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Chapter 1 – Introduction

In this thesis, we present semantic equivalence rules for an extension of the
choice calculus and sound operations for an implementation of variational lists.
The choice calculus is a calculus for describing variation and the formula choice
calculus is an extension with formulas. We prove semantic equivalence rules for
the formula choice calculus. Variational lists are functional data structures for
representing and computing with variation in lists using the choice calculus. We
prove map and bind operations are sound for an implementation of variational
lists. These proofs are written and verified in the language of the Coq proof
assistant.

The choice calculus is a metalanguage for describing variation in an arbitrary
object language [Erwig and Walkingshaw, 2011b]. The formula choice calculus is
an extension of the choice calculus where choices are labeled with formulas instead
of dimensions [Walkingshaw and Ostermann, 2014]. Semantic equivalence rules
for the choice calculus have been established by previous work [Walkingshaw,
2013]. In Chapter 2, we establish similar semantic equivalence rules for the
formula choice calculus.

Previous work has used the formula choice calculus without proving semantic
equivalence rules. For example, a projectional editing model of variational soft-
ware is based on formula choice calculus and some semantic equivalence rules
have been stated—without proof—for this projectional editing model [Walking-
shaw and Ostermann, 2014]. As another example, TypeChef is a tool for parsing
and type checking C code with preprocessor directives and is based on a model
similar to the formula choice calculus [Kenner et al., 2010, Kästner et al., 2011,
Walkingshaw et al., 2014]. We provide a formal foundation for previous and
future work that use the formula choice calculus.

Variational lists are functional data structures for representing and computing
with variation in lists using the choice calculus [Walkingshaw and Erwig, 2012].



2

Option-lists are an implementation of variational lists as lists of variational op-
tional values [Walkingshaw et al., 2014]. In Chapter 3, we establish sound map1

and bind2 operations for option-lists. We also provide a general definition of
soundness for operations on variational data structures.

Variational lists are common variational data structures that arise naturally
in many variational programming problems. For example, SPLlift is a tool for
inter-procedural data-flow analysis on software product lines that uses variational
graphs [Bodden et al., 2013]. A variational list could be used for an adjacency
list representation of a variational graph [Walkingshaw et al., 2014]. As another
example, the CIDE tool [Kästner et al., 2008] and Color Featherweight Java [Kästner
et al., 2012] use data structures which are similar to—but less expressive than—
option-lists [Walkingshaw et al., 2014]. Previous work has identified a need for
foundational research on variational data structures [Walkingshaw et al., 2014].
We provide a formal foundation for option-lists. We also demonstrate a general
and principled technique for establishing soundness for operations on variational
data structures.

In Appendix A, we provide verified proofs written in the language of the
Coq proof assistant [Bertot and Castéran, 2004]. The properties from Chapter 2

are verified in Appendix A.1 and Appendix A.2 and the source code is available
online.3 The properties from Chapter 3 are verified in Appendix A.3 and the
source code is also available online.4

1The map operation is part of the definition of a functor.
2The bind operation is part of the definition of a monad.
3https://github.com/hubbards/FCC-Coq
4https://github.com/hubbards/VP-Coq

https://github.com/hubbards/FCC-Coq
https://github.com/hubbards/VP-Coq
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Chapter 2 – Formula Choice Calculus

In this chapter, we establish semantic equivalence rules for the formula choice
calculus. The choice calculus is a metalanguage for describing variation in an
arbitrary object language [Erwig and Walkingshaw, 2011b]. The formula choice
calculus is an extension of the choice calculus where choices are labeled with
formulas instead of dimensions [Walkingshaw and Ostermann, 2014]. The choice
calculus is described in Section 2.1, formulas are described in Section 2.2, the for-
mula choice calculus is described in Section 2.3, and a generalization is discussed
in Section 2.4.

2.1 Choice Calculus

Consider an object language X with abstract syntax described by the grammar in
Figure 2.1. Atoms represent symbols in the object language and have no internal
structure. The tree construct is binary for simplicity. However, the syntax supports
encoding of constructs with arbitrary arity, e.g., with right nested trees.

a ∈ A Atom
x ∈ X ::= ε Empty

| a�x, x� Tree

Figure 2.1: Object language syntax.

The choice calculus is instantiated with the object language X. The abstract
syntax of choice calculus expressions is described by the grammar in Figure 2.2.
The expressions in the choice construct are called alternatives and the dimension is
called a label.
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d ∈ D Dimension
e ∈ E ::= ε Empty

| a�e, e� Tree
| d〈e, e〉 Choice

Figure 2.2: Choice calculus syntax.

A tag is either the left tag L or the right tag R and a configuration is a (total)
function from dimensions to tags. Note that a function is total (or everywhere
defined) by the mathematically accepted definition of a function and so we omit
this hereafter. The set of tags is T = {L, R} and the set of configurations is
C = D → T. The metavariables t and c are used to represent arbitrary tags and
configurations, respectively, unless qualified otherwise.

The semantic domain for expressions is the function domain C → X, which is
the set of functions from configurations to elements of the object language. The
semantic function for expressions is EJ·K, which is defined by the equations in
Figure 2.3. Note that we use juxtaposition to indicate function application, as in
lambda calculus, e.g., we write c d to indicate application of configuration c to
dimension d. In the last equation, note that if c d 6= L, then c d = R. Elements of
the object language in the image of EJeK are called variants of e and application of
EJeK is called selection.

EJ·K : E→ C → X

EJεKc = ε

EJa�e1, e2�Kc = a�EJe1Kc, EJe2Kc�

EJd〈e1, e2〉Kc =

EJe1Kc, if c d = L

EJe2Kc, otherwise

Figure 2.3: Choice calculus semantics.
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For example, consider the choice calculus instantiated with the object language
of decimal notation. Atoms of this object language are Arabic numerals, e.g.,
the Arabic numerals 1, 2, and 3 are atoms. Terms of this object language are
right nested branches. For convenience, we write the concrete syntax of terms
as sequences of Arabic numerals, e.g., 123 and 213 are terms in the concrete
syntax which correspond to the terms 1�ε, 2�ε, 3�ε, ε��� and 2�ε, 1�ε, 3�ε, ε���,
respectively, in the abstract syntax. Suppose d is a dimension. Then d〈12, 21〉3
is a choice calculus expression. This expression consists of a sequence with a
choice followed by the term 3. The choice is labeled with the dimension d and
the alternatives are the terms 12 and 21. Moreover, for each configuration c, the
semantics of this expression is the following: (1) if c d = L, then the variant 123 is
selected, and (2) if c d = R, then the variant 213 is selected.

Choices can be extended to support more alternatives. One way to do this
is by adding tags to the set of tags and corresponding cases to the semantics of
choices. In this way, the number of alternatives is equal to the number of tags. For
example, to support three alternatives we add a third tag to the set of tags, extend
the syntax of choices with a third alternative, and the semantics of choices with a
third case.

2.2 Formulas

In this section we present formulas in tags and dimensions. We describe the
syntax and semantics of formulas in Section 2.2.1 and establish rules for deriving
formula equivalence in Section 2.2.2.

2.2.1 Denotational Semantics

We begin with a “semantics first” [Erwig and Walkingshaw, 2011a] description
of formulas in tags. The set T forms an algebra with prefix unary operator (¬),
called complement, and infix binary operators (∨) and (∧), called join and meet,
respectively. These operators are defined by the tables in Figure 2.4. Note that T
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is the Boolean algebra with two elements—up to isomorphism—where L is “true”
and R is “false.”

t ¬ t
L R
R L

∨ L R
L L L
R L R

∧ L R
L L R
R R R

Figure 2.4: Boolean algebra on tags.

The abstract syntax of formulas is described by the grammar in Figure 2.5. Note
that we reuse the symbols for the operators defined in the previous paragraph.
The semantic domain for formulas is the function domain C → T, which is the set
of functions from configurations to tags. The semantic function for formulas is
FJ·K, which is defined by the equations in Figure 2.6.

f ∈ F ::= t Tag
| d Dimension
| ¬ f Complement
| f ∨ f Join
| f ∧ f Meet

Figure 2.5: Formula syntax.
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FJ·K : F → C → T

FJtKc = t

FJdKc = c d

FJ¬ f Kc = ¬ FJ f Kc

FJ f1 ∨ f2Kc = FJ f1Kc ∨ FJ f2Kc

FJ f1 ∧ f2Kc = FJ f1Kc ∧ FJ f2Kc

Figure 2.6: Formula semantics.

2.2.2 Semantic Equivalence

Before we define semantic equivalence, it is useful to recall the following elemen-
tary facts: (1) Two functions are equal, by definition, if they have the same domain
and codomain and their images agree for all elements in the domain. (2) For any
function, the inverse images of elements in the codomain partition the domain.
(3) Any partition defines a “canonical” equivalence relation where the parts of the
partition correspond to the equivalence classes of the relation.

Let (≡) be a binary relation on formulas defined by f ≡ f ′ if and only if
FJ f K = FJ f ′K. Note that the relation (≡) is defined in terms of function equality.
Since FJ·K is well-defined as a function from formulas to elements of the semantic
domain, it follows from earlier remarks that the relation (≡) is an equivalence
relation. We refer to the relation (≡) as semantic equivalence and we call formulas f
and f ′ (semantically) equivalent if f ≡ f ′.

In the remainder of this section, we establish some syntactic rules for deriving
formula equivalence. In practice, formula equivalence can be checked by solving
an instance of the satisfiability problem, e.g., using a SAT solver, and this is
justified by the syntactic rules. We prove these rules are correct in Appendix A.1.
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The formula equivalence rules are stated in Figure 2.7. These rules state that
formulas equivalence is reflexive, symmetric, and transitive. These rules follow
directly from the definition of an equivalence relation.

