

AN ABSTRACT OF THE PROJECT OF

Qiaoran Li for the degree of Master of Science in Computer Science presented on

Dec 9, 2019.

Title: Application of the Variational Database Management System to Schema

Evolution and Software Product Lines

Abstract approved:

Eric Walkingshaw

As a general solution to the problem of managing structural and content variability

in relational databases, in previous work we have introduced the Variational Database

Management System (VDBMS). VDBMS consists of a representation of a variational

database (VDB) and a corresponding typed query language (v-query). However, since

this is a novel database representation, there are no existing instances of VDBs or v-

queries that can be used to evaluate the VDBMS. In this project, we present two case

studies to demonstrate the use of VDBMS and support its evaluation. The case studies

were constructed by systematically encoding variability scenarios from prior work and

generating corresponding VDBs by adapting existing widely-used data sets. The first

case study shows how to use the VDBMS to manage database variants under a schema

evolution scenario. The second case study demonstrates how to integrate the VDBMS

with a database-backed software product line. Each case study provides a VDB and

a set of v-queries that will be used to evaluate the VDBMS. Additionally, we provide

some insights into generating VDBs from relational databases that could assist future

VDBMS users.

c©Copyright by Qiaoran Li
Dec 9, 2019

All Rights Reserved

Application of the Variational Database Management System to
Schema Evolution and Software Product Lines

by

Qiaoran Li

A PROJECT

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented Dec 9, 2019

Commencement June 2020

Master of Science project of Qiaoran Li presented on Dec 9, 2019.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my project will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my project to any
reader upon request.

Qiaoran Li, Author

ACKNOWLEDGEMENTS

First and foremost, I would like to give a special thanks to my advisor, Eric Walkingshaw.

Thank you for offering me the opportunity to be your MS student and work in the

research group. Your kindness and support make my wonderful academic journey at

Oregon State University. I will forever be indebted to all you have given me.

I would like to show my gratitude to my committee members: Martin Erwig and

Arash Termehchy. Thank you for your excellent comments and feedback on my project.

Furthermore, many thanks go to my colleague Parisa Ataei, who has helped me a

lot through the VDBMS case studies. Thanks for all the wonderful discussions we had

and the constructive feedback you gave on my project. Besides, I would like to thank

all members of the Lambda group for all the precious moments we have shared together

during lectures and group meetings.

Last but not least, I would like to express the deepest appreciation to my parents

for your love and support. You have helped me to follow my dreams, even though that

meant to live so far apart from each other. Also, I would like to thank my extended

family, thank you all for your care and encouragement. I am so grateful for having such

an incredible family.

TABLE OF CONTENTS
Page

1 Introduction 1

2 Background 3

2.1 Variational Databases . 3

2.2 Variational Queries . 7

3 Applying VDBMS to Schema Evolution 8

3.1 Employee Database Schema Evolution . 8

3.2 Employee Variational Databases . 9

3.2.1 Schema Transformation . 10

3.2.2 Populating the Employee Databases 11

3.3 Examples of Variational Query . 12

4 Applying VDBMS to Software Product Lines 19

4.1 Software Product Line and Feature Interactions 19

4.2 Email SPL and Features . 20

4.3 Email Variational Databases . 21

4.3.1 Schema Transformation . 21

4.3.2 Populating the Email Databases 22

4.4 Examples of Variational Query . 26

4.4.1 V-Queries for Features . 26

4.4.2 V-Queries for Feature Interactions 29

5 Conclusion and Future Work 40

Bibliography 40

LIST OF FIGURES
Figure Page

2.1 Feature Expression Syntax. 4

2.2 Variational Relational Algebra Syntax. 6

3.1 Migrated Partition . 11

LIST OF TABLES
Table Page

2.1 Instance of V-Table for College Database 6

2.2 Result of V-Query vq . 7

3.1 Schema Evolution of Employee Database 9

3.2 Variational Schema for Employee Database 10

4.1 Enron Schema . 22

4.2 Variational Schema for Email Database 23

4.3 Product Map for Email SPL . 23

4.4 Schema Variants for Email SPL . 25

Chapter 1 Introduction

Variability within a database creates numerous database variants [2]. For example,

numbers of variants of schemas and data contents will be introduced in a database un-

der schema evolution, and variability in software product lines (SPLs) requires various

databases to support families of software products. While there are solutions to handle

the database variation in each example, there is no general approach to manage the vari-

ability within the database. To deal with the database variants under schema evolution,

one existing solution requires the database administrators (DBAs) to propagate schema

changes into a unified schema, and then convert the existing data into the unified schema

[13, 6]. And the common approach to manage database variations in database-backed

SPLs is to create a global database [7] which contains the relations and attributes of

all database variants. These approaches are inefficient and error prone, because some

relations and attributes are not valid for some of the database variants, producing a lot

of null values exposed to the user. Also, the user has to write multiple queries to express

the same intent over different database variants.

A system, called the Variational Database Management System (VDBMS), provides

a framework to manage variability in a database to meet the requirement of different

contexts. It offers a variational database (VDB), which allows the user to incorporate the

variability in a database, and a typed variational query language (v-query) that enables

the user to request data from different variants [2]. The VDBMS has already been

implemented, however, there is no existing instance of variational database and v-query

that can be used to evaluate the VDBMS. Case studies are needed to be presented to

use the VDBMS in real-world variation challenges and generate their counterpart VDBs

and a set of v-queries for the experiment.

In this project, we present two case studies where we investigate the use of VDBMS

in schema evolution and software product lines. In each case study, we systematically

adopt an existing example with a widely used data set. The resulting VDB and v-queries

for each case study will be used to evaluate the VDBMS. Additionally, the demonstration

of generating VDB and v-queries can assist future VDBMS users to apply the VDBMS

2

in their applications.

The project was conducted with two goals as follows:

• Investigate the use of VDBMS to solve the schema evolution problem in Chapter 3.

• Investigate the use of VDBMS to fix the potential feature interactions and support

different configurations in an SPL in Chapter 4.

The rest of this paper is organized as follows: Chapter 2 presents the basic concept of

VDBMS with definition of some keywords. In order to show how to apply the VDBMS

to schema evolution and SPLs, two case studies are present in Chapter 3 and Chapter 4.

In Chapter 5, we concludes the paper with the future work.

3

Chapter 2 Background

VDBMS provides an approach to represent general forms of database variants in a

compact, expressive, and structural way [4]. It incorporates variability into relational

database elements including schemas, relations, attributes, and table contents. Addition-

ally, VDBMS provides the user a query language, variational query, to inquire multiple

database variants simultaneously and a strong type system to ensure the query conformed

to the schema and its variability [2].

The following sections provide an overview of the key concepts of variational databases

and variational queries.

2.1 Variational Databases

In VDB, variability is organized as a set of features, where each feature can either be

enabled (true) or disabled (false). A feature expression is a propositional formula con-

structed by features, which describes the condition when one or more variants are valid.

The syntax of feature expressions is shown in Figure 2.1. For example, suppose a college

database started with a schema S1. Due to a new registration system introduced, the

attribute name in S1 is decoupled into two attributes firstname and lastname, yielding

a new schema S2. But the college still needs to use the schema S1 to support their old

registration system. The schemas S1 and S2 are shown as below:

S1 = {student(id ,name)}

S2 = {student(id ,firstname, lastname)}

As you can see, the attribute id is present in both S1 and S2, and the attribute name

is changed to attributes firstname and lastname when S1 evolves to S2. To identify two

versions of schema S1 and S2, we could use features V1 and V2, respectively. The feature

expression for attribute name is (V1 ∧ (¬V2)), since name exists in S1 but not in S2.

Similarly, the feature expression for attributes firstname and lastname is ((¬V1) ∧ V2).

4

Feature Expression Syntax:

f ∈ F ::= (any feature name) Feature Name
b ∈ B ::= true | false Boolean Value
e ∈ E ::= b | f | ¬f | e ∧ e | e ∨ e Feature Expression
c ∈ C = F→ B Configuration

Figure 2.1: Feature Expression Syntax.

Moreover, the feature expression for attribute id is (V1 ∨ V2), since attribute id exists in

both S1 and S2.

A variational set (v-set) X = {x1e1 , . . . , xnen} is a set of elements annotated by

feature expressions [3, 9, 17]. It can generate several different plain sets by enabling

or disabling the features, and an element appears in a variant of a set only if its cor-

responding feature expression evaluates to true. An annotated element x with feature

expression e is denoted by xe. For example, the v-set {a, bV1 , cV2} can generate four

plain set variants: {a, b, c} if V1 and V2 are both enabled, {a, c} if V1 is disabled and V2

is enabled, {a, b} if V1 is enabled and V2 is disabled, {a} if V1 and V2 are both disabled.

Note that we omit the feature expression if the element has a feature expression as true,

e.g., atrue is equivalent to a.

