈m, n〉〉〉}
The critical pair consists of the following two types.

(1) A〈C〈A〈C〈l, B〈m, n〉, a〉〉, z〉, C〈A〈b, C〈l, B〈m, n〉〉〉, z〉〉
(2) C〈B〈C〈l, m〉, C〈l, n〉〉, z〉
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This pair is joinable by simplifying both components into the type C〈l, z〉, as demon-
strated next.

A〈C〈A〈C〈l, B〈m, n〉, a〉〉, z〉,
C〈A〈b, C〈l, B〈m, n〉〉〉, z〉

= A〈C〈l, z〉, C〈l, z〉〉 S-C-DOM1 and S-C-DOM2

= C〈l, z〉 S-C-IDEMP

C〈B〈C〈l, m〉, C〈l, n〉〉, z〉
= C〈B〈l, l〉, z〉 S-C-DOM1 and S-C-DOM2

= C〈l, z〉 S-C-IDEMP

The proofs for other critically overlapping rules can be constructed similarly.

A.3.3. Proof of Lemma 4.5

LEMMA 4.5 (TERMINATION). Given any type T, T �∗ T′ is terminating.

PROOF. To support this proof, we use a tuple (a, (u, r), d, i) to measure how normal-
ized a type is. When this tuple is (0, (0, 0), 0, 0), the type is fully normalized and no rule
in Figure 6 can be applied. Otherwise, the type is not fully normalized and some rule
applies. We then divide all the rules in Figure 6 into four groups and show that the first
group decreases a, the second group decreases the pair (u, r) without increasing a, the
third group decreases d without increasing a or (u, r), and the fourth group decreases
i without increasing any other component of the tuple.

The components of (a, (u, r), d, i) are defined as follows.

(1) The component a denotes the number of choice types that are nested directly or in-
directly in arrow types. For example, a = 3 for the type A〈B〈τ1, τ2〉, τ3〉 → C〈τ4, τ5〉.

(2) The pair (u, r) captures nested choice types that violate the ordering constraint �
on dimension names. The component u denotes the unique pairs of inverted di-
mension names, while r is the total number of nested choices that violate this con-
straint. There are some subtleties to computing these values, which are described
next.

(3) The component d denotes the number of dead alternatives—alternatives that can-
not be selected because of choice domination.

(4) Finally, i denotes number of idempotent choice types—choice types where both
alternatives are the same.

To compute the pair (u, r), we cannot just count the number of inverted choice types
directly since the process of hoisting can mask intermediate progress if represented
in this way. For example, given the type T = C〈B〈T1, T2〉, A〈T3, T4〉〉, an application of
S-C-SWAP1 yields T′ = B〈C〈T1, A〈T3, T4〉〉, C〈T2, A〈T3, T4〉〉〉, in which the choice type
in B has been correctly hoisted above the choice type in C. However, T contains just 2
inverted dimension names (C �� B and C �� A) while T′ contains 2 unique inversions
(B �� A and C �� A) and 4 total inversions (since both unique inversions appear twice).
Thus, the naive measure fails to capture the progress made transforming T to T′, and
in fact suggests that we regressed despite having resolved one of the original inver-
sions. Therefore, we instead compute u as: (a) the number of unique inversions, plus
(b) the binomial coefficient

(n
2

)
where n is the number of unique inversions involving

the root choice type. This additional component captures the combinations of inver-
sions that could be created during the hoisting process. We compute r in the same way
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but without limiting ourselves to unique inversions. Using this metric, the transfor-
mation of T to T′ reduces (u, r) from (3, 3) to (2, 4).

Now we divide the rules in Figure 6 into four groups. Since the rules S-F-ARG,
S-F-RES, S-C-ALT1, and S-C-ALT2 are congruence rules, they have no direct effect on
the normalization metric. We divide the remaining rules as follows.