Refl-E

f ≡ f

Symm-E
f ≡ f ′

f ′ ≡ f

Tran-E
f1 ≡ f2 f2 ≡ f3

f1 ≡ f3

Figure 2.7: Formula equivalence rules.

The formula congruence rules are stated in Figure 2.8. Note that the formula
congruence rules are not independent of each other, e.g., Join-Cong can be derived
from Join-Cong-l and Join-Cong-r.

Comp-Cong

f ≡ f ′

¬ f ≡ ¬ f ′

Join-Cong

f1 ≡ f ′1 f2 ≡ f ′2
f1 ∨ f2 ≡ f ′1 ∨ f ′2

Join-Cong-l

f1 ≡ f ′1
f1 ∨ f2 ≡ f ′1 ∨ f2

Join-Cong-r

f2 ≡ f ′2
f1 ∨ f2 ≡ f1 ∨ f ′2

Meet-Cong

f1 ≡ f ′1 f2 ≡ f ′2
f1 ∧ f2 ≡ f ′1 ∧ f ′2

Meet-Cong-l
f1 ≡ f ′1

f1 ∧ f2 ≡ f ′1 ∧ f2

Meet-Cong-r
f2 ≡ f ′2

f1 ∧ f2 ≡ f1 ∧ f ′2

Figure 2.8: Formula congruence rules.

The algebraic rules are stated in Figure 2.9. These are the usual rules of Boolean
algebra expressed for formula equivalence.
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Join-Comp

f ∨ ¬ f ≡ L

Meet-Comp

f ∧ ¬ f ≡ R

Join-Id

R ∨ f ≡ f

Meet-Id

L ∧ f ≡ f

Join-Idemp

f ∨ f ≡ f

Meet-Idemp

f ∧ f ≡ f

Join-Comm

f1 ∨ f2 ≡ f2 ∨ f1

Meet-Comm

f1 ∧ f2 ≡ f2 ∧ f1

Join-Assoc

f1 ∨ ( f2 ∨ f3) ≡ ( f1 ∨ f2) ∨ f3

Meet-Assoc

f1 ∧ ( f2 ∧ f3) ≡ ( f1 ∧ f2) ∧ f3

Join-Dist

f1 ∨ ( f2 ∧ f3) ≡ ( f1 ∨ f2) ∧ ( f1 ∨ f3)

Meet-Dist

f1 ∧ ( f2 ∨ f3) ≡ ( f1 ∧ f2) ∨ ( f1 ∧ f3)

Comp-Join

¬( f1 ∨ f2) ≡ ¬ f1 ∧ ¬ f2

Comp-Meet

¬( f1 ∧ f2) ≡ ¬ f1 ∨ ¬ f2

Figure 2.9: Algebraic rules.

Note that the formula congruence and algebraic rules imply that the set of
equivalence classes of formulas is isomorphic to the free Boolean algebra on the
set of dimensions D. The operations on equivalence classes are defined in terms
of the operations on representative formulas and the formula congruence rules
ensure that these operations are well-defined.

As an aside, consider the binary infix operator (M) on the set of equivalence
classes, called symmetric difference (or exclusive or). For any representative formulas
f1, f2 ∈ F, the symmetric difference f1 M f2 is defined to be the equivalence class
with representative formula ( f1 ∧ ¬ f2) ∨ ( f2 ∧ ¬ f1). Note that the equivalence
classes form a group with law of composition given by symmetric difference. We
revisit this idea in Section 2.4.
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2.3 Formula Choice Calculus

In this section we present the formula choice calculus. We describe the syntax
and semantics of expressions in Section 2.3.1 and establish rules for deriving
expression equivalence in Section 2.3.2.

2.3.1 Denotational Semantics

The abstract syntax of expressions is described by the grammar in Figure 2.10.
The semantic domain for expressions is the function domain C → X, which is
the set of functions from configurations to elements of the object language. The
semantic function for expressions is EJ·K, which is defined by the equations in
Figure 2.11. In the last equation, note that if FJ f Kc 6= L, then FJ f Kc = R.

e ∈ E ::= ε Empty
| a�e, e� Tree
| f 〈e, e〉 Choice

Figure 2.10: Formula choice calculus syntax.

EJ·K : E→ C → X

EJεKc = ε

EJa�e1, e2�Kc = a�EJe1Kc, EJe2Kc�

EJ f 〈e1, e2〉Kc =

EJe1Kc, if FJ f Kc = L

EJe2Kc, otherwise

Figure 2.11: Formula choice calculus semantics.

For example, consider the formula choice calculus instantiated with the same
object language as before, i.e., the object language of decimal notation. Suppose
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d1 and d2 are dimensions. Then (d1 ∨ d2)〈12, 21〉3 is a formula choice calculus
expression. This expression consists of a similar sequence as before, except the
choice is labeled with the formula d1 ∨ d2. Moreover, for each configuration c, the
semantics of this expression is the following: (1) if c d1 = L or c d2 = L, then the
variant 123 is selected, and (2) if c d1 = R and c d2 = R, then the variant 213 is
selected.

2.3.2 Semantic Equivalence

Semantic equivalence for expressions is defined in the same way as it is for
formulas. Let (≡) be a binary relation on expressions defined by e ≡ e′ if and only
if EJeK = EJe′K. By the same reasoning as before, the relation (≡) is an equivalence
relation. We refer to the relation (≡) as semantic equivalence and we call expressions
e and e′ (semantically) equivalent if e ≡ e′.

In the remainder of this section, we establish some syntactic rules for deriv-
ing expression equivalence. We prove these rules are correct in Appendix A.2.
However, we do not prove these rules are complete, i.e., if e ≡ e′, then there is a
derivation by these rules. Proving the completeness of a minimal set of rules is
left to future work.

All of the rules stated in this section can be proved directly from the definition
of expression equivalence. However, this often leads to duplication of logic
among the proofs. Moreover, these proofs are not very insightful. To avoid
duplication and to describe relationships among rules, we derive some rules from
others—rather than directly from definitions.

The expression equivalence rules are stated in Figure 2.12. These rules state
that expression equivalence is reflexive, symmetric, and transitive. These rules
follow directly from the definition of an equivalence relation.
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Refl-E

e ≡ e

Symm-E
e ≡ e′

e′ ≡ e

Tran-E
e1 ≡ e2 e2 ≡ e3

e1 ≡ e3

Figure 2.12: Expression equivalence rules.

The choice transposition rule is stated in Figure 2.13. This rule states that
the semantics of a choice is invariant under transposition of its alternatives and
complementation of its label. This rule allows us to derive some rules from others
and it is used extensively in these derivations. We often omit details of applying
this rule for brevity. We prove this rule directly from the definition of expression
equivalence, see Appendix A.2.

Chc-Tran

f 〈e1, e2〉 ≡ ¬ f 〈e2, e1〉

Figure 2.13: Choice transposition rule.

The object congruence rules are stated in Figure 2.14. Note that these rules are
not independent of each other. For example, Obj-Cong can be derived from the
other two rules. These rules do not refer to formula choices directly and so they
do not differ from the corresponding rules for dimension choices in a meaningful
way. For completeness, we include proofs of these rules in Appendix A.2.

Obj-Cong

e1 ≡ e′1 e2 ≡ e′2
a�e1, e2� ≡ a�e′1, e′2�

Obj-Cong-l
e1 ≡ e′1

a�e1, e2� ≡ a�e′1, e2�

Obj-Cong-r
e2 ≡ e′2

a�e1, e2� ≡ a�e1, e′2�

Figure 2.14: Object congruence rules.
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The choice congruence rules are stated in Figure 2.15. Note that these rules are
not independent of each other. For example, we show Chc-Cong directly from the
other three rules in the proof of Theorem 2.1. Of course, we could also derive the
other three rules directly from Chc-Cong. The choice congruence rule for labels
Chc-Cong-F is used in derivations of some other rules. We often omit details of
applying this rule for brevity.

Chc-Cong

e1 ≡ e′1 e2 ≡ e′2 f ≡ f ′

f 〈e1, e2〉 ≡ f ′〈e′1, e′2〉

Chc-Cong-F
f ≡ f ′

f 〈e1, e2〉 ≡ f ′〈e1, e2〉

Chc-Cong-l
e1 ≡ e′1

f 〈e1, e2〉 ≡ f 〈e′1, e2〉

Chc-Cong-r
e2 ≡ e′2

f 〈e1, e2〉 ≡ f 〈e1, e′2〉

Figure 2.15: Choice congruence rules.

Theorem 2.1. The choice congruence rules hold for all formulas f , f ′ ∈ F and
expressions e1, e′1, e2, e′2 ∈ E.

Proof. First, we show Chc-Cong-F and Chc-Cong-l directly from the definition
of expression equivalence, see Appendix A.2. Next, we show Chc-Cong-r by
deriving the consequent from the antecedent and Chc-Cong-l. The derivation is
as follows.

f 〈e1, e2〉 ≡ ¬ f 〈e2, e1〉
≡ ¬ f 〈e′2, e1〉
≡ f 〈e1, e′2〉

Finally, Chc-Cong follows directly from the other three rules. �
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Observe that converses of the congruence rules for choices do not hold, e.g.,
in general f 〈e1, e2〉 ≡ f ′〈e1, e2〉 is not sufficient for f ≡ f ′ and f 〈e1, e2〉 ≡ f 〈e′1, e2〉
is not sufficient for e1 ≡ e′1. For a counterexample to the converse of Chc-Cong-F,
consider L〈a, a〉 ≡ a ≡ R〈a, a〉 but L 6≡ R. For a counterexample to the converse
of Chc-Cong-l, consider R〈a, a〉 ≡ a ≡ R〈a′, a〉 but a 6≡ a′ if a 6= a′. There is a
similar counterexample to the converse of Chc-Cong-r.