A variational set itself can be annotated with a feature expression. A variational set

annotated by feature expression e is denoted by Xe = {x1e1 , . . . , xnen}e. In particular,

the features expression e expresses a condition which determines if the elements in X are

valid. We can represent this property by using {x1e1 , . . . , xnen}e ≡ {x1e1∧e, . . . , xnen∧e}.
In order to incorporate variability into the database, VDB supports annotating rela-

tions, attributes, and tuples with feature expressions. The feature expression attached to

an element is called its presence condition, which determines the condition under which

the element is present in a database. To continue the above college database example,

idV1∨V2 is an annotated attribute with feature expression V1 ∨ V2, the attribute id will

present in the database if the presence condition (V1 ∨ V2) evaluates to true.

A feature model is a feature expression that specifies global relationships/restrictions

among features. Now we consider the feature model of the above college database exam-

ple, given feature V1 and V2, we could use the feature model m = (V1 ∧ ¬V2)∨(¬V1 ∧ V2)
to express that exactly one of V1 or V2 must be true.

5

A variational schema (v-schema) is a set of variational relation schema, where a

variational relation (v-relation) schema is an annotated relation accompanied by a set

of annotated attributes. Since the v-schema is an annotated v-set, it follows from the

definition {x1e1 , . . . , xnen}e ≡ {x1e1∧e, . . . , xnen∧e} that the actual presence condition

of an attribute is the conjunction of its feature expression with its relation’s feature

expression and feature model, and the actual presence condition of a relation is the

conjunction of its feature expression with the feature model. Thus, a hierarch of feature

expressions is introduced in v-schema, that is, the feature model is enforced on the

presence condition of its relations, and the feature model with presence condition of

its relations is enforced on all of the belonging attributes. For example, the Sv in the

following is the corresponding v-schema for the college database,

Sv = {student(id ,nameV1 ,firstnameV2 , lastnameV2)}

it includes an annotated v-relation student and a set of annotated attributes with valid

features V1 and V2. Because of the feature expression hierarch, the actual presence

condition for relation student is its feature expression (V1∨V2) enforced with the feature

model m. For the sake of simplicity, we can drop the feature expression of student since

(V1 ∨ V2) will be always satisfiable if the feature model m is satisfiable. Similarly, the

feature expression of id is dropped, the feature expression of attribute name becomes V1

instead of (V1 ∧ (¬V2)), and the feature expression of attributes firstname and lastname

becomes V2.

To manage variability in database contents, i.e., tuples, VDB annotates tuples with

a presence condition in the database called variational tables (v-tables). In a v-table,

the plain relation schema s = r (a1, . . . , ak) will be transformed to new schema: s′ =

r (a1, . . . , ak, pc), where pc is a presence condition which determines if the tuple is present

in the database, and ai represents the attribute which belongs to the relation r. Table 2.1

shows an instance of v-table for the college database. For example, the tuple (001, "Bob

Smith") from S1 will be populated into the v-schema Sv as (001, "Bob Smith", NULL,

NULL, V1) and the tuple (003, "Sam", "Davis") from S2 will be populated into Sv as

(003, NULL, "Sam", "Davis", V2). Note that the NULL value will not be looked up in

a certain variant, because the presence condition of those attributes determines whether

a value is valid or not.

6

Table 2.1: Instance of V-Table for College Database

id name firstname lastname presCond

001 Bob Smith NULL NULL V1
002 Lily Dumphy NULL NULL V1
003 NULL Sam Davis V2
004 NULL Caity Lee V2

Variational Relational Algebra Syntax:

q ∈ Q ::= r Variational Relation
| σθq Variational Selection
| πAq Variational Projection
| e〈q, q〉 Variational Expression Choices
| q onθ q Variational Join
| q × q Variational Cartesian Product
| q ◦ q Variational Set Operation
| ε Empty Relation

◦ denotes set operators: union or difference.
A denotes the variational attribute set.

Variational Conditions:

θ ∈ Θ ::= b | a • k | a • a | ¬θ | θ ∨ θ
| θ ∧ θ | e〈θ, θ〉

b denotes boolean tags: true or false.
a denotes the plain attribute.
• denotes the comparison operators.
k denotes the contant value.

Figure 2.2: Variational Relational Algebra Syntax.

7

2.2 Variational Queries

Variational Relational Algebra (VRA) is a query language designed for VDBMS, which

is much like a structured query language, but with a major difference: it includes choices

and tags [8] which will be used to manage the variations.

A choice between the alternative VRA expressions ql and qr is written e〈ql, qr〉, and

the condition of the choice is represented by the feature expression e. The choice e〈ql, qr〉
represents a query equivalent to ql when e evaluates to true, or qr otherwise.

Figure 2.2 shows the syntax of VRA. A query written in VRA is called a variational

query (v-query). Compared to a traditional query, a v-query allows a choice between two

queries; The selection, projection, and join operations in a v-query are adjusted to take

variation into account. For instance, the v-query:

vq = π(nameV1 ,lastnameV2 ,firstnameV2)(σV1〈id=001,id=002〉student)

projects column name if V1 evaluates to true, or projects columns lastname and firstname

if V2 evaluates to true, and selects tuples from student where id = 001 if V1 evaluates to

true, or tuples where id = 002 if V1 evaluates to false. Table 2.2 shows the results of

running query vq upon the v-table instance shown in Table 2.1.

Table 2.2: Result of V-Query vq

Result when only V1 is enabled:
id name presCond

001 Bob Smith V1
002 Lily Dumphy V1

Result when only V2 is enabled:
id firstname lastname presCond

003 Sam Davis V2
004 Caity Lee V2

8

Chapter 3 Applying VDBMS to Schema Evolution

Most database systems require changes to their schema over time, and the database

administrators (DBAs) must decide how and when to convert the old database to a new

one. This process is error prone due to unnecessary deletion and misleading preservation

of data and its structure [14]. To avoid those problems and achieve perfect evolution, it

is required to maintain the original information under each version of the schema. Mean-

while, the database system needs to support temporal queries over historical database

variants [11].

In this chapter, we present the use of the VDBMS to address the challenge of schema

evolution. The case study demonstrates the ability of the VDBMS to archive a historical

database and query multiple snapshots of an evolving schema in a single VDB, where we

systematically adapted an existing employee database into a schema evolution scenario

and generated a VDB from a widely used employee data set.

3.1 Employee Database Schema Evolution

We adapt a schema evolution example systematically from [11, 16]. Table 3.1 outlines

the schema of the example. It shows an employee database which has 5 versions of a

schema (S1 to S5) evolving over time denoted by time stamps T1 through T5.

The first schema version S1 initially has three tables engineerpersonnel , otherpersonnel

and job during T1. The first two tables maintain the basic information about engineers

and the rest of the employees, respectively. The table job keeps the job title associated

with its salary.

After some time, the DBA recognizes the requirement of managing employee informa-

tion uniformly. In T2, the DBA merges the tables engineerpersonnel and otherpersonnel

into one table named empacct , yielding the schema version S2.

As the company expands, the database layout changes into a new schema S3 at time

T3. The need of department information prompts the DBA to create a new table dept

to store the department name, department number, and its manager.

9

Table 3.1: Schema Evolution of Employee Database

Ti Schema Versions Si

T1

engineerpersonnel (empno, name, hiredate, title, deptname)
hiredate <
1988-01-01

otherpersonnel (empno, name, hiredate, title, deptname) S1

job (title, salary)

T2
empacct (empno, name, hiredate, title, deptname)

S2
hiredate <
1991-01-01job (title, salary)

T3

empacct (empno, name, hiredate, title, deptno)
S3

hiredate <
1994-01-01

job (title, salary)
dept (deptname, deptno, managerno)

T4

empacct (empno, hiredate, title, deptno)

S4

hiredate <
1997-01-01

job (title, salary)
dept (deptname, deptno, managerno)
empbio (empno, sex , birthdate, name)

T5

empacct (empno, hiredate, title, deptno, salary)
S5

hiredate <
2000-01-28

dept (deptname, deptno, managerno)
empbio (empno, sex , birthdate, firstname, lastname)

Within time T4, more personal information about employees is introduced into the

database. Considering privacy, the employee data are decoupled into two separate ta-

bles: empacct stores the business-related information, and empbio keeps the private

information about employees. It results in the schema version S4.

Finally, the company decides to adopt a new policy to motivate employees, that

is, the salary is tied to individual performance instead of title. Due to this change,

the attribute salary is moved to table empacct , and the table job is dropped. Also,

to support operations which require the separation of first name and last name, the

previous attribute name is decomposed into two attributes: firstname and lastname.

These modifications are applied at time T5, leading to a new schema S5.

Over time T1 to T5, we have a total of 5 schemas, 15 relations, and 55 attributes

across all versions of the database.

3.2 Employee Variational Databases

In this section, we present how we construct a v-schema from the historical employee

database variants and generate the data sets for both plain schema and v-schema.