(1) The first group contains the rules S-F-C-ARG and S-F-C-RES. Whenever one of these
rules is applied, an arrow type is pushed into choice types, reducing a.

(2) The second group contains the rules S-C-SWAP1 and S-C-SWAP2. Applying these
rules will not increase a since swapping choices will not generate new choice types
and will not push choice types into arrow types. Applying these rules will either
decrease u or leave u unchanged and decrease r. For example, applying S-C-SWAP1
to T = C〈B〈· · ·〉, A〈· · ·〉〉 leads to the type T′ = B〈C〈· · · , A〈· · ·〉〉, C〈· · · , A〈· · ·〉〉〉. As-
sume that when computing u for T, parts (a) and (b) are n1 and n2, respectively,
where n2 = (n3

2

)
. This means that n1 is the total number of unique inversions in T

and n3 is the number of unique inversions involving dimension C. Similarly, when
computing u for T′, assume parts (a) and (b) are n′

1 and n′
2, respectively, where

n′
2 = (n′

3
2

)
. Then n′

1 can be computed as follows.

n′
1 = −1 previously C �� B, now B is hoisted out

+ n23 number of choices nested in A that were inverted with B
+ n1 remaining nestings are unchanged

Since B � C, the choices inverted with C in T may be no longer inverted with B
in T′. Thus, n′

3 ≤ n3 − 1 since B is no longer nested in C. Therefore, n′
2 ≤ (n3

2

)
.

Moreover, since there are n3 choices in T inverted with C, there are no more than
n3 − 1 choices in A that are inverted with C. Combining with the fact that B � C,
then there are fewer than n3 − 1 choices that are inverted with C in T′. So we have
n23 ≤ n3 − 1.
The change of u from T to T′, denoted as δ, can be computed as follows.

δ = n1 + n2 − n′
1 − n′

2

≥ n1 + C2
n3

− n′
1 − C2

n3−1

= (n1 − n1 + 1 − n23) + (C2
n3

− C2
n3−1)

= (1 − n23) + (n3 − 1)

= n3 − n23

≥ 1

Thus, after hoisting, u decreases at least by 1. The proof for the case that n2 ≤ 2 is
simple and is omitted here.
When T is a part of a larger type, then there are two cases. First, if the larger type
does not have B nested in C in elsewhere, then it is clear that u will decrease by
at least 1 for the larger type. Otherwise, if B is nested in C elsewhere, then u may
stay the same. However, we can prove that r decreases at least by 1 similarly to
the case for u shown in detail before. Intuitively, r decreases because swapping B
out of C has removed the reversed pair between C and B.

(3) The third group includes the rules S-C-DOM1 and S-C-DOM2. Applying the rules
in this group will not increase a since they don’t create new choices and they don’t
push down choice types into arrows. Applying them also doesn’t increase (u, r) since
choice orderings are not swapped. Whenever one of the two rules is applied, at least
one dead alternative is removed. Thus, the rules will only decrease d.
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(4) The fourth and final group contains the rule S-C-IDEMP. Applying this rule will
remove a choice whose alternatives are the same, therefore it may decrease a,
(u, r), or d, but it can never increase these values. Whenever this rule is applied,
at least one idempotent choice will be eliminated. Therefore, it strictly decreases i.

If we define an ordering relation on (a, (u, r), d, i) based on the ordering relation of
each component, where the components are ordered from most significant (a) to least
(i), then we have demonstrated that the metric (a, (u, r), d, i) is strictly decreasing by
applying the simplification rules. This process terminates when (a, (u, r), d, i) reaches
(0, (0, 0), 0, 0), completing the proof.
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Kästner, C., Apel, S., Thüm, T., and Saake, G. 2012a. Type checking annotation-based product lines. ACM
Trans. Softw. Engin. Methodol. 21, 3, 14:1–14:39.

Kästner, C., Ostermann, K., and Erdweg, S. 2012b. A variability-aware module system. In Proceedings of the
ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications. 773–792.
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