The choice simplification rules are stated in Figure 2.16. These rules describe
certain cases where the semantics of a choice is equivalent to one of its alternatives.

Chc-Idemp

f 〈e, e〉 ≡ e

Chc-L

L〈e1, e2〉 ≡ e1

Chc-R

R〈e1, e2〉 ≡ e2

Figure 2.16: Choice simplification rules.

Theorem 2.2. The choice simplification rules hold for all formulas f ∈ F and
expressions e, e1, e2 ∈ E.

Proof. First, we show Chc-Idemp and Chc-L directly from the definition of ex-
pression equivalence, see Appendix A.2. Next, we show Chc-R by Chc-L and
¬R ≡ L, which can be shown from the formula congruence and algebraic rules,
see Appendix A.1. The derivation of Chc-R is as follows.

R〈e1, e2〉 ≡ ¬R〈e2, e1〉
≡ L〈e2, e1〉
≡ e2 �

The formula choice rules are stated in Figure 2.17. Redundant alternatives in
nested choices can be eliminated while preserving semantics by applying these
rules from left-to-right.



15

Chc-Join

f1〈e1, f2〈e1, e2〉〉 ≡ ( f1 ∨ f2)〈e1, e2〉
Chc-Meet

f1〈 f2〈e1, e2〉, e2〉 ≡ ( f1 ∧ f2)〈e1, e2〉

Chc-Join-Comp

f1〈e1, f2〈e2, e1〉〉 ≡ ( f1 ∨ ¬ f2)〈e1, e2〉
Chc-Meet-Comp

f1〈 f2〈e2, e1〉, e2〉 ≡ ( f1 ∧ ¬ f2)〈e1, e2〉

Figure 2.17: Formula choice rules.

Theorem 2.3. The formula choice rules hold for all formulas f1, f2 ∈ F and
expressions e1, e2 ∈ E.

Proof. First, we show Chc-Join directly from the definition of expression equiva-
lence, see Appendix A.2. Next, we show Chc-Meet by Chc-Join and Comp-Meet.
The derivation of Chc-Meet is as follows.

f1〈 f2〈e1, e2〉, e2〉 ≡ ¬ f1〈e2,¬ f2〈e2, e1〉〉
≡ (¬ f1 ∨ ¬ f2)〈e2, e1〉
≡ ¬( f1 ∧ f2)〈e2, e1〉
≡ ( f1 ∧ f2)〈e1, e2〉

Finally, we show Chc-Join-Comp and Chc-Meet-Comp by Chc-Join and Chc-Meet,
respectively. The derivation of Chc-Join-Comp is as follows.

f1〈e1, f2〈e2, e1〉〉 ≡ f1〈e1,¬ f2〈e1, e2〉〉
≡ ( f1 ∨ ¬ f2)〈e1, e2〉

The derivation of Chc-Meet-Comp is as follows.

f1〈 f2〈e2, e1〉, e2〉 ≡ f1〈¬ f2〈e1, e2〉, e2〉
≡ ( f1 ∧ ¬ f2)〈e1, e2〉 �
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The choice merge rules are stated in Figure 2.18. Unselectable alternatives
in nested choices can be eliminated while preserving semantics by applying
these rules from left-to-right. Note that these rules are not independent of each
other. For example, we derive CC-Merge from the other two choice merge rules
in Theorem 2.4. Alternatively, we could derive CC-Merge-l and CC-Merge-r from
CC-Merge and Chc-Idemp.

CC-Merge

f 〈 f 〈e1, e2〉, f 〈e3, e4〉〉 ≡ f 〈e1, e4〉

CC-Merge-l

f 〈 f 〈e1, e2〉, e3〉 ≡ f 〈e1, e3〉
CC-Merge-r

f 〈e1, f 〈e2, e3〉〉 ≡ f 〈e1, e3〉

Figure 2.18: Choice merge rules.

Theorem 2.4. The choice merge rules hold for all formulas f1, f2 ∈ F, and expres-
sions e1, e2, e3, e4 ∈ E.

Proof. First, we show CC-Merge-l directly from the definition of expression equiv-
alence, see Appendix A.2. Next, we show CC-Merge-r by CC-Merge-l. The
derivation of CC-Merge-r is as follows.

f 〈e1, f 〈e2, e3〉〉 ≡ ¬ f 〈¬ f 〈e3, e2〉, e1〉
≡ ¬ f 〈e3, e1〉
≡ f 〈e1, e3〉

Finally, CC-Merge follows directly from the other two rules. �

The object-choice commutation rule is stated in Figure 2.19. Although this rule
refers to formula choices directly, it does not differ from the corresponding rule
for dimension choices in a meaningful way. For completeness, we include a proof
of this rule in Appendix A.2.
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CO-Swap

f 〈a�e1, e2�, a�e3, e4�〉 ≡ a� f 〈e1, e3〉, f 〈e2, e4〉�

Figure 2.19: Object-choice commutation rule.

The choice-choice commutation rules are stated in Figure 2.20. Observe that
we derived CC-Swap-l from CC-Swap and Chc-Idemp in the proof of Theorem 2.5.
Alternatively, we could derive CC-Swap from the other two choice-choice commu-
tation rules, and the choice merge rules.

CC-Swap

f1〈 f2〈e1, e2〉, f2〈e3, e4〉〉 ≡ f2〈 f1〈e1, e3〉, f1〈e2, e4〉〉

CC-Swap-l

f1〈 f2〈e1, e2〉, e3〉 ≡ f2〈 f1〈e1, e3〉, f1〈e2, e3〉〉

CC-Swap-r

f1〈e1, f2〈e2, e3〉〉 ≡ f2〈 f1〈e1, e2〉, f1〈e1, e3〉〉

Figure 2.20: Choice-choice commutation rules.

Theorem 2.5. The choice-choice commutation rules hold for all formulas f1, f2 ∈ F,
and expressions e1, e2, e3, e4 ∈ E.

Proof. First, we show CC-Swap directly from the definition of expression equiva-
lence, see Appendix A.2. Next, we show CC-Swap-l by CC-Swap and Chc-Idemp.
The derivation of CC-Swap-l is as follows.

f1〈 f2〈e1, e2〉, e3〉 ≡ f1〈 f2〈e1, e2〉, f2〈e3, e3〉〉
≡ f2〈 f1〈e1, e3〉, f1〈e2, e3〉〉
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Finally, we show CC-Swap-r by CC-Swap-l. The derivation of CC-Swap-r is as
follows.

f1〈e1, f2〈e2, e3〉〉 ≡ ¬ f1〈 f2〈e2, e3〉, e1〉
≡ f2〈¬ f1〈e2, e1〉,¬ f1〈e3, e1〉〉
≡ f2〈 f1〈e1, e2〉, f1〈e1, e3〉〉 �

2.4 Generalizations

Similar to dimension choices, formula choices can be extended to support more
alternatives by adding tags to the set of tags and corresponding cases to the
semantics of choices. However, the set of tags must also form a Boolean algebra—
unlike the corresponding extension for dimension choices. Since any non-trivial
Boolean algebra has an even number of elements, it follows that formula choices
cannot be extended with an odd number of alternatives in this way.

To see why any non-trivial Boolean algebra has an even number of elements,
note that any Boolean algebra is a group with law of composition given by
symmetric difference. In such a group, every element is its own inverse. This
means the order of a non-identity element is two, which means the order of the
group is a multiple of two by Lagrange’s theorem [Dummit and Foote, 2004,
p. 89].

Notwithstanding this limitation, formula choices can be extended with an even
number of alternatives. Consider the following example of extending formula
choices with four alternatives. The set T = {1, 2, 3, 4} together with the operators
defined by the tables in Figure 2.21 is the Boolean algebra with four elements—up
to isomorphism—where 1 is “true” and 4 is “false.” The syntax and semantics of
formulas is defined in the same way as before. For expressions, we extend the
syntax and semantics of choices in a similar way to the example extension from
Section 2.1, albeit with four alternatives and cases instead of three.
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t ¬ t
1 4
2 3
3 2
4 1

∨ 1 2 3 4
1 1 1 1 1
2 1 2 1 2
3 1 1 3 3
4 1 2 3 4

∧ 1 2 3 4
1 1 2 3 4
2 2 2 4 4
3 3 4 3 4
4 4 4 4 4

Figure 2.21: Boolean algebra on four tags.

The equivalence rules for choices must be modified as well. The choice merge
rule CC-Merge is replaced with the following rule:

ei = f 〈ei1, ei2, ei3, ei4〉 ∀ i ∈ {1, 2, 3, 4}

f 〈e1, e2, e3, e4〉 ≡ f 〈e11, e22, e33, e44〉

Note that there are four premises of this rule. The choice-choice commutation
rule CC-Swap is replaced with the following rule:

ei = f ′〈ei1, ei2, ei3, ei4〉 e′i = f 〈e1i, e2i, e3i, e4i〉 ∀ i ∈ {1, 2, 3, 4}

f 〈e1, e2, e3, e4〉 ≡ f ′〈e′1, e′2, e′3, e′4〉

Note that there are eight premises of this rule. Similar modifications must be
made to other rules.
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Chapter 3 – Variational Programming

In this chapter, we establish sound map1 and bind2 operations for option-lists.
We also provide a general definition of soundness for operations on variational
data structures. Variational lists are functional data structures for representation
and computation with variation in lists using the choice calculus [Walkingshaw
and Erwig, 2012]. Option-lists are an efficient implementation of variational lists
which support sharing of list elements among variant lists [Walkingshaw et al.,
2014]. Variational data structures are described in Section 3.1 and variational lists
are described in Section 3.2. A sound map operation is established in Section 3.2.1
and a sound bind operation is established in Section 3.2.2.