10

Table 3.2: Variational Schema for Employee Database

Variational Schema for Employee Evolution

engineerpersonnel (empno,name, hiredate, title, deptname)V1

otherpersonnel (empno,name, hiredate, title, deptname)V1

empacct (empno,nameV2∨V3 , hiredate, title, deptnameV2 , deptnoV3∨V4∨V5 , salaryV5)V2∨V3∨V4∨V5

job(title, salary)V2∨V3∨V4

dept (deptname, deptno,managerno)V3∨V4∨V5

empbio (empno, sex , birthdate,nameV4 ,firstnameV5 , lastnameV5)V4∨V5

3.2.1 Schema Transformation

To represent variability in the employee database due to schema evolution, we set feature

V1 though V5, to identify the schema variant S1 to S5 respectively. Given five variants

of schema and the corresponding features, we 1) annotate its attributes with feature

expressions, 2) combine the same annotated attributes into one by disjointing their

feature expressions, and 3) simplify their feature expression based on the hierarchy of

feature expressions. The same processes are applied to the relations. Take the attribute

sex as an example, we first annotate attribute sex in variants S4 and S5 with feature

expression V4 and V5 respectively, then we combine sexV4 and sexV5 into sexV4∨V5 , after

that, we simplify the sexV4∨V5 into sex , because the features expression of relation empbio

has already restrict the presence condition of (V4 ∨ V5).
Table 3.2 represents the v-schema we build from the five variants of the schema. The

resulting v-schema has 1 schema, 6 relations and 27 attributes in total, most of them are

present conditionally in some variants.

To restrict that only one variant feature can be enabled at a given time, i.e., one

11

variant schema is valid at a given time, we construct the feature model below:

(V1 ∧ ¬ (V2 ∨ V3 ∨ V4 ∨ V5))

∨ (V2 ∧ ¬ (V1 ∨ V3 ∨ V4 ∨ V5))

∨ (V3 ∧ ¬ (V1 ∨ V2 ∨ V4 ∨ V5))

∨ (V4 ∧ ¬ (V1 ∨ V2 ∨ V3 ∨ V5))

∨ (V5 ∧ ¬ (V1 ∨ V2 ∨ V3 ∨ V4))

3.2.2 Populating the Employee Databases

To simulate the schema evolution scenario in the employee database, we use an existing

and widely used employee data set,1 partition the data into five parts, and populate

them into five plain schemas shown in the Table 3.1, respectively.

The original employee data set contains the information about 240,124 individuals

who are the permanent employees (whose end of hire date is 9999-01-01), we partition

all employee information into 5 parts, D1 to D5, based on their hire date. Each part of

data (Di) represents the temporal data introduced during the time Ti, i.e, the employees

hired during the time Ti are present in the Di.

There are two options to populate the partition data, D1 to D5, into five plain

schemas: 1) Populate five parts of data into five schema variants; 2) As shown in Fig-

ure 3.1, given a target schema variant Si, we migrate partition data Di−1 from the

schema variant Si−1 into Si accordingly, and then insert Di into Si, where 1 < i ≤ 5.

We call the former as a non-migrated partition and the latter as a migrated partition.

Figure 3.1: Migrated Partition

1The data is from https://github.com/datacharmer/test_db with some adaptation and edition.

https://github.com/datacharmer/test_db

12

The non-migration partition is more intuitive as all temporal data should exist in

the corresponding temporal schema. However, it introduces situations that do not make

sense. For instance, as shown in Table 3.1, suppose we have an engineer named Bob whose

hire date is during time T1, and he becomes a manager during time T3. In this case, table

dept in S3 has a tuple with managerno as Bob’s empno, but Bob’s employee information

is stored at engineerpersonnel in S1, instead of at empacct in S3. We therefore choose to

use migrated partition for data sets in this case study, where every schema variant will

contain data migrated from the previous variant.

For migrated partition, as shown in Table 3.1, we start populating the schema S1

with employee data whose hire date is before 1988-01-01. We then populate the schema

S2 with employee data whose hire date is before 1991-01-01 (which contains the employee

information in S1 whose hire date is before 1988-01-01). The same strategy is applied to

the rest of schema population.

After populating the data for each temporal schema variant, we map the data from

the five schema variants into the v-schema accordingly. To perform the mapping, we

map values of each attribute from the plain schema to v-schema and also insert its cor-

responding feature expression into attribute presCond . For example, for table empacct

in schema variant S2, we map the value from attributes empno, name, hiredate, title,

and deptname into the corresponding attributes in empacct of v-schema, insert feature

expression V1 into VDB attribute presCond , and set value in other attributes that do

not exists in S2 to NULL. Note that the attribute presCond is not shown in Table 3.2

because it is a default attribute in VDB, and also the NULL value will never be looked

up in a certain variant because the presence condition of those attributes determines

whether a value is valid or not.

3.3 Examples of Variational Query

To give a sense of temporal queries over historical databases, we have written 14 v-

queries for employee schema evolution. Each v-query represents a single intent which is

potentially expressed differently in each database variant due to schema evolution. Note

that the intents we use for this case study are taken from [11], and we adjusted the intents

accordingly to fit into our context. For example, the intents in [11] use timestamps to

identify their variants, we use features instead.

13

We have 2 kinds of intents: 1) The first kind of intent is to inquire the information

from a single variant. To express this kind of intent, we only need one plain query q

that requests the data from a specific variant, and then construct a v-query vq with the

choice embedded. It expresses not only the intent that q represents but expresses the

condition that q will be valid only if the choice evaluate to true. 2) The second kind of

intent is to inquire the information from a group of variants. For this kind of intent, we

write multiple plain queries to express the intent for different variants. To specify the

condition that makes those plain queries work in their corresponding variants, we create

a v-query vq to request data over multiple schema variants. We call the former single

variant intent and the latter multiple variant intent.

In this report, we present queries in VRA’s syntax in Figure 2.2. And we also encode

the queries2 presented in Section 3.3 and Section 4.4 into VRA’s Haskell data type for

evaluation use.

1. Intent: Return the salary value of the employee whose employee number (empno)

is 10004 for VDB variant V3.

Classification: Single variant intent

For variants V3, the attributes salary and title exist in the relation job, and at-

tributes empno and title exist in the relation empacct . To express the intent, we

only need one query q to request data in schema variant V3. The corresponding

v-query vq not only represents the intent but expresses the condition that vq will

be valid only if V3 is true.

q =πsalary(σempno=10004(empacct ./empacct .title=job.title job))

vq =V3〈q, ε〉

2. Intent: Return the salary values of the employee whose employee number (empno)

is 10004, for VDB variants V3 to V5.

Classification: Multiple variant intent

The attribute salary exists in the relation empacct when V5 is true, or in the

relation job when V3, V4, or V5 evaluates to true. Thus we need 2 different plain

2The queries encoded in Haskell can be found in https://github.com/lambda-land/VDBMS/wiki

https://github.com/lambda-land/VDBMS/wiki

14

queries, q and q′, to express the intent for this situation. To specify the condition

the query works in its corresponding variants, we create a v-query vq to request

data over three schema variants.

q =πsalary(σempno=10004(empacct ./empacct .title=job.title job))

q′ =πsalary(σempno=10004empacct)

vq =(V3 ∨ V4)〈q, V5〈q′, ε〉〉

3. Intent: Return the manager’s name (of department d001) for VDB variant V3.

Classification: Single variant intent

To request the manager and department information on schema variant V3, we

construct query q and vq.

q =πname(σdeptno=d001(empacct ./empacct .empno=dept .managerno dept))

vq =V3〈q, ε〉

4. Intent: Return the manager’s name (of department d001), for VDB variants V3

to V5.

Classification: Multiple variant intent

To request the information about manager’s name for VDB variants V3 to V5, the

attribute name exists in relation empacct when V3 is true, and is contained in the

relation empbio when V4 is true. And the attributes lastname and firstname exist

in empbio when V5 is true. Additionaly, the relation dept in the variants V3 to V5

shares the same structure. Therefore, we need 3 different plain queries, q q′, and

q′′, to express the intent in the different variants.

q =πname(σdept .deptno=d001(empacct ./empno=managerno dept))

q′ =πname(σdept .deptno=d001(empbio ./empno=managerno dept))

q′′ =π(firstname,lastname)(σdept .deptno=d001(empbio ./empno=managerno dept))

vq =V3〈q, V4〈q′, V5〈q′′, ε〉〉〉

The user can also express the information need in another way. Besides using

15

choices in queries, the user can also use a variational attribute set to express this

intent. As shown in the following, we rewrite the query q′ and q′′ above into a

new query q′′′. Since the variants V4 and V5 share the same structure when we

join the relations empbio and dept , we only need to annotate the attributes name,

firstname, and lastname with corresponding feature expression.

q′′′ =π(nameV4 ,firstnameV5 ,lastnameV5)(σdept .deptno=d001(empbio ./empno=managerno dept))

vq =V3〈q, (V4 ∨ V5)〈q′′′, ε〉〉

5. Intent: Find all managers that the employee 10004 worked with, for VDB variant

V3.

Classification: Single variant intent

To express this intent for variants V3, we use q to join relation empacct with dept

based on their deptno, and project the manager number from it.

q =πmanagerno(σempno=10004(empacct ./empacct .deptno=dept .deptno dept))

vq =V3〈q, ε〉

6. Intent: Find all managers that employee 10004 worked with, for VDB variants V3

to V5.

Classification: Multiple variant intent

Based on v-schema presented in Table 3.2, the information required in the intent

shares the same structure in the VDB variants V3 to V5, e.g, when V3, V4, and V5

are true, the attributes managerno and deptno are all valid in the relation dept ,

and the attributes empno and deptno presents in the relation empacct . So we only

construct one plain query q.

q =πmanagerno(σempno=10004(empacct ./empacct .deptno=dept .deptno dept))

vq =(V3 ∨ V4 ∨ V5)〈q, ε〉

7. Intent: Find all salary values of managers, during the period of manager appoint-

ment, for VDB variant V3.

16

Classification: Single variant intent

For variant V3, to express the intent, we construct a plain query q to return the

manager number with their salary.

q =π(managerno,salary)((dept

./managerno=empno empacct)

./empacct .title=job.title job)

vq =V3〈q, ε〉

8. Intent: Find all salary values of managers, during the period of manager appoint-

ment, for VDB variants V3 to V5.

Classification: Multiple variant intent

Based on the v-schema in Table 3.2 , the attribute salary exists in the relation job

when V3 or V4 is true, and it exists in the relation empacct when V5 is true. Thus,

we need 2 different plain queries, q and q′, to express the intent.

q =π(managerno,salary)((dept

./managerno=empno empacct)

./empacct .title=job.title job)

q′ =π(managerno,salary)(empacct ./empno=managerno dept)

vq =(V3 ∨ V4)〈q, V5〈q′, ε〉〉

9. Intent: Find the historical managers of the department where the employee 10004

worked for them in VDB variant V3.

Classification: Single variant intent

For VDB variant V3, we construct a plain query q, it first selects tuples where

empno = 10004 from empacct by using temp and joins the result of temp with

dept , then takes a final projection of managerno. Note that the VRA allows

for renaming of attributes and queries similar to the relational algebra. For the

17

simplicity in this report, we use = to give a name to a sub-query.

temp =σempno=10004empacct

q =πmanagerno(temp ./temp.deptno=dept .deptno dept)

vq =V3〈q, ε〉

10. Intent: Find the historical managers of department where the employee 10004

worked, in all history, for VDB variants V3 to V5.

Classification: Multiple variant intent

For this intent, the required data among variants V3 to V5 share the same structure,

i.e, the attributes managerno and deptno are all valid in the relation dept when

V3, V4, or V5 evaluates to true, we construct one plain query q in this case.

temp =σempno=10004empacct

q =πmanagerno(temp ./temp.deptno=dept .deptno dept)

vq =(V3 ∨ V4 ∨ V5)〈q, ε〉

11. Intent: For all managers that the employee, whose employee number (empno) is

10004, has worked with, find all the departments that the manager managed, for

VDB variant V3.

Classification: Single variant intent

To express the need, we construct a plain query q for variants V3: we use temp to

get the information about the manager that the employee 10004 has worked with,

and then join the result from temp with dept again to select the department that

manager managed. To make the query q only work when the schema variant is V3,

we create a v-query vq as following.

temp =π(managerno,deptno)(σempno=10004(empacct ./empacct .deptno=empacct .deptno dept))

q =π(dept .managerno,dept .deptno)(temp ./temp.managerno=dept .managerno dept)

vq =V3〈q, ε〉

12. Intent: For all managers that the employee, whose employee number (empno) is

18

10004, has worked with, find all the departments that the manager managed, for

VDB variants V3 to V5.

Classification: Multiple variant intent

The information needed for this intent has the same structure among VDB variants

V3 to V5 based on v-schema Table 3.2, thus, we follow the same logic in intent 11

to construct a single plain query q.

temp =π(managerno,deptno)(σempno=10004(empacct ./empacct .deptno=empacct .deptno dept))

q =π(dept .managerno,dept .deptno)(temp ./temp.managerno=dept .managerno dept)

vq =(V3 ∨ V4 ∨ V5)〈q, ε〉

13. Intent: For all managers, find all managers in the department that he/she worked

in, for VDB variant V3.

Classification: Single variant intent

To express the intent, we first get the manager number and department number

from dept by using temp, and then join the temp with dept again to express the

intent.

temp =π(managerno,deptno)dept

q =π(deptmanagerno,deptname,dept .managerno)(temp ./temp.deptno=dept .deptno dept)

vq =V3〈q, ε〉

14. Intent: For all managers, find all managers in the department that he/she worked

in, for VDB variants V3 to V5.

Classification: Multiple variant intent

Since the related relation dept has no change during the schema evolution, we only

need one plain query q to express the intent, which is explained in intent 13.

temp =π(managerno,deptno)dept

q =π(dept .managerno,deptname,dept .managerno)(temp ./temp.deptno=dept .deptno dept)

vq =(V3 ∨ V4 ∨ V5)〈q, ε〉

19

Chapter 4 Applying VDBMS to Software Product Lines

In this chapter, we present the use of VDBMS to handle variability in software product

lines. The case study demonstrates the integration of the VDBMS to an email SPL,

where we systematically adopt the prior work of a feature list and feature interactions

in the email system and combine it with a real-world data set from the Enron Corp to

generate an VDB for the email SPL and provide a set of v-query to request data across

different software variants.

4.1 Software Product Line and Feature Interactions

A software product line (SPL) is a family of products sharing a set of reusable parts tai-

lored to a specific requirement, the differences between those products are distinguished

in terms of features [1]. An exponential number of software variants can be produced by

enabling or disabling different features, which requires numerous database variants with

different schemas and contents [4].

When several features are enabled, a feature interaction may occur. A feature inter-

action is an undesirable behavior of a software system due to the joint use of several fea-

tures [5]. For instance, suppose we enable 2 features, auto-forward and auto-responder,

in an email system. There is a user named Bob who sets auto-forward from his old

address old@ex.com to a new address new@ex.com, and activates auto-responder for the

address new@ex.com. There is an undesired interaction that occurs if a message is sent to

old@ex.com, since it will be auto-forwarded to new@ex.com, and the auto-responder of

new@ex.com will automatically generate a message back to old@ex.com and then forward

back and forth, leading to a loop between these two email addresses.

Feature interactions are likely to happen in an SPL, since the products in an SPL

share numerous features and each feature may be developed under different environ-

ments. When two features interact, the implementation of software products should

change accordingly to prevent an unexpected error. As a part of implementation, the

queries are required to be flexible to adapt to the changes.

20

These important requirements introduce a challenge to a database management sys-

tem, namely managing the database variability in a software product line and providing

explicit support for variations in queries. In practice, database-backed SPLs do not have

a good way of dealing with variations, currently they use a global database [7] to include

all relations and attributes needed for all variants of software products. This approach is

error prone because it introduces numerous null values exposed directly to the user. To

solve the problem in SPLs using VDBMS, we incorporate the variability of each prod-

uct into a VDB and construct a set of v-queries to express the information need across

several variants in an SPL.

4.2 Email SPL and Features

Several features in the Electronic mail (email) system have been developed since its

original governing specifications were published [12]. We systematically adopt a relatively

simple model of the email system and its feature list from [10]. In this email system, an

individual writes a message, this message passes through one or more optional features

until it reaches the client of recipients.

The email SPL consists of a basic functionality and 8 optional features, the optional

features are shown as follow:

• ADDRESSBOOK: This feature allows the user to define a short alias for the re-

cipient address.

• SIGNATURE1: This feature provides the user an ability to sign the message with

a digital signature, and the recipient will verify the incoming signed message by

using sender’s verification key.

• ENCRYPTION2: This feature allows the user to encrypt the message by using

the recipient’s public key. When encrypted message delivered, the recipient can

decrypt the message by using their own private key.

1We combined original features SIGNMESSAGE and VERIFYMESSAGE in [10] into SIGNATURE
because the two features are synchronized.

2We combined original features ENCRYPTMESSAGE and DECRYPTMESSAGE [10] into EN-
CRYPTION because the two features are synchronized.

21

• AUTORESPONDER: This feature enables the user to set an auto-reply email

message for incoming messages.

• FORWARDMESSAGES: This feature enables the user to forward every incoming

message from an old email address to a new one automatically.

• REMAILMESSAGE: This feature allows the user to send anonymous messages. It

requires the user to put the intended recipient in the first line of the email body and

send it to the remailer server. The server will look up the provisioned pseudonym of

the sender, replace the sender with a pseudonym, remove the first line of intended

recipient, and send the modified email to the recipient.

• FILTERMESSAGES: This feature allows the user to filter the message by providing

a list of address suffixes.

• MAILHOST: This feature is provisioned with a list of user-names in a mail host,

it can check the email address of recipient against the list, if exists then hold

the message until the recipient retrieves it, otherwise, the mail host sends back a

non-delivery notification to the sender.

4.3 Email Variational Databases

In this section, we present how we construct a v-schema and VDB for the email SPL

and populate the email VDB with data sets from five special product variants.