3.1 Variational Data Structures

A variational value of type X is a value of type V X, which is the choice calculus
instantiated with type X. The abstract syntax of variational values is described for
an arbitrary type X by the grammar in Figure 3.1. Note that formula choices are
used. However, formula choices could be replaced by dimension choices—along
with appropriate changes to selection—and the results of this chapter would still
hold.

x ∈ X Value
v ∈ V X ::= x

| f 〈v, v〉 Choice

Figure 3.1: Variational value syntax.

1The map operation is part of the definition of a functor.
2The bind operation is part of the definition of a monad.
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The selection operation for variational values is given by the function sel,
which is defined for an arbitrary type X by the equations in Figure 3.2. In the last
equation, note that if FJ f Kc 6= L, then FJ f Kc = R. This function selects a variant
from a variational value.

sel : C → V X → X

sel c x = x

sel c f 〈v1, v2〉 =

sel c v1, if FJ f Kc = L

sel c v2, otherwise

Figure 3.2: Selection operation for variational values.

For example, consider variational integers. A variational integer is a variational
value with integer variants. Suppose d1 and d2 are dimensions. Then d1〈1, d2〈2, 3〉〉
is a variational integer. This variational integer consists of a choice. The label
of the choice is the dimension d1 and the alternatives are the integer 1 and the
nested choice d2〈2, 3〉. The label of the nested choice is the dimension d2 and
the alternatives are the integers 2 and 3. Moreover, for each configuration c, the
image of this variational integer under the partially applied function sel c is the
following: (1) if c d1 = L, then the image is the integer 1, (2) if c d1 = R and
c d2 = L, then the image is the integer 2, and (3) if c d1 = R and c d2 = R, then
the image is the integer 3.

A function ϕ : V X → V Y is sound at a configuration c ∈ C and with respect
to a function ψ : X → Y if the equality sel c ◦ ϕ = ψ ◦ sel c holds. Equivalently, the
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following diagram commutes:

V X V Y

X Y

sel c

ϕ

sel c

ψ

Moreover, a function ϕ is sound with respect to a function ψ if ϕ is sound at every
configuration with respect to ψ. Informally, a (variational) function is sound at
a configuration and with respect to a (plain) function if for each element in the
domain of the variational function, (1) the image under the plain function of the
variant selected from the element is equivalent to (2) the variant selected from the
image of the element under the variational function.

In general, a data structure is given by a type constructor U (·) and the
corresponding variational data structure is V ◦U. A data structure W (·) implements a
variational data structure V ◦U with a selection operation given by a polymorphic
function wsel : C →W X → U X with type variable X.

Suppose W (·) implements V ◦U with selection given by wsel. Then a function
ϕ : W X → W Y is sound at a configuration c ∈ C and with respect to a function
ψ : U X → U Y if the equality wsel c ◦ ϕ = ψ ◦ wsel c holds. Equivalently, the
following diagram commutes:

W X W Y

U X U Y

wsel c

ϕ

wsel c

ψ

Moreover, a function ϕ is sound with respect to a function ψ if ϕ is sound at every
configuration with respect to ψ.
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3.2 Variational Lists

An option (or optional value) of type X is a value of the lifted type X⊥ = X ∪ {⊥}
where ⊥ /∈ X. The symbol ⊥ is called the bottom value. Note that we use the
symbol ⊥ to denote the bottom values of both X⊥ and Y⊥. A variational option of
type X is a value of type V X⊥.

A list of elements of type X is a list of type L X. The standard abstract syntax
for lists is described for an arbitrary type X by the grammar in Figure 3.3. A
variational list of elements of type X is a value of type V (L X). An option-list of
elements of type X is a list of type L (V X⊥). For convenience, we write this as
O X, i.e., O X = L (V X⊥).

x ∈ X Element
l ∈ L X ::= ε Nil

| x :: l Cons

Figure 3.3: List syntax.

Option-lists are an implementation of variational lists with selection given
by the function osel, which is defined for an arbitrary type X by the equations
in Figure 3.4. In the last equation, note that if sel c v 6= x, then sel c v = ⊥
since v ∈ V X⊥ and so sel c v ∈ X⊥. This function selects a variant list from
an option-list by selecting variant elements from the option-list elements and
discarding those which are the bottom value.
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osel : C → O X → L X

osel c ε = ε

osel c (v :: l) =

x :: osel c l, if sel c v = x

osel c l, otherwise

Figure 3.4: Selection operation for option-list.

For example, consider lists and option-lists of integers. For convenience, we
write the concrete syntax of lists as comma separated sequences of elements
delimited by square brackets, e.g., [1, 2, 3] and [2, 4] are lists of integers in the
concrete syntax which correspond to the lists of integers 1 :: 2 :: 3 :: ε and 2 :: 4 :: ε,
respectively, in the abstract syntax. An option list of integers is a list where
the elements are variational options and the non-bottom variants are integers.
Suppose d is a dimension. Then [d〈1,⊥〉, 2, d〈3, 4〉] is an option-list of integers.
Moreover, for each configuration c, the image of this option-list under the partially
applied function osel c is the following: (1) if c d = L, then the image is the variant
list [1, 2, 3] and (2) if c d = R, then the image is the variant list [2, 4].

3.2.1 Map Operation

The list type constructor L (·) together with some map operation form a func-
tor [Wadler, 1992, Wadler, Philip, 1992, Wadler, 1995]. The standard map operation
for lists is given by the function map, which is defined for arbitrary types X and Y
by the equations in Figure 3.5. This function maps a function over the elements of
a list.
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map : (X → Y)→ L X → L Y

map ϕ ε = ε

map ϕ (x :: l) = ϕ x :: map ϕ l

Figure 3.5: Map operation for list.

It can be shown that the option-list type constructor O (·) together with some
map operation form a functor. The map operation for option-lists is given by the
function omap, which is defined for arbitrary types X and Y by the equations in
Figure 3.6. This function maps a function over the elements of an option-list.

omap : (X → Y)→ O X → O Y

omap ϕ ε = ε

omap ϕ (v :: l) = hmap ϕ v :: omap ϕ l

Figure 3.6: Map operation for option-lists.

The function hmap is defined for arbitrary types X and Y by the equations in
Figure 3.7. This function maps a function over the variants of a variational option.

hmap : (X → Y)→ V X⊥ → V Y⊥
hmap ϕ ⊥ = ⊥
hmap ϕ x = ϕ x

hmap ϕ f 〈v1, v2〉 = f 〈hmap ϕ v1, hmap ϕ v2〉

Figure 3.7: hmap function definition.
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We use Lemma 3.1 and Lemma 3.2 to prove soundness of the map operation
for option-lists. Informally, the first lemma says that mapping a function over
a variant which is the bottom value does not change the value of the variant
and the second lemma says that mapping a function over a variant which is a
(non-bottom) value results in application of the function to that value.

Lemma 3.1. For all configurations c ∈ C, functions ϕ : X → Y, and variational
options v ∈ V X⊥, if sel c v = ⊥, then sel c (hmap ϕ v) = ⊥.

Proof. We will use structural induction on v.
For the first base case, suppose v = ⊥. Then by the definitions of hmap and sel

we have sel c (hmap ϕ ⊥) = ⊥ and we are done. For the second base case, suppose
v = x for some value x ∈ X. Then by the definition of sel and the hypothesis of
the lemma we have x = sel c x = ⊥, which is a contradiction and so this case is
impossible.

For the induction step, suppose v = f 〈v1, v2〉 for some formula f ∈ F and
variational options v1, v2 ∈ V X⊥ with the following inductive hypotheses:

sel c v1 = ⊥ =⇒ sel c (hmap ϕ v1) = ⊥
sel c v2 = ⊥ =⇒ sel c (hmap ϕ v2) = ⊥

Notice that FJ f Kc is either L or R.
If FJ f Kc = L, then by the definition of sel and the hypothesis of the lemma we

have sel c v1 = sel c f 〈v1, v2〉 = ⊥. By applying this result to our first inductive
hypothesis, we have the following derivation by the definitions of hmap and sel.

sel c (hmap ϕ f 〈v1, v2〉) = sel c f 〈hmap ϕ v1, hmap ϕ v2〉
= sel c (hmap ϕ v1)

= ⊥

The case where FJ f Kc = R follows by similar reasoning, see Appendix A.3. �
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Lemma 3.2. For all configurations c ∈ C, functions ϕ : X → Y, and variational
options v ∈ V X⊥, if sel c v = x for some value x ∈ X, then sel c (hmap ϕ v) = ϕ x.

Proof. We will use structural induction on v.
For the first base case, suppose v = ⊥. Then by the definition of sel and the

hypothesis of the lemma we have ⊥ = sel c ⊥ = x, which is a contradiction
and so this case is impossible. For the second base case, suppose v = x′ for
some value x′ ∈ X. Then by the definition of sel and the hypothesis of the
lemma we have x′ = sel c x′ = x. By the definitions of hmap and sel, this means
sel c (hmap ϕ x′) = ϕ x′ = ϕ x.