4.3.1 Schema Transformation

We base our case study on the Enron email corpus [15]. As shown in the Table 4.1, there

are four relations (shown as black texts in Table 4.2) we adopt from the Enron schema:

1) employeelist stores the employee’s information, in particular, the attribute email id is

the employee’s email address, 2) messages stores message information, 3) recipientinfo

stores the recipient’s information where the attribute rvalue is the recipient’s email

address, and 4) referenceinfo stores information about the email forwarded or replied

with the original email.

22

Table 4.1: Enron Schema

Enron Schema
employeelist(eid , firstname, lastname, email id , folder , status)
messages(mid , sender , date, message id , subject , body , folder)
recipientinfo(rid , mid , rtype, rvalue)
referenceinfo(rid , mid , reference)

To make the Enron corpus support the optional features in the email SPL, we extend

its schema with a set of relations and attributes (shown as orange texts in Table 4.2). We

add relation: auto msg to store the subject and body of the user’s autoresponder email,

forward msg to map the user id to their email address that the user wants to forward

messages to, remail msg to map users to their provisioned pseudonyms, filter msg to

maintain the email suffix that the user sets to filter, mailhost to keep a list of user-names

in a mail host, and alias to map the user’s nickname to the email address. In addition, we

add public key and verification key attributes in relation employeelist to store the user’s

public key and verification key, and also extend the relation messages with attributes

is system notification, is signed , is encrypted , is autoresponse, and is forward msg to

indicate the email message’s property. We call these message property attributes.

To make the schema of the email SPL variational, we identify the feature expression of

relations and attributes, and tag the corresponding presence condition on them, yielding

a v-schema for email SPL in Table 4.2. For each feature in the SPL, we defined a

corresponding feature in VDB. To differentiate the features defined in SPL and that

defined in VDB, we use the upper case for features in SPL and the lower case for features

in VDB.

4.3.2 Populating the Email Databases

In this case study, we premise that the database variants of the email SPL contain

the data from five products: Basic Email, Enhanced Email, Privacy-focus Email, Group

email, and Premium email. Table 4.3 depicts the product map for the email SPL together

with a set of enabled features for each product. All five email products support the core

functionality of the email system. Basic Email has no optional features enabled. En-

23

Table 4.2: Variational Schema for Email Database

Variational Schema for Email SPL

employeelist(eid , firstname, lastname, email id , folder , status

, verification keysignature , public keyencryption)

messages(mid , sender , date, message id , subject , body , folder , is system notification

, is encryptedencryption , is signed signature

, is autoresponseautoresponder , is forward msg forwardmessages)

recipientinfo(rid , mid , rtype, rvalue)
referenceinfo(rid , mid , reference)
forward msg(eid , forwardaddr)forwardmessages

filter msg(eid , suffix)filtermessages

remail msg(eid , pseudonym)remailmessage

auto msg(eid , subject , body)autoresponder

alias(eid , email ,nickname)addressbook

mailhost(eid , username,mailhost)mailhost

Table 4.3: Product Map for Email SPL
Basic
Email

Enhanced
Email

Privacy-focus
Email

Groups
Email

Premium
Email

Core Function X X X X X
ADDRESSBOOK X X
SIGNATURE X X X
ENCRYPTION X X X
AUTORESPONDER X X
FORWARDMESSAGES X X
REMAILMESSAGES X X
FILTERMESSAGES X X
MAILHOST X X

24

hanced Email supports the feature FORWARDMESSAGES and FILTERMESSAGES.

Privacy-focus Email provides the user with features ENCRYPTION, SIGNATURE, and

REMAILMESSAGE, it enables the user to send encrypted, signed, and anonymous mes-

sages. Group Email is designed towards the group usages such as business owners and

organizations; it offers the user an ability to define a short alias for email address (AD-

DRESSBOOK), set autoresponder email (AUTORESPONDER), use the email hosting

service (MAILHOST), and support the privacy property (ENCRYPTION and SIGNA-

TURE). Premium Email enables all eight features. Based on feature configurations for

those five email prodcuts, we build up the corresponding plain schemas for each product

as shown in Table 4.4, where those plain schemas are five special configurations from the

email SPL v-schema in Table 4.2.

We populate the Enron email dataset3 to five plain schemas of software variants.

The original Enron email dataset contains about 252,759 internal emails from 150 em-

ployees. We generate data for extended relations and attributes given in Section 4.3.1.

For example, we create public key and private key as the public key and verification key

for users who have ENCRYPTION and SIGNATURE enabled. Additionally, for each

email message, we modify the data according to the client’s capability of the sender

and recipient. For example, an email message can only be encrypted if both sender and

recipient support ENCRYPTION.

To fit the Enron email data sets to our context, we divide the 150 employees into 5

groups and consider them as users of the 5 email products respectively. To identify the

product that an email message belongs to, we categorize the messages to Privacy-focus

Email if both sender and recipient are the users of the Privacy-focus Email, while for

other email messages we only check the sender’s client and categorize them into their

corresponding products. For example, if the sender uses Enhanced Email, no matter

which email product the recipient uses, we simply make this email message sits in the

database variant of the Enhanced Email.

Given 5 variants of the database for email SPL and a set of enabled features for

each product, we populate the VDB of email SPL with the corresponding data anno-

tated with their presence condition based on the enabled features. To tag the presence

condition to tuples, we add an attribute presCond in each v-table, and insert the cor-

responding presence condition value in it. The presence condition of tuples is deter-

3http://www.ahschulz.de/enron-email-data/

http://www.ahschulz.de/enron-email-data/

25

Table 4.4: Schema Variants for Email SPL

Product Schema Variants

Basic Email

employeelist(eid , firstname, lastname, email id , folder , status)
messages(mid , sender , date, message id , subject , body , folder

, is system notification)
recipientinfo(rid , mid , rtype, rvalue)
referenceinfo(rid , mid , reference)

Enhanced
Email

employeelist(eid , firstname, lastname, email id , folder , status)
messages(mid , sender , date, message id , subject , body , folder

, is system notification, is forward msg)
recipientinfo(rid , mid , rtype, rvalue)
referenceinfo(rid , mid , reference)
forward msg(eid , forwardaddr)
filter msg(eid , suffix)

Privacy-
focus
Email

employeelist(eid , firstname, lastname, email id , folder , status
, verification key , public key)

messages(mid , sender , date, message id , subject , body , folder
, is system notification, is signed , is encrypted)

recipientinfo(rid , mid , rtype, rvalue)
referenceinfo(rid , mid , reference)
remail msg(eid , pseudonym)

Group
Email

employeelist(eid , firstname, lastname, email id , folder , status
, verification key , public key)

messages(mid , sender , date, message id , subject , body , folder
, is system notification, is autoresponse, is signed , is encrypted)

recipientinfo(rid , mid , rtype, rvalue)
referenceinfo(rid , mid , reference)
auto msg(eid , subject , body)
alias(eid , email , nickname)
mailhost(eid , username, mailhost)

Premium
Email

employeelist(eid , firstname, lastname, email id , folder , status
, verification key , public key)

messages(mid , sender , date, message id , subject , body , folder
, is system notification, is encrypted , is signed , is autoresponse
, is forward msg)

recipientinfo(rid , mid , rtype, rvalue)
referenceinfo(rid , mid , reference)
forward msg(eid , forwardaddr)
filter msg(eid , suffix)
remail msg(eid , pseudonym)
auto msg(eid , subject , body)
alias(eid , email , nickname)
mailhost(eid , username, mailhost)

26

mined by which products it belongs to. For example, the presence condition for tuples

from Privacy-focus Email is (signature ∧ encryption ∧ remailmessage ∧ (¬(addressbook ∨
autoresponder ∨ forwardmessages ∨ remailmessage ∨ filtermessages ∨mailhost))), it rep-

resents the condition that there are only 3 features enabled (SIGNATURE, ENCRYP-

TION, REMAILMESSAGE), and the other 5 features are disabled.

For attributes in the v-schema that do not exist in a certain schema variant, we

simply set NULL as the value for the corresponding attributes in the VDB. For instance,

the attribute verification key is not in the schema of Enhanced Email, we set NULL as the

value of verification key for tuples from Enhanced Email in the VDB. Recall that the

NULL value will never be looked up in a certain variant because the presence condition

of those attributes determines whether a value is valid or not.

4.4 Examples of Variational Query

In this section, we present v-queries4 that express the intents across different software

variants, we present a set of v-queries according to the functionality of the features and

feature interactions in the email SPL.

The queries are written from a software developer’s perspective to deal with the

feature interactions. When an message is incoming to a email client, the software should

generate different response message based on the feature configuration. As a part of

implementation, the developer needs to inquire the feature-related data, and those data

are only valid when the feature is enabled. When developers combine those features

into one program, they need to change the code and the related query accordingly to fix

the features interaction. In this section, we present a set of v-query examples that can

express those information needs.

4.4.1 V-Queries for Features

We provide 8 v-queries to request the data that is used to generate an outgoing email

message for a single feature functionality. For each feature, we use to represent a plain

query which requests the feature-related data to generate the email message, and vqfeature

to represent a v-query which express the same intent with choices embedded.

4The queries encoded in Haskell can be found in https://github.com/lambda-land/VDBMS/wiki

https://github.com/lambda-land/VDBMS/wiki

27

1. Intent: Given a message X, return the recipient’s nickname in feature ADDRESS-

BOOK.

Query : To express the intent, we write query qaddressbook to project a nickname

with the recipient email address (captured by the attribute rvalue), it uses sub-

query qrec eid to get the recipient’s eid and its email address (rvalue), and then

join the result with alias to return the corresponding nickname. The correspond-

ing v-query vqaddressbook can also express the intent with a choice embedded, it not

only expresses the intent but expresses the condition that qaddressbook will be valid

only if addressbook is true.

qrec eid =π(eid ,rvalue,mid)((σmid=X recipientinfo)

./rvalue=email id employeelist)

qaddressbook =π(rvalue,nickname)(qrec eid

./qrec eid.eid=alias.eid alias)

vqaddressbook =addressbook〈qaddressbook , ε〉

2. Intent: Check if the message X is signed in feature SIGNATURE.

Query : We use query qsignature to projects is signed directly to check if message X

is signed or not (is signed).

qsignature =πis signed (σmid=X messages)

vqsignature =signature〈qsignature , ε〉

3. Intent: Check if the message X is encrypted in feature ENCRYPTION.

Query : To express the intent, we project is encrypted for message X from the

relation messages.

qencryption =πis encrypted (σmid=X messages)

vqencryption =encryption〈qencryption , ε〉

28

4. Intent: Given a message X, return the recipient’s autoresponder email in the

feature AUTORESPONDER.

Query : To express the intent, we use query qautoresponder to request the body and

subject of auto-reply message for the recipient, where we reuse the sub-query qrec eid

to get the recipient information for message X.

qautoresponder =π(auto msg.subject ,auto msg.body)(qrec eid

./qrec eid.eid=auto msg.eid auto msg)

vqautoresponder =autoresponder〈qautoresponder , ε〉

5. Intent: Given a message X, return the recipient’s forward address in the feature

FORWARDMESSAGES.

Query : To express the intent, we use query qforwardmessages to request the forward

address of the recipient. Again, we reuse the sub-query qrec eid to get the recipient

information for message X.

qforwardmessages =πforwardaddr (qrec eid

./qrec eid.eid=forward msg.eid forward msg)

vqforwardmessages =forwardmessages〈qforwardmessages , ε〉

6. Intent: Given a message X, return the sender’s pseudonym in the feature RE-

MAILMESSAGE.

Query : To express the intent, we use the query qremailmessage to request the sender’s

pseudonym, where it use sub-query qsender eid to get the sender’s information of

message X, and join it with remail msg to return the pseudonym of the sender.

qsender eid =π(eid ,sender ,mid)((σmid=X messages)

./sender=email id employeelist)

qremailmessage =π(sender ,pseudonym)(qsender eid

./qsender eid.eid=remail msg.eid remail msg)

vqremailmessage =remailmessage〈qremailmessage , ε〉

29

7. Intent: Given the email message X, return the recipient’s filter suffix in the feature

FILTERMESSAGES.

Query : To express the intent, we use the query qfiltermessages to request the pro-

visioned suffix that the recipient wants to filter, where we reuse the sub-query

qrec eid to get the recipient’s information of message X and then join it with rela-

tion filtermsg to get the suffix.

qfiltermessages =πsender ,suffix (qrec eid

./qrec eid.eid=filtermsg.eid filtermsg)

vqfiltermessages =filtermessages〈qfiltermessages , ε〉

8. Intent: Given the email message X, return the user-name of the recipient in the

feature MAILHOST.

Query : To express the intent, we use the query qmailhost to request the recipient’s

user-name in the mailhost. We reuse the sub-query qrec eid to get the recipient’s

information of message X and then join it with relation mailhost to get the user-

name.

qmailhost =π(rvalue,username,mailhost)(qrec eid

./qrec eid.eid=mailhost .eid mailhost)

vqmailhost =mailhost〈qmailhost , ε〉

4.4.2 V-Queries for Feature Interactions

In this section, we provide 16 v-queries to inquire the data for producing an email

message when we consider fixing the feature interactions in the email SPL. All the feature

interactions and their corresponding situations and fixes are taken from [10]. There are a

total of 27 interactions in the original work, we only adopt 16 of them because the other

11 interactions either have no fix available or the fixes have no database involved. For

each interaction and fix, we use q for a plain query to request data in a single scenario and

vq for a v-query which takes variation into account. Note that the qfeature and vqfeature

are referencing the plain queries and v-queries in Section 4.4.1.

30

1. Intent: Fix interaction SIGNATURE vs. FORWARDMESSAGES (1).

Situation: Suppose Bob sends a signed email to Sam who does not provide a signing

key, and then Sam forwards this email to a third party. When the forwarding email

arrives at the third party, the SIGNATURE feature cannot verify this signed email,

because the verification of signature is determined by the sender of the email. In

this case, the sender of this forwarding email is shown as Sam’s address in the

header, but the email is originally signed by Bob.

Fix : The fix for this would be altering FORWARDMESSAGES so that it does not

change the sender of a signed message in the header. In the example situation,

it will not change the sender of that forwarding email to Sam. Instead, it keeps

the sender as Bob, so when email arrives of the third party, the SIGNATURE can

verify the signature with Bob’s signing (private) key.

Query : As a part of the program developed for SPL products, when generating

the forwarding message based on an incoming message X, the query q requests

the related data including the sender (captured by the attribute sender) and the

recipient address (rvalue) of message X, the forward address (forwardaddr) of the

recipient, and the information about whether the message X is signed (is signed).

When these two features are enabled, the system checks if the message X is signed

by the sender (is signed is true) and also the recipient of the message is provi-

sioned with a forward address (forwardaddr is not NULL). If so, the sender of the

forward message should be the original sender (sender). Otherwise, it should be

the recipient of this message (rvalue). Additionally, we also perform the normal

query for each feature when 2 features do not interact: we have qsignature when

SIGNATURE is enabled, and qforwardmessages if SIGNATURE is disabled. Thus,

we construct a v-query vq.

qjoin−rec−emp−msg =σmid=X ((messages

./messages.mid=recipientinfo.mid recipientinfo)

./rvalue=email id employeelist)

q =π(sender ,rvalue,forwardaddr ,is signed)(qjoin−rec−emp−msg

./qjoin−rec−emp−msg .eid=forward msg.eid forward msg)

vq =signature〈forwardmessages〈q, qsignature〉, qforwardmessages〉

31

2. Intent: Fix interaction SIGNATURE vs. REMAILMESSAGE.

Situation: Bob signs an email message and then sends through a remailer to Sam

since Bob wants to use a pseudonym in this message. However, when this signed

message arrives at Sam’s client, he may identify the pseudonym of this message is

Bob, since the signature of the message gives a clue Sam.

Fix : The UI shows a dialog to inform the user that he is sending a signed message

to a remailer.

Query : Given a message X, we have a plain query q to inquire if the message X

is signed (is signed) and the recipient of the message (rvalue). when these two

features are enabled, the system produce the UI to apply the fix when the message

X is signed by the user (is signed is true) and the recipient of the message X

(rvalue) is a remailer host. While if one of these two features is disabled, we don’t

need to query anything. Thus, we construct a v-query vq.

q =π(is signed ,rvalue)(σmid=X (messages ./messages.mid=recipientinfo.mid recipientinfo))

vq =(signature ∧ remailmessage)〈q, ε〉

3. Intent: Fix interaction ENCRYPTION vs. AUTORESPONDER.

Situation: Bob sends an encrypted message to Sam, and Sam has an auto-responder

email provisioned. When Sam received the message and decrypts it successfully,

his email also auto-responses this message back to Bob, but the header contains

the clear information of the original encrypted message. This defeats the privacy

purpose of ENCRYPTION, since the information of original encrypted email is

exposed in open networks.

Fix : Make AUTORESPONDER exclude the privacy information in the header

when the feature detects that it is auto-replying a decrypted message.

Query : Given a message X, we use a plain query to inquire related data, it includes

the encrypt information (is encrypted) and the recipient (rvalue) of message X,

and the id, subject, body of autoresponder (auto msg .subject and auto msg .body).

When these two features are enabled, the system checks if the incoming message

X is encrypted (is encrypted is true) and the recipient of message X is provisioned

with autoresponder (auto msg .eid is not NULL). If so, the system applies the fix

and remove the privacy information from the header, that is, the system only need

32

to generate the subject and body of autoresponder the recipient provisioned.

q =π(is encrypted ,rvalue,auto msg.eid ,auto msg.subject ,auto msg.body)(qjoin−rec−emp−msg

./qjoin−rec−emp−msg .eid=auto msg.eid auto msg)

vq =encryption〈autoresponder〈q, qencryption〉, qautoresponder 〉

4. Intent: Fix interaction ENCRYPTION vs. FORWARDMESSAGES.

Situation: Bob sends an encrypted message to Sam, and Sam decrypts it success-

fully. Since Sam has a FORWARDMESSAGES enabled, the decrypted message

is forwarded to a forward-address. This defeats the privacy purpose since the de-

crypted email travels in open networks during the process of forwarding.