For the induction step, suppose v = f 〈v1, v2〉 for some formula f ∈ F and
variational options v1, v2 ∈ V X⊥ with the following inductive hypotheses:

sel c v1 = x =⇒ sel c (hmap ϕ v1) = x

sel c v2 = x =⇒ sel c (hmap ϕ v2) = x

Notice that FJ f Kc is either L or R.
If FJ f Kc = L, then by the definition of sel and the hypothesis of the lemma we

have sel c v1 = sel c f 〈v1, v2〉 = x. By applying this result to our first inductive
hypothesis, we have the following derivation by the definitions of hmap and sel.

sel c (hmap ϕ f 〈v1, v2〉) = sel c f 〈hmap ϕ v1, hmap ϕ v2〉
= sel c (hmap ϕ v1)

= x

The case where FJ f Kc = R follows by similar reasoning, see Appendix A.3. �

We use the definition of soundness for option-lists to define soundness of
the map operation for option-lists. The map operation for option-lists is sound
if for each function ϕ : X → Y, the function omap ϕ is sound with respect to
the function map ϕ. This is stated formally by Theorem 3.3. A machine verified
version of the proof of this theorem is presented in Appendix A.3.
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Theorem 3.3. For all configurations c ∈ C and functions ϕ : X → Y, the equality
osel c ◦ omap ϕ = map ϕ ◦ osel c holds. Equivalently, the following diagram
commutes:

O X O Y

L X L Y

osel c

omap ϕ

osel c

map ϕ

Proof. We will show that the equality (osel c ◦ omap ϕ) l = (map ϕ ◦ osel c) l holds
for all option-lists l ∈ O X by structural induction on l.

For the base case, suppose that l = ε. Then we have the following derivation
by the definitions of osel, map, and omap.

(osel c ◦ omap ϕ) ε = osel c ε

= ε

= map ϕ ε

= (map ϕ ◦ osel c) ε

For the induction step, suppose that l = v :: l′, for some variational option
v ∈ V X⊥ and option-list l′ ∈ O X with (osel c ◦ omap ϕ) l′ = (map ϕ ◦ osel c) l′.
Notice that sel c v is either ⊥ or some value x ∈ X.

If sel c v = ⊥, then sel c (hmap ϕ v) = ⊥ by Lemma 3.1 and we have the follow-
ing derivation by the definitions of osel and omap and our inductive hypothesis.

(osel c ◦ omap ϕ) (v :: l′) = osel c (hmap ϕ v :: omap ϕ l′)

= osel c (omap ϕ l′)

= (map ϕ ◦ osel c) l′

= (map ϕ ◦ osel c) (v :: l′)
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If sel c v = x for some value x ∈ X, then sel c (hmap ϕ v) = ϕ x by Lemma 3.2
and we have the following derivation by the definitions of osel, map, and omap,
and our inductive hypothesis.

(osel c ◦ omap ϕ) (v :: l′) = osel c (hmap ϕ v :: omap ϕ l′)

= ϕ x :: osel c (omap ϕ l′)

= ϕ x :: (map ϕ ◦ osel c) l′

= map ϕ (x :: osel c l′)

= (map ϕ ◦ osel c) (v :: l′)

This completes the proof. �

3.2.2 Bind Operation

The list type constructor L (·) together with some bind and unit operations form
a monad on the category of types [Wadler, 1992, Wadler, Philip, 1992, Wadler,
1995]. The standard bind operation for lists is given by the function bind, which is
defined for arbitrary types X and Y by the equations in Figure 3.8. This function
applies a function to the elements of a list and joins the results. The infix binary
operator (++) denotes a concatenation (or append) operation for lists. The bind
operation for lists is sometimes referred to as a concatenation-map (or flat-map)
operation in programming languages.

bind : (X → L Y)→ L X → L Y

bind ϕ ε = ε

bind ϕ (x :: l) = ϕ x ++ bind ϕ l

Figure 3.8: Bind operation for lists.
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It can be shown that the option-list type constructor O (·) together with some
bind and unit operations form a monad on the category of types. The bind
operation for option-lists is given by the function obind, which is defined for
arbitrary types X and Y by the equations in Figure 3.9. This function applies a
function to the elements of an option-list and joins the results.

obind : (X → O Y)→ O X → O Y

obind ϕ ε = ε

obind ϕ (v :: l) = hbind ϕ v ++ obind ϕ l

Figure 3.9: Bind operation for option-lists.

The function hbind is defined for arbitrary types X and Y by the equations in
Figure 3.10. This function applies a function to the variants of a variational option
and joins the results.

hbind : (X → O Y)→ V X⊥ → O Y

hbind ϕ ⊥ = ε

hbind ϕ x = ϕ x

hbind ϕ f 〈v1, v2〉 = hzip f (hbind ϕ v1) (hbind ϕ v2)

Figure 3.10: hbind function definition.

The function hzip is defined for an arbitrary type X by the equations in
Figure 3.11. This function forms an option-list where the elements are choices with
a given formula as a label and elements of two given option-lists as alternatives.
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hzip : F → O X → O X → O X

hzip f ε l = map (λv. f 〈⊥, v〉) l

hzip f l ε = map (λv. f 〈v,⊥〉) l

hzip f (v1 :: l1) (v2 :: l2) = f 〈v1, v2〉 :: hzip f l1 l2

Figure 3.11: hzip function definition.

We use the definition of soundness (at a configuration) to define soundness of
the bind operation for option-lists. The bind operation for option-lists is sound
if for each configuration c ∈ C and function ϕ : X → O Y, the function obind ϕ is
sound at c and with respect to the function bind ψ, where ψ = osel c ◦ ϕ. This is
stated formally by Theorem 3.4. We prove this theorem by structural induction
on option-lists but the proof is rather tedious and so it is omitted here, see
Appendix A.3.

Theorem 3.4. For all configurations c ∈ C and functions ϕ : X → O X, the equality
osel c ◦ obind ϕ = bind ψ ◦ osel c holds, where ψ = osel c ◦ ϕ. Equivalently, the
following diagram commutes:

O X O Y

L X L Y

osel c

obind ϕ

osel c

bind ψ
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Chapter 4 – Conclusion

We have presented semantic equivalence rules for an extension of the choice
calculus and sound operations for an implementation of variational lists. The
choice calculus is a calculus for describing variation and the formula choice
calculus is an extension with formulas. We have proven semantic equivalence
rules for the formula choice calculus. Variational lists are functional data structures
for representing and computing with variation in lists using the choice calculus.
We have proven map and bind operations are sound for an implementation of
variational lists.
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Appendix A – Formal Verification

In this appendix, we list verified proofs written in the language of the Coq proof
assistant [Bertot and Castéran, 2004]. The properties from Chapter 2 are verified
in Appendix A.1 and Appendix A.2 and the source code is available online.1 The
properties from Chapter 3 are verified in Appendix A.3 and the source code is
also available online.2

A.1 Formulas

(** * Formula *)

Require Import Bool.

Require Import Relations.Relation_Definitions.

Require Import Classes.Morphisms.

Require Import Setoids.Setoid.

Module Formula.

(** ** Syntax *)

(** Syntax of formulas is Boolean expressions in dimensions and tags. *)

(** Dimensions and tags. *)

Definition dim := nat.

Definition tag := bool.

Definition L : tag := true.

Definition R : tag := false.

(** Formula syntax. *)

Inductive formula : Type :=

1https://github.com/hubbards/FCC-Coq
2https://github.com/hubbards/VP-Coq

https://github.com/hubbards/FCC-Coq
https://github.com/hubbards/VP-Coq
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| litT : tag -> formula

| litD : dim -> formula

| comp : formula -> formula

| join : formula -> formula -> formula

| meet : formula -> formula -> formula.

Notation "~ f" := (comp f) (at level 75, right associativity).

Infix "\/" := join (at level 85, right associativity).

Infix "/\" := meet (at level 80, right associativity).

(** ** Semantics *)

(** The semantics of a formula is a function from configurations to tags. *)

(** Configurations. *)

Definition config := dim -> tag.

(** Formula semantics. *)

Fixpoint semF (f : formula) (c : config) : tag :=

match f with

| litT t => t

| litD d => c d

| ~ f => negb (semF f c)

| f1 \/ f2 => (semF f1 c) || (semF f2 c)

| f1 /\ f2 => (semF f1 c) && (semF f2 c)

end.

(** ** Semantic Equivalence Rules *)

(** Statement and proof of semantic equivalence rules for formulas from my

thesis. Multiple proofs are given when it is instructive. *)

(** Semantic equivalence for formulas. *)

Definition equivF : relation formula :=

fun f f’ => forall c, (semF f c) = (semF f’ c).

Infix "=f=" := equivF (at level 70) : type_scope.

(** Formula equivalence is reflexive. *)
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Remark equivF_refl : Reflexive equivF.

Proof.

intros x c.

reflexivity.

Qed.

(** Formula equivalence is symmetric. *)

Remark equivF_sym : Symmetric equivF.

Proof.

intros x y H c.

symmetry.

apply H.

Qed.

(** Formula equivalence is transitive. *)

Remark equivF_trans : Transitive equivF.

Proof.

intros x y z H1 H2 c.

transitivity (semF y c).

apply H1.

apply H2.

Qed.

(** Formula equivalence is an equivalence relation. *)

Instance eqF : Equivalence equivF.

Proof.

split.

apply equivF_refl.

apply equivF_sym.

apply equivF_trans.

Qed.

(** Congruence rule for complement. *)

Remark comp_cong : forall f f’ : formula,

f =f= f’ ->

(~ f) =f= (~ f’).

Proof.
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intros f f’ H c.

simpl.

rewrite -> H.

reflexivity.

Qed.

(** Left congruence rule for join. *)

Remark join_cong_l : forall l l’ r : formula,

l =f= l’ ->

(l \/ r) =f= (l’ \/ r).

Proof.

intros l l’ r H c.

simpl.

rewrite -> H.

reflexivity.

Qed.

(** Right congruence rule for join. *)

Remark join_cong_r : forall l r r’ : formula,

r =f= r’ ->

(l \/ r) =f= (l \/ r’).

Proof.

intros l r r’ H c.

simpl.

rewrite -> H.

reflexivity.

Qed.

(** Congruence rule for join. *)

Remark join_cong : forall l l’ r r’ : formula,

l =f= l’ -> r =f= r’ ->

(l \/ r) =f= (l’ \/ r’).

Proof.

intros l l’ r r’ Hl Hr.

rewrite -> join_cong_l by apply Hl.

rewrite -> join_cong_r by apply Hr.

reflexivity.



37

Qed.

(** Left congruence rule for meet. *)

Remark meet_cong_l : forall l l’ r : formula,

l =f= l’ ->

(l /\ r) =f= (l’ /\ r).

Proof.

intros l l’ r H c.

simpl.

rewrite -> H.

reflexivity.

Qed.

(** Right congruence rule for meet. *)

Remark meet_cong_r : forall l r r’ : formula,

r =f= r’ ->

(l /\ r) =f= (l /\ r’).

Proof.

intros l r r’ H c.

simpl.

rewrite -> H.

reflexivity.

Qed.

(** Congruence rule for meet. *)

Remark meet_cong : forall l l’ r r’ : formula,

l =f= l’ -> r =f= r’ ->

(l /\ r) =f= (l’ /\ r’).

Proof.

intros l l’ r r’ Hl Hr.

rewrite -> meet_cong_l by apply Hl.

rewrite -> meet_cong_r by apply Hr.

reflexivity.

Qed.

(** Join is associative. *)

Theorem join_assoc : forall x y z : formula,
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(x \/ y \/ z) =f= ((x \/ y) \/ z).

Proof.

intros x y z c.

apply orb_assoc.

Qed.

(** Meet is associative. *)

Theorem meet_assoc : forall x y z : formula,

(x /\ y /\ z) =f= ((x /\ y) /\ z).

Proof.

intros x y z c.

apply andb_assoc.

Qed.

(** Join is commutative. *)

Theorem join_comm : forall x y : formula,

(x \/ y) =f= (y \/ x).

Proof.

intros x y c.

apply orb_comm.

Qed.

(** Meet is commutative. *)

Theorem meet_comm : forall x y : formula,

(x /\ y) =f= (y /\ x).

Proof.

intros x y c.

apply andb_comm.

Qed.

(** Join distributes over meet. *)

Theorem join_meet_dist_r : forall x y z : formula,

(x \/ y /\ z) =f= ((x \/ y) /\ (x \/ z)).

Proof.

intros x y z c.

apply orb_andb_distrib_r.

Qed.
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(** Meet distributes over join. *)

Theorem meet_join_dist_r : forall x y z : formula,

(x /\ (y \/ z)) =f= (x /\ y \/ x /\ z).

Proof.

intros x y z c.

apply andb_orb_distrib_r.

Qed.

(** Join is idempotent. *)

Theorem join_diag : forall f : formula,

(f \/ f) =f= f.

Proof.

intros f c.

apply orb_diag.

Qed.

(** Meet is idempotent. *)

Theorem meet_diag : forall f : formula,

(f /\ f) =f= f.

Proof.

intros f c.

apply andb_diag.

Qed.

(** De Morgan’s law for join. *)

Theorem comp_join : forall x y : formula,

(~ (x \/ y)) =f= (~ x /\ ~ y).

Proof.

intros x y c.

apply negb_orb.

Qed.

(** De Morgan’s law for meet. *)

Theorem comp_meet : forall x y : formula,

(~ (x /\ y)) =f= (~ x \/ ~ y).

Proof.
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intros x y c.

apply negb_andb.

Qed.

(** Complementation for join. *)

Theorem join_comp_r : forall f : formula,

(f \/ ~ f) =f= litT L.

Proof.

intros f c.

apply orb_negb_r.

Qed.

(** Complementation for meet. *)

Theorem meet_comp_r : forall f : formula,

(f /\ ~ f) =f= litT R.

Proof.

intros f c.

apply andb_negb_r.

Qed.

(** Right is a left identity for join. *)

Theorem join_id_l : forall f : formula,

(litT R \/ f) =f= f.

Proof.

intros f c.

apply orb_false_l.

Qed.

(** Right is a right identity for join. *)

Theorem join_id_r : forall f : formula,

(f \/ litT R) =f= f.

Proof.

intros f c.

apply orb_false_r.

Qed.

(** Left is a left identity for meet. *)
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Theorem meet_id_l : forall f : formula,

(litT L /\ f) =f= f.

Proof.

intros f c.

apply andb_true_l.

Qed.

(** Left is a right identity for meet. *)

Theorem meet_id_r : forall f : formula,

(f /\ litT L) =f= f.

Proof.

intros f c.

apply andb_true_r.

Qed.

(** Left is a left annihilator for join. *)

Theorem join_ann_l : forall f : formula,

(litT L \/ f) =f= litT L.

Proof.

intros f c.

apply orb_true_l.

Qed.

(** Left is a right annihilator for join. *)

Theorem join_ann_r : forall f : formula,

(f \/ litT L) =f= litT L.

Proof.

intros f c.

apply orb_true_r.

Qed.

(** Right is a left annihilator for meet. *)

Theorem meet_ann_l : forall f : formula,

(litT R /\ f) =f= litT R.

Proof.

intros f c.

apply andb_false_l.
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Qed.

(** Right is a right annihilator for meet. *)

Theorem meet_ann_r : forall f : formula,

(f /\ litT R) =f= litT R.

Proof.

intros f c.

apply andb_false_r.

Qed.

(** Complement of left is right. *)

Theorem comp_l_r : (~ litT L) =f= litT R.

Proof.

intro c.

reflexivity.

Qed.

(** Complement of right is left. *)

Theorem comp_r_l : (~ litT R) =f= litT L.

Proof.

intro c.

reflexivity.

Qed.

(** Complement is an involution. *)

Theorem comp_invo : forall f : formula,

(~ ~ f) =f= f.

Proof.

intros f c.

apply negb_involutive.

Qed.

End Formula.
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A.2 Formula Choice Calculus

(** * Formula Choice Calculus (FCC) *)

Require Import Bool.

Require Import Relations.Relation_Definitions.

Require Import Classes.Morphisms.

Require Import Setoids.Setoid.

Load Formula.

Import Formula.

Module FCC.

(** ** Syntax *)

(** Syntax of choice calculus expressions with global dimensions and formula

choices. The object language is binary trees. *)

(** Object language syntax. *)

Inductive obj : Type :=

| empty : obj

| tree : unit -> obj -> obj -> obj.

(** Expression syntax. *)

Inductive cc : Type :=

| empty’ : cc

| tree’ : unit -> cc -> cc -> cc

| chc : formula -> cc -> cc -> cc.

(** ** Semantics *)

(** The semantics of a choice calculus expression is a function from

configurations to terms in the object language, i.e., binary trees. *)

(** Expression semantics. *)

Fixpoint semE (e : cc) (c : config) : obj :=

match e with

| empty’ => empty
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| tree’ x l r => tree x (semE l c) (semE r c)

| chc f l r => if semF f c then semE l c else semE r c

end.

(** ** Semantic Equivalence Rules *)

(** Statement and proof of semantic equivalence rules for expressions from my

thesis. Multiple proofs are given when it is instructive. *)

(** Semantic equivalence for expressions. *)

Definition equivE : relation cc :=

fun e e’ => forall c, (semE e c) = (semE e’ c).

Infix "=e=" := equivE (at level 70) : type_scope.

(** Expression equivalence is reflexive. *)

Remark equivE_refl : Reflexive equivE.

Proof.

intros x c.

reflexivity.

Qed.

(** Expression equivalence is symmetric. *)

Remark equivE_sym : Symmetric equivE.

Proof.

intros x y H c.

symmetry.

apply H.

Qed.

(** Expression equivalence is transitive. *)

Remark equivE_trans : Transitive equivE.

Proof.

intros x y z H1 H2 c.

transitivity (semE y c).

apply H1.

apply H2.

Qed.
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(** Expression equivalence is an equivalence relation. *)

Instance eqE : Equivalence equivE.

Proof.

split.

apply equivE_refl.

apply equivE_sym.

apply equivE_trans.

Qed.

(** Choice transposition rule. *)

Theorem chc_trans : forall (f : formula) (l r : cc),

chc f l r =e= chc (~ f) r l.

Proof.

(* Proof by unfolding [equivE]. *)

intros f l r c.

simpl.

destruct (semF f c);

reflexivity.

Qed.

(** AST-L-Congruence rule. *)

Remark ast_l_cong : forall l l’ r : cc,

l =e= l’ ->

tree’ tt l r =e= tree’ tt l’ r.

Proof.

intros l l’ r H c.

simpl.

rewrite -> H.

reflexivity.

Qed.

(** AST-R-Congruence rule. *)

Remark ast_r_cong : forall l r r’ : cc,

r =e= r’ ->

tree’ tt l r =e= tree’ tt l r’.

Proof.
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intros l r r’ H c.

simpl.

rewrite -> H.

reflexivity.

Qed.

(** Choice congruence rule for labels. *)

Remark chc_cong_f : forall (f f’ : formula) (l r : cc),

f =f= f’ ->

chc f l r =e= chc f’ l r.

Proof.

(* Proof by unfolding [equivE]. *)

intros f f’ l r H c.

simpl.

rewrite -> H.

reflexivity.

Qed.

(** Choice congruence rule for left alternatives. *)

Remark chc_cong_l : forall (f : formula) (l l’ r : cc),

l =e= l’ ->

chc f l r =e= chc f l’ r.

Proof.

(* Proof by unfolding [equivE]. *)

intros f l l’ r H c.

simpl.

rewrite -> H.

reflexivity.

Qed.

(** Choice congruence rule for right alternatives. *)

Remark chc_cong_r : forall (f : formula) (l r r’ : cc),

r =e= r’ ->

chc f l r =e= chc f l r’.