Fix : Make FORWARDMESSAGES recognize the email that’s going to be auto-

forwarded is a decrypted one, so instead of forwarding the decrypted message,

FORWARDMESSAGES could send a system notification to forward-address, and

tell the user to check the email in the old address.

Query : Given a message X when these two features are enabled, the system checks

if the message X is encrypted and the recipient’s forward address is also provi-

sioned. If so, the system sends a notification. The information needed in this

process includes the encryption status(is encrypted) and recipient(rvalue) of mes-

sage X, and the forward address of recipient(forwardaddr). While when the two

features do not interact with each other, the system does the normal query for each

enabled feature.

q =π(is encrypted ,rvalue,forwardaddr)(qjoin−rec−emp−msg

./qjoin−rec−emp−msg .eid=forward msg.eid forward msg)

vq =encryption〈forwardmessages〈q, qencryption〉, qforwardmessages〉

5. Intent: Fix interaction ENCRYPTION vs. REMAILMESSAGE.

Situation: How REMAILMESSAGE works is that it rewrites the sender with the

pseudonym in the header. But if the email is encrypted, the information in the

header is no longer visible in the remailer, so the REMAILMESSAGE will not

work as expected.

33

Fix : Make ENCRYPTION detect if the message will be sending to a remailer. If

so, remove the sender information from the header.

Query : Given a message X when these two features are enabled, the system checks

if message X is encrypted and the recipient of this message is a remailer address.

If so, the system removes the sender information of the message X in the header.

We use vq to inquire the information needed in this checking process, it includes

the encryption information (is encrypted) about message X, the sender (sender)

and recipient (rvalue) of message X.

q =π(is encrypted ,sender ,rvalue)(σmid=X (messages

./messages.mid=recipientinfo.mid recipientinfo))

vq =encryption〈remailmessage〈q, qencryption〉, qremailmessage〉

6. Intent: Fix interaction AUTORESPONDER vs. FORWARDMESSAGES.

Situation: Bob sets auto-forwarding the incoming messages to Sam, but Sam has

set an autoresponder email. A third party emails a message to Bob, then it will

forward to Sam. At this point, Sam will send back the auto-responder message to

Bob, and then Bob forward it to Sam again, leading to a loop between Bob and

Sam.

Fix : This could be fixed by manipulating the message header in FORWARDMES-

SAGES. If these two features interact, every message forwarded from Bob to Sam

should have a comprehensive header that contains the original sender. In this case,

Sam could auto-reply to the third party, instead of Bob, preventing the loop.

Query : Given a message X when these two features are enabled, the system checks

if the message X is an auto-forward message and also the recipient has autore-

sponder provisioned. If so, the system should modify the message X by adding

the original sender in the header. We have a query q requesting the forwarding

property of message X, its original sender and recipient, and the autoresponder

34

provisioned by recipient.

q =π(sender ,rvalue,forwardaddr ,auto msg.eid ,auto msg.subject ,auto msg.body)((qjoin−rec−emp−msg

./qjoin−rec−emp−msg .eid=auto msg.eid auto msg)

./qjoin−rec−emp−msg .eid=forward msg.eid forward msg)

vq =autoresponder〈forwardmessages〈q, qautoresponder 〉, qforwardmessages〉

7. Intent: Fix interaction AUTORESPONDER vs. REMAILMESSAGE (1).

Situation: Bob sends an anonymous message to Sam through a remailer, and later

on, Bob sets AUTORESPONSE when he is out of office. Then Sam replies to

Bob’s anonymous message which then remailer sends to Bob. There is a problem

happens, Bob activates his AUTORESPONDER, so that he auto-replies the mes-

sage back to Sam, which infers that the previous anonymous message is from Bob.

Fix : AUTORESPONDER detects if the incoming message is from remailer (it can

tell by examining email header), if so, do not auto response to it.

Query : Given a message X when the two features are enabled, the system checks

if the message X is from the remailer, and the recipient of message X has autore-

sponder provisioned. If so, the system will not auto-reply the message X. We use

query q requesting the related data, it includes the sender(sender) of the message

X, and the autoresponder (auto msg .subject , auto msg .body) information for the

recipient (rvalue).

q =π(sender ,rvalue,auto msg.eid ,auto msg.subject ,auto msg.body)(qjoin−rec−emp−msg

./qjoin−rec−emp−msg .eid=auto msg.eid auto msg)

vq =autoresponder〈remailmessage〈q, qautoresponder 〉, qremailmessage〉

8. Intent: Fix interaction AUTORESPONDER vs. FILTERMESSAGES.

Situation: The system provisions FILTERMESSAGES to filter out all the in-

coming messages from linkedin.com. Bob, a user, sends an invitation email to

sam@linkedin.com to ask him if he can join Sam’s network. Sam@linkedin.com

has activated AUTORESPONDER so he auto-replies the information that he is

out of town these days. However, this auto-responder message from Sam has never

35

arrived in Bob’s inbox, because all incoming emails from linkedin.com have been

filtered out. It defeats the purpose of feature FILTERMESSAGES.

Fix : Make FILTERMESSAGES do not filter the auto-responder email.

Query : Given a message X when the two features are enabled, the system checks if

message X is a autoresponder message, if so, the system do not filter the message

X. We use query q to request the autoresponder information about message X.

q =πis autoresponse(σmid=X messages)

vq =autoresponder〈filtermessages〈q, qautoresponder 〉, qfiltermessages〉

9. Intent: Fix interaction AUTORESPONDER vs. MAILHOST.

Situation: Bob provisions with a auto-responder and then he sends a message to

an unknown user. The Mailhost generates a Non-Delivery notification to inform

Bob of the non-exists user problem. But, this notification is auto replied by Bob

and this auto-responder message is redundant.

Fix : Make AUTORESPONDER identify Non-Delivery notification and do not auto

reply.

Query : Given a message X when the two features are enabled, the system checks

if the message X is a system notification. If so, the system will not auto reply the

message X. We use query q to inquire if the message X is a system notification

(is system notification).

q =πis system notification(σmid=X messages)

vq =(autoresponder ∧mailhost)〈q, ε〉

10. Intent: Fix interaction FORWARDMESSAGES vs. FORWARDMESSAGES.

Situation: Bob sets forwarding address to Sam, and Sam sets forwarding address

to Bob accidentally. This will form a loop between Bob and Sam, once either of

them sends an email to each other.

Fix : FORWARDMESSAGES detects the loop and terminate it.

Query : Given a message X when the two features are enabled, the system checks if

the sender of the message X is the same with the forward address of the recipient.

If so, the system does not forward the message X. We use q to request the data

36

used in this checking process, it includes the sender (sender), the recipient (rvalue)

and the forward address of the recipient (forwardaddr).

q =π(sender ,rvalue,forwardaddr)(qjoin−rec−emp−msg

./qjoin−rec−emp−msg .eid=forward msg.eid forward msg)

vq =forwardmessages〈q, ε〉

11. Intent: Fix interaction FORWARDMESSAGES vs. REMAILMESSAGE (1).

Situation: Bob sets forwarding address to his pseudonym in the remailer. This will

form a loop between Bob and the remailer if there is a message sending to Bob,

because Bob’s email will forward to the pseudonym in the remailer and then the

message will loop back from remailer and forth infinitely.

Fix : Make feature REMAILMESSAGE detect the loop and terminate it.

Query : We use q to request the data used to check the forward Address and

pseudonym for each user (remailer detect the loop). If the forward address is

the same with the pseudonym, the system should terminate the loop.

temp =employeelist ./employeelist .eid=forward msg.eid forward msg

q =π(email id ,forwardaddr ,pseudonym)(temp ./temp.eid=remail msg.eid remail msg)

vq =(remailmessage ∧ forwardmessages)〈q, ε〉

12. Intent: Fix interaction FORWARDMESSAGES vs. FILTERMESSAGES.

Situation: Bob sets forwarding message to sam@pgn.com, but he doesn’t know pgn’s

admins have already set filter suffixes that discard all emails from Bob’s domain.

This lead to that Bob’s all incoming emails disappear after that.

Fix : This could be fixed by sending a verification email from Bob to forward address

when Bob set his forward email at the first time.

Query : When the user X sets the forward address in a system with the two features

are enabled, the system sends a same test message to the user’s forward address.

37

We use query q to return the user X’s forward address (forwardaddr).

q =πforwardaddr (σeid=X (employeelist ./employeelist .eid=forward msg.eid forward msg))

vq =(forwardmessages ∧ filtermessages)〈q, ε〉

13. Intent:Fix interaction FORWARDMESSAGES vs. MAILHOST.

Situation: Bob sets forward address to a non-existent user in his mailhost. Any

email sent to Bob will forward to the mailhost and the mailhost will send back

an error message tell Bob that the address does not existed. The error message

sending to Bob will result in an infinite loop between Bob and the mailhost.

Fix : MAILHOST detects the loop and terminates it.

Query : Given a message X sending to a mailhost when these two features are

enabled, the system check if the recipient of message X is a user in the mailhost,

if its not and the message x is a auto forward one, the mailhost does not generate

error message back. We use a plain query q to request the related data, it includes

the recipient (rvalue) of message X, the user name in the mailhost, and if the

message X is an auto forward message (is forward msg).

q =π(rvalue,username,is forward msg)(qjoin−rec−emp−msg

./qjoin−rec−emp−msg .eid=mailhost .eid mailhost)

vq =(forwardmessages ∧mailhost)〈q, ε〉

14. Intent:Fix interaction REMAILMESSAGE vs. MAILHOST

Situation: Bob activates mailhost and his remailer service, then he use email at

mailhost to send an anonymous email to Sam. After a while, Bob cancel his

mailhost service but forget to deactivate the remailer pseudonym. Then, Sam

replies to the pseudonym address, and the remailer deliver the message to the Bob’s

address at mailhost. Since Bob’s address is not a user existing in the mailhost, the

mailhost generates an automated message back, leaking the identity of Bob.

Fix : Make MAILHOST detects email from remailer and send back a Non-delivery

Notification without containing user’s information if applicable.

Query : Given a message X sending to a mailhost when the two features are enabled,

38

the system checks if the sender of the message is from a remailer (The mailhost can

tell if it’s from remailer by checking the sender’s email address), if so, the mailhost

generates reply message without containing user’s information. We use q to inquire

the sender’s email address.

q =πsender (σmid=X messages)

vq =(remailmessage ∧mailhost)〈q, ε〉

15. Intent: Fix interaction FILTERMESSAGES vs. MAILHOST.

Situation: Bob activates FILTERMESSAGES to filter out all the messages from

domain outlet. Bob sends an email to non-existed-user@outlet.com which

has no matched user-name found in that domain. Then the mailhost service in

the outlet domain generates an automated system notification back to Bob which

informs him that no user is found. However, FILTERMESSAGES in Bob side

discards such notification which defeats the purpose of MAILHOST.

Fix : Alter FILTERMESSAGES check if the incoming system notification is from a

mailhost and also this message corresponds to an appropriate outbound message.

Query : Given a message X sending from a mailhost, when these two features are

enabled, the system check if the message X is a system notification, if so, the system

doesn’t need to check the filter suffix and let the message X delivered. We use q to

request the data including the sender of the message (sender) and if the message

X is a system notification (is system notification).

q =π(is system notification,sender)(σmid=X messages)

vq =(filtermessages ∧mailhost)〈q, ε〉

16. Intent: Fix interaction SIGNATURE vs. FORWARDMESSAGES (2).

Situation: Suppose Bob sends a signed email to Sam, and Sam verifies the signature

then auto-forward to a third party with a ”success-verified” header. In the process

of forward after verification, the message may be altered by hacker during the

transit, because the verified email is in a clear form. However, the recipient of this

email thinks this verified email is trustful because of the ”success-verified” header.

This defeats the purpose of privacy regulation.

39

Fix : Alter the feature SIGNATURE to add a header Verified-at: which informs

the recipient where the verification was done. The recipient should only fully trust

the email verified at their own end.

Query : Given a message X when these two features are enabled, the system check if

the message X is signed and its recipient has an auto-forward address provisioned.

If so, when forwarding the message X, the system will add the information about

where the signature is verified and forward it to forward address. During this

process, we use query q to inquire if the message X is signed (is signed), the

recipient (rvalue) and its forward address (forwardaddr).

q =π(is signed ,rvalue,forwardaddr)(qjoin−rec−emp−msg

./qjoin−rec−emp−msg .eid=forward msg.eid forward msg)

vq =signature〈forwardmessages〈q, qsignature〉, qforwardmessages〉

40

Chapter 5 Conclusion and Future Work

This paper has presented two case studies that investigate the application of VDBMS to

schema evolution and SPLs. The first case study demonstrated the ability of VDBMS

to archive a historical database and query multiple snapshots of an evolving schema in a

single VDB, where we systematically adopted a schema evolution scenario in an existing

employee database and generated a VDB from a widely used employee data set. The

second case study represented the integration of the VDBMS to an Email SPL, where

we systematically adopted the prior work of a feature list and feature interactions in

the email system and combined it with a real-world data set from the Enron Corp to

generate a VDB for the email SPL.

Each case study has provided a VDB and a set of v-queries. The process of generating

the VDB and v-queries gives the VDBMS user a practical tutorial to follow, and the

resulting data sets and the example v-queries will be used to evaluate the VDBMS.

In the current iteration of case studies, we wrote the most intuitive v-queries to

express the intents, but in the future we would like to apply some optimizing rules

manually to v-queries, or implement a component in the VDBMS architecture to achieve

the goal automatically.

41

Bibliography

[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented
Software Product Lines. Springer-Verlag, Berlin, 2016.

[2] Parisa Ataei, Qiaoran Li, Eric Walkingshaw, and Arash Termehchy. Managing
variability in relational databases by vdbms. unpublished draft.

[3] Parisa Ataei, Arash Termehchy, and Eric Walkingshaw. Variational databases. In
Proceedings of The 16th International Symposium on Database Programming Lan-
guages, DBPL ’17, pages 11:1–11:4, New York, NY, USA, 2017. ACM.

[4] Parisa Ataei, Arash Termehchy, and Eric Walkingshaw. Managing structurally
heterogeneous databases in software product lines. In Vijay Gadepally, Timothy
Mattson, Michael Stonebraker, Fusheng Wang, Gang Luo, and George Teodoro,
editors, Heterogeneous Data Management, Polystores, and Analytics for Healthcare,
pages 68–77, Cham, 2019. Springer International Publishing.

[5] M. Calder and E. Magill, editors. Feature Interactions in Telecommunications and
Software Systems VI. IOS Press, Amsterdam, The Netherlands, The Netherlands,
1st edition, 2000.

[6] Cristina De Castro, Fabio Grandi, and Maria Rita Scalas. Schema versioning for
multitemporal relational databases. Information Systems, 22(5):249–290, 1997.

[7] Ahmed Elmagarmid, Marek Rusinkiewicz, and Amit Sheth, editors. Management of
Heterogeneous and Autonomous Database Systems. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1999.

[8] Martin Erwig and Eric Walkingshaw. The choice calculus: A representation for
software variation. ACM Trans. Softw. Eng. Methodol., 21(1):6:1–6:27, December
2011.

[9] Martin Erwig, Eric Walkingshaw, and Sheng Chen. An abstract representation of
variational graphs. In Proceedings of the 5th International Workshop on Feature-
Oriented Software Development, FOSD ’13, pages 25–32, New York, NY, USA, 2013.
ACM.

[10] Robert J. Hall. Fundamental nonmodularity in electronic mail. Automated Software
Engineering, 12(1):41–79, Jan 2005.

42

[11] Hyun J. Moon, Carlo A. Curino, Alin Deutsch, Chien-Yi Hou, and Carlo Zaniolo.
Managing and querying transaction-time databases under schema evolution. Proc.
VLDB Endow., 1(1):882–895, August 2008.

[12] J. Postel. Simple mail transfer protocol, 1982.

[13] Sudha Ram and Ganesan Shankaranarayanan. Research issues in database schema
evolution: the road not taken. In Working Paper 2003-15. Information Systems
Department, Boston University School of Management, 2003.

[14] John F. Roddick. Schema evolution in database systems: An annotated bibliogra-
phy. SIGMOD Rec., 21(4):35–40, December 1992.

[15] Jitesh Shetty and Jafar Adibi. The enron email dataset database schema and
brief statistical report. Information sciences institute technical report, University of
Southern California, 4(1):120–128, 2004.

[16] Ben Shneiderman and Glenn Thomas. An architecture for automatic relational
database sytem conversion. ACM Trans. Database Syst., 7(2):235–257, June 1982.

[17] Eric Walkingshaw, Christian Kästner, Martin Erwig, Sven Apel, and Eric Bod-
den. Variational data structures: Exploring tradeoffs in computing with variabil-
ity. In Proceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, Onward! 2014, pages
213–226, New York, NY, USA, 2014. ACM.

	Introduction
	Background
	Variational Databases
	Variational Queries

	Applying VDBMS to Schema Evolution
	Employee Database Schema Evolution
	Employee Variational Databases
	Schema Transformation
	Populating the Employee Databases

	Examples of Variational Query

	Applying VDBMS to Software Product Lines
	Software Product Line and Feature Interactions
	Email SPL and Features
	Email Variational Databases
	Schema Transformation
	Populating the Email Databases

	Examples of Variational Query
	V-Queries for Features
	V-Queries for Feature Interactions

	Conclusion and Future Work
	Bibliography