Proof.

(* Proof by unfolding [equivE]. *)

intros f l r r’ H c.
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simpl.

rewrite -> H.

reflexivity.

Restart.

(* Proof by deriving from [chc_cong_l]. *)

intros f l r r’ H.

rewrite -> chc_trans.

rewrite -> chc_cong_l by apply H.

rewrite <- chc_trans.

reflexivity.

Qed.

(** Choice idempotence rule. *)

Theorem chc_idemp : forall (f : formula) (e : cc),

chc f e e =e= e.

Proof.

(* Proof by unfolding [equivE]. *)

intros f e c.

simpl.

destruct (semF f c);

reflexivity.

Qed.

(** Choice simplification rule for left label. *)

Theorem chc_f_l : forall (l r : cc),

chc (litT L) l r =e= l.

Proof.

(* Proof by unfolding [equivE]. *)

intros l r c.

reflexivity.

Qed.

(** Choice simplification rule for right label. *)

Theorem chc_f_r : forall (l r : cc),

chc (litT R) l r =e= r.

Proof.

(* Proof by unfolding [equivE]. *)
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intros l r c.

reflexivity.

Restart.

(* Proof by deriving from [chc_f_l]. *)

intros l r.

rewrite -> chc_trans.

rewrite -> chc_cong_f by apply comp_r_l.

apply chc_f_l.

Qed.

(** Choice label join rule. *)

Theorem chc_f_join : forall (f1 f2 : formula) (l r : cc),

chc f1 l (chc f2 l r) =e= chc (f1 \/ f2) l r.

Proof.

(* Proof by unfolding [equivE]. *)

intros f1 f2 l r c.

simpl.

destruct (semF f1 c);

reflexivity.

Qed.

(** Choice label meet rule. *)

Theorem chc_f_meet : forall (f1 f2 : formula) (l r : cc),

chc f1 (chc f2 l r) r =e= chc (f1 /\ f2) l r.

Proof.

(* Proof by unfolding [equivE]. *)

intros f1 f2 l r c.

simpl.

destruct (semF f1 c);

reflexivity.

Restart.

(* Proof by deriving from [chc_f_join]. *)

intros f1 f2 l r.

rewrite -> chc_cong_l with (l’ := chc (~ f2) r l) by apply chc_trans.

rewrite -> chc_trans.

rewrite -> chc_f_join.

rewrite -> chc_cong_f with (f’ := ~ (f1 /\ f2)).
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rewrite <- chc_trans.

reflexivity.

symmetry.

apply comp_meet.

Qed.

(** Choice label join complement rule. *)

Theorem chc_f_join_comp : forall (f1 f2 : formula) (l r : cc),

chc f1 l (chc f2 r l) =e= chc (f1 \/ ~ f2) l r.

Proof.

(* Proof by unfolding [equivE]. *)

intros f1 f2 l r c.

simpl.

destruct (semF f1 c);

simpl;

try rewrite -> negb_if;

reflexivity.

Restart.

(* Proof by deriving from [chc_f_join]. *)

intros f1 f2 l r.

rewrite -> chc_cong_r with (r’ := chc (~ f2) l r) by apply chc_trans.

rewrite -> chc_f_join.

reflexivity.

Qed.

(** Choice label meet complement rule. *)

Theorem chc_f_meet_comp : forall (f1 f2 : formula) (l r : cc),

chc f1 (chc f2 r l) r =e= chc (f1 /\ ~ f2) l r.

Proof.

(* Proof by unfolding [equivE]. *)

intros f1 f2 l r c.

simpl.

destruct (semF f1 c);

simpl;

try rewrite -> negb_if;

reflexivity.

Restart.
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(* Proof by deriving from [chc_f_meet]. *)

intros f1 f2 l r.

rewrite -> chc_cong_l with (l’ := chc (~ f2) l r) by apply chc_trans.

rewrite -> chc_f_meet.

reflexivity.

Qed.

(** C-C-Merge rule. *)

Theorem cc_merge : forall (f : formula) (l r e e’ : cc),

chc f (chc f l e) (chc f e’ r) =e= chc f l r.

Proof.

(* Proof by unfolding [equivE]. *)

intros f l r e e’ c.

simpl.

destruct (semF f c);

reflexivity.

Qed.

(** C-C-Merge rule for the case where the nested choice appears in the left

alternative. *)

Theorem cc_merge_l : forall (f : formula) (l r e : cc),

chc f (chc f l e) r =e= chc f l r.

Proof.

(* Proof by unfolding [equivE]. *)

intros f l r e c.

simpl.

destruct (semF f c);

reflexivity.

Restart.

(* Proof by deriving from [cc_merge]. *)

intros f l r e.

rewrite <- chc_cong_r with (r := chc f r r) by apply chc_idemp.

rewrite -> cc_merge.

reflexivity.

Qed.

(** C-C-Merge rule for the case where the nested choice appears in the right
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alternative. *)

Theorem cc_merge_r : forall (f : formula) (l r e : cc),

chc f l (chc f e r) =e= chc f l r.

Proof.

(* Proof by deriving from [cc_merge_l]. *)

intros f l r e.

rewrite -> chc_cong_r with (r’ := chc (~ f) r e) by apply chc_trans.

rewrite -> chc_trans.

rewrite -> cc_merge_l.

rewrite <- chc_trans.

reflexivity.

Qed.

(** AST-Factoring rule. *)

Theorem ast_factor : forall (f : formula) (l l’ r r’ : cc),

chc f (tree’ tt l r) (tree’ tt l’ r’) =e=

tree’ tt (chc f l l’) (chc f r r’).

Proof.

intros f l l’ r r’ c.

simpl.

destruct (semF f c);

reflexivity.

Qed.

(** C-C-Swap rule. *)

Theorem cc_swap : forall (f1 f2 : formula) (e1 e2 e3 e4 : cc),

chc f1 (chc f2 e1 e2) (chc f2 e3 e4) =e=

chc f2 (chc f1 e1 e3) (chc f1 e2 e4).

Proof.

(* Proof by unfolding [equivE]. *)

intros f1 f2 e1 e2 e3 e4 c.

simpl.

destruct (semF f1 c);

reflexivity.

Qed.

(** C-C-Swap rule for the case where the nested choice appears in the left
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alternative of the simpler form. *)

Theorem cc_swap_l : forall (f f’ : formula) (l r r’ : cc),

chc f’ (chc f l r’) (chc f r r’) =e=

chc f (chc f’ l r) r’.

Proof.

(* Proof by unfolding [equivE]. *)

intros f f’ l r r’ c.

simpl.

destruct (semF f’ c);

reflexivity.

Restart.

(* Proof by deriving from [cc_swap]. *)

intros f f’ l r r’.

rewrite -> cc_swap.

rewrite -> chc_cong_r by apply chc_idemp.

reflexivity.

Qed.

(** C-C-Swap rule for the case where the nested choice appears in the right

alternative of the simpler form. *)

Theorem cc_swap_r : forall (f f’ : formula) (l l’ r : cc),

chc f’ (chc f l l’) (chc f l r) =e=

chc f l (chc f’ l’ r).

Proof.

(* Proof by deriving from [cc_swap_l]. *)

intros f f’ l l’ r.

rewrite -> chc_cong_l with (l’ := chc (~ f) l’ l) by apply chc_trans.

rewrite -> chc_cong_r with (r’ := chc (~ f) r l) by apply chc_trans.

rewrite -> cc_swap_l.

rewrite <- chc_trans.

reflexivity.

Qed.

(** ** Examples *)

(** Examples of some additional properties and derivations by semantic

equivalence rules. *)

Module Examples.
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(** Flip operation. *)

Fixpoint flip (e : cc) : cc :=

match e with

| chc f l r => chc (~ f) (flip r) (flip l)

| _ => e

end.

(** The flip operation is an involution. *)

Example flip_invo : forall e : cc,

flip (flip e) =e= e.

Proof.

induction e as [n | n l IHl r IHr | f l IHl r IHr].

(* Case: [e = leaf’ n]. *)

reflexivity.

(* Case: [e = node’ n l r]. *)

reflexivity.

(* Case: [e = chc f l r]. *)

simpl.

rewrite -> chc_cong_f by apply comp_invo.

rewrite -> chc_cong_l by apply IHl.

rewrite -> chc_cong_r by apply IHr.

reflexivity.

Qed.

End Examples.

End FCC.
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A.3 Variational Programming

For simplicity, we use a non-generic map operation. However, this is not a
fundamental restriction. We could use a generic map operation and the following
proofs would not change since the logic does not depend on the list type parameter.

(** * Option-List (OList) *)

Require Import Bool.

Require Import List.

Import ListNotations.

Require Import Basics.

Module OList.

(** Dimensions and configurations. *)

Definition dim := nat.

Definition tag := bool.

Definition L : tag := true.

Definition R : tag := false.

Definition config := dim -> tag.

(** Formula syntax. *)

Inductive formula : Type :=

| litT : tag -> formula

| litD : dim -> formula

| comp : formula -> formula

| join : formula -> formula -> formula

| meet : formula -> formula -> formula.

Notation "~ x" := (comp x) (at level 75, right associativity).

Infix "\/" := join (at level 85, right associativity).

Infix "/\" := meet (at level 80, right associativity).

(** Formula semantics. *)

Fixpoint semf (x : formula) (c : config) : tag :=

match x with

| litT t => t



55

| litD d => c d

| ~ x => negb (semf x c)

| x1 \/ x2 => (semf x1 c) || (semf x2 c)

| x1 /\ x2 => (semf x1 c) && (semf x2 c)

end.

(** Variational option definition. *)

Inductive var : Type :=

| one : option nat -> var

| chc : formula -> var -> var -> var.

(** Selection operation for variational option. *)

Fixpoint vsel (c : config) (v : var) : option nat :=

match v with

| one o => o

| chc x l r => if semf x c then vsel c l else vsel c r

end.

(** Option-list definition. *)

Definition olist := list var.

(** Selection operation for option-list. *)

Fixpoint osel (c : config) (o : olist) : list nat :=

match o with

| [] => []

| h :: t => match vsel c h with

| None => osel c t

| Some y => y :: osel c t

end

end.

(** ** Map *)

(** Definition of map operation for option-list and a formal proof of

soundness. *)

Section Map.

(** Helper function of map operation for option-list. *)
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Fixpoint hmap (f : nat -> nat) (v : var) : var :=

match v with

| one None => one None

| one (Some n) => one (Some (f n))

| chc x l r => chc x (hmap f l) (hmap f r)

end.

(** Map operation for option-list. *)

Fixpoint omap (f : nat -> nat) (o : olist) : olist :=

match o with

| [] => []

| h :: t => hmap f h :: omap f t

end.

(* Lemma used in proof of [omap_sound]. *)

Lemma vsel_none : forall (c : config) (f : nat -> nat) (e : var),

vsel c e = None ->

vsel c (hmap f e) = None.

Proof.

intros c f e H.

induction e as [o | x l IHl r IHr].

(* Case: [e = one o]. *)

destruct o as [n |].

(* Subcase: [o = Some n]. *)

simpl vsel in H.

inversion H.

(* Subcase: [o = None]. *)

reflexivity.

(* Case: [e = chc x l r]. *)

simpl.

simpl in H.

destruct (semf x c).

(* Subcase: [semf x c = L]. *)

rewrite -> IHl by apply H.

reflexivity.

(* Subcase: [semf x c = R]. *)

rewrite -> IHr by apply H.



57

reflexivity.

Qed.

(* Lemma used in proof of [omap_sound]. *)

Lemma vsel_some : forall (c : config) (f : nat -> nat) (e : var) (n : nat),

vsel c e = Some n ->

vsel c (hmap f e) = Some (f n).

Proof.

intros c f e n H.

induction e as [o | x l IHl r IHr].

(* Case: [e = one o]. *)

destruct o as [n’ |].

(* Subcase: [o = Some n’]. *)

simpl vsel in H.

inversion H.

reflexivity.

(* Subcase: [o = None]. *)

simpl vsel in H.

inversion H.

(* Case: [e = chc x l r]. *)

simpl.

simpl in H.

destruct (semf x c).

(* Subcase: [semf x c = L]. *)

rewrite -> IHl by apply H.

reflexivity.

(* Subcase: [semf x c = R]. *)

rewrite -> IHr by apply H.

reflexivity.

Qed.

Infix "*" := compose.

(** The map operation for option-list is sound. *)

Theorem omap_sound : forall (c : config) (f : nat -> nat) (o : olist),

(osel c * omap f) o = (map f * osel c) o.

Proof.
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intros c f o.

unfold compose.

induction o as [| h t IH].

(* Case: [o = nil]. *)

reflexivity.

(* Case: [o = cons h t]. *)

simpl omap.

destruct (vsel c h) as [n |] eqn : H.

(* Subcase: [vsel c h = Some n]. *)

simpl osel.

rewrite -> vsel_some with (n := n) by apply H.

rewrite -> H.

simpl map.

rewrite -> IH.

reflexivity.

(* Subcase: [vsel c h = None]. *)

simpl osel.

rewrite -> vsel_none by apply H.

rewrite -> H.

apply IH.

Qed.

End Map.

(** ** Bind *)

(** Definition of bind operation for option-list and a formal proof of

soundness. *)

Section Bind.

(** Helper function of bind operation for option-list. *)

Fixpoint hzip (x : formula) (o o’ : olist) : olist :=

match o, o’ with

| [], _ => map (fun v : var => chc x (one None) v) o’

| _, [] => map (fun v : var => chc x v (one None)) o

| h :: t, h’ :: t’ => chc x h h’ :: hzip x t t’

end.
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(** Helper function of bind operation for option-list. *)

Fixpoint hbind (f : nat -> olist) (v : var) : olist :=

match v with

| one None => []

| one (Some n) => f n

| chc x l r => hzip x (hbind f l) (hbind f r)

end.

(** Bind operation for option-list. *)

Fixpoint obind (f : nat -> olist) (o : olist) : olist :=

match o with

| [] => []

| h :: t => hbind f h ++ obind f t

end.

(** Lemma used to simplify goals in later proofs. *)

Lemma osel_cons_chc_l :

forall (c : config) (x : formula) (l r : var) (o : olist),

semf x c = L ->

osel c (chc x l r :: o) = osel c (l :: o).

Proof.

intros c x l r o H.

simpl.

rewrite -> H.

reflexivity.

Qed.

(** Lemma used to simplify goals in later proofs. *)

Lemma osel_cons_chc_r :

forall (c : config) (x : formula) (l r : var) (o : olist),

semf x c = R ->

osel c (chc x l r :: o) = osel c (r :: o).

Proof.

intros c x l r o H.

simpl.

rewrite -> H.

reflexivity.
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Qed.

(** Selection for option-list distributes over append. *)

Lemma osel_app : forall (c : config) (o o’ : olist),

osel c (o ++ o’) = osel c o ++ osel c o’.

Proof.

intros c o o’.

induction o as [| h t IH].

(* Case: [o = nil]. *)

reflexivity.

(* Case: [o = cons h t]. *)

simpl.

destruct (vsel c h) as [n |].

(* Subcase: [vsel c h = Some n]. *)

rewrite <- app_comm_cons.

rewrite -> IH.

reflexivity.

(* Subcase: [vsel c h = None]. *)

apply IH.

Qed.

(** Lemma used to simplify goals in later proofs. *)

Lemma ozip_nil_l : forall (x : formula) (o : olist),

hzip x [] o = map (fun v : var => chc x (one None) v) o.

Proof.

destruct o;

unfold hzip;

reflexivity.

Qed.

(** Lemma used to simplify goals in later proofs. *)

Lemma ozip_nil_r : forall (x : formula) (o : olist),

hzip x o [] = map (fun v : var => chc x v (one None)) o.

Proof.

destruct o;

unfold hzip;

reflexivity.
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Qed.

(** Lemma used to simplify goals in later proofs. *)

Lemma osel_ozip_l : forall (c : config) (x : formula),

semf x c = L ->

forall o o’ : olist, osel c (hzip x o o’) = osel c o.

Proof.

intros c x H.

assert (H’ : forall o : olist, osel c (hzip x [] o) = []).

(* Proof of assertion [H’]. *)

intro o.

induction o as [| h t IH].

(* Case: [o = nil]. *)

reflexivity.

(* Case: [o = cons h t]. *)

rewrite -> ozip_nil_l.

simpl map.

rewrite -> osel_cons_chc_l by apply H.

simpl.

rewrite <- ozip_nil_l.

apply IH.

(* Proof of [osel_ozip_l]. *)

intro o.

induction o as [| h t IH].

(* Case: [o = nil]. *)

apply H’.

(* Case: [o = cons h t]. *)

destruct o’ as [| h’ t’];

simpl hzip;

rewrite -> osel_cons_chc_l by apply H;

try (rewrite <- ozip_nil_r);

destruct h as [o | y l r];

try (destruct o);

simpl;

rewrite -> IH;

reflexivity.

Qed.
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(** Lemma used to simplify goals in later proofs. *)

Lemma osel_ozip_r : forall (c : config) (x : formula),

semf x c = R ->

forall o o’ : olist,

osel c (hzip x o’ o) = (osel c o).

Proof.

intros c x H.

assert (H’ : forall o : olist, osel c (hzip x o []) = []).

(* Proof of assertion [H’]. *)

intro o.

induction o as [| h t IH].

(* Case: [o = nil]. *)

reflexivity.

(* Case: [o = cons h t]. *)

rewrite -> ozip_nil_r.

simpl map.

rewrite -> osel_cons_chc_r by apply H.

simpl.

rewrite <- ozip_nil_r.

apply IH.

(* Proof of [osel_ozip_r]. *)

intros o.

induction o as [| h t IH].

(* Case: [o = nil]. *)

apply H’.

(* Case: [o = cons h t]. *)

destruct o’ as [| h’ t’];

simpl hzip;

rewrite -> osel_cons_chc_r by apply H;

try (rewrite <- ozip_nil_l);

destruct h as [o | y l r];

try (destruct o);

simpl;

try (rewrite <- ozip_nil_l);

rewrite -> IH;

reflexivity.
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Qed.

Infix "*" := compose.

(** The bind operation for option-list is sound. *)

Theorem obind_sound : forall (c : config) (f : nat -> olist) (o : olist),

(osel c * obind f) o =

(flat_map (osel c * f) * osel c) o.

Proof.

intros c f o.

unfold compose.

induction o as [| h t IH].

(* Case: [o = nil]. *)

reflexivity.

(* Case: [o = cons h t]. *)

simpl obind.

rewrite -> osel_app.

induction h as [o | x l IHl r IHr].

destruct o.

(* Subcase: [h = one (Some n)]. *)

simpl.

rewrite -> IH.

reflexivity.

(* Subcase: [h = one None]. *)

simpl.

apply IH.

(* Subcase: [h = chc x l r]. *)

simpl hbind.

destruct (semf x c) eqn : H.

rewrite -> osel_ozip_l by apply H.

rewrite -> osel_cons_chc_l by apply H.

apply IHl.

rewrite -> osel_ozip_r by apply H.

rewrite -> osel_cons_chc_r by apply H.

apply IHr.

Qed.
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End Bind.

End OList.
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