


AN ABSTRACT OF THE PROJECT OF

Michael McGirr for the degree of Master of Science in Computer Science presented on

2018 March 19.

Title: The Ownership Monad

Abstract approved:

Eric Walkingshaw

The Rust programming language is a systems programming language with a strong

static type system. A central feature of Rust’s type system is its unique concept of

“ownership”, which enables Rust to give a user safe, low-level control over resources

without the overhead of garbage collection. In Haskell, most data is immutable and many

of the problems addressed by ownership in Rust simply don’t arise. However, ownership

is still useful in Haskell in the context of mutable references and concurrency. This

project report introduces the Ownership Monad, a monad that implements aspects of

Rust’s ownership system as a library in Haskell. This will demonstrate many of the rules

enforced by the ownership system in Rust in order to better understand the ownership-

based method of tracking resources. This report will further explore the benefits such a

system can provide for tracking resource use between concurrent threads.



c©Copyright by Michael McGirr
2018 March 19

All Rights Reserved



The Ownership Monad

by

Michael McGirr

A PROJECT

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented 2018 March 19

Commencement June 2018



Master of Science project of Michael McGirr presented on 2018 March 19.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my project will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my project to any
reader upon request.

Michael McGirr, Author



ACKNOWLEDGEMENTS

To my parents. Thank you for all your help and support.

To my advisor, Eric Walkingshaw, thank you for all of your thoughtful feedback and

patience throughout this process.

Thank you Jeff Young for reading over my project report and providing useful sugges-

tions.



TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Linear and Affine Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Uniqueness Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Ownership Types in Rust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The Ownership Monad 9

3.1 Internal Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Ownership System Operations . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Owned References . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Reference Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.3 Dropping an Owned Reference . . . . . . . . . . . . . . . . . . . . 13

3.2.4 Copying a Reference . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.5 Moving Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.6 Writing to a Resource . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.7 Borrowing a Resource . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.8 Reading from an ORef . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.9 Running the Ownership Monad . . . . . . . . . . . . . . . . . . . 25

3.3 Mitigating Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Owned References in Multi-threaded Programs . . . . . . . . . . . 29

4 Owned Channels 30

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 Using Owned References to Construct Owned Channels . . . . . . 31

4.2 Owned Channel Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Writing to an Owned Channel . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Reading from an Owned Channel . . . . . . . . . . . . . . . . . . 34

4.2.3 Creating an Owned Channel . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusion 37

5.1 Resource management in the Ownership Monad . . . . . . . . . . . . . . . 37



TABLE OF CONTENTS (Continued)
Page

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Structured Error Reporting . . . . . . . . . . . . . . . . . . . . . . 37

5.2.2 Ownership Typing in Other Domains . . . . . . . . . . . . . . . . 38

Bibliography 38



Chapter 1: Introduction

This project report presents a library1 for Haskell that implements an ownership system

for resource aware programming. This ownership system introduces a set of rules that

govern how, when, and by whom a resource within what is called an Owned Reference

(an ORef) can be used.

When an owned reference is created it is bound to a resource. The resource is placed

within an entry datatype which is then stored in the state of the ownership monad.

An owned reference is a variable which acts as a uniquely identifiable ID to refer to an

entry in the ownership monad. This variable becomes the way to refer to and access the

contents of the entry it is bound to inside the ownership monad. Each entry can have,

at most, one variable binding at a time.

While the restrictions this implementation imposes may seem to increase the com-

plexity of writing programs, the resulting guarantees offer improvements in specific ar-

eas. Furthermore, applying this system provides an example for how monadic-based

approaches can offer abilities to reason about resource usage.

Adding a way to keep track of resources in a pure language like Haskell may at the

onset seem unnecessary since in a pure language, by definition, the data making up the

resources bound to variables is immutable. Because of this there is no inherent state.

Haskell’s purity therefore allows for referential transparency where values and variables

in closed expressions can be thought of as being interchangeable.

Referential transparency is a desirable property which allows for a greater ability to

reason about the behavior and correctness of a program. Even in a pure language like

Haskell, this property breaks down in the context of concurrency. Under these circum-

stances, Haskell’s usual approach of segregating side-effects into monadic computations

does not resolve every issue that can exist with shared-state concurrency.

1 The library presented in this project report is available at: https://github.com/lambda-
land/OwnershipMonad

https://github.com/lambda-land/OwnershipMonad
https://github.com/lambda-land/OwnershipMonad


2

A simple example of this is the race condition that can be created when a mutable

reference is shared across a channel between two threads:

1 import Data.IORef

2 import Control.Concurrent

3 import Data.Char (toLower , toUpper)

4

5 introChan :: IO ()

6 introChan = do

7 ref <- newIORef "resource"

8 ch <- newChan

9 writeChan ch ref

10

11 _ <- forkIO $ do

12 ref ’ <- readChan ch

13 modifyIORef ref ’ (map toLower)

14

15 val <- readIORef ref

16 putStrLn val

17

18 modifyIORef ref (map toUpper)

19 newVal <- readIORef ref

20 putStrLn newVal

Here the forkIO function takes an expression of type IO () and executes it in a new

thread. This new thread will run concurrently with the original parent thread.

This creates a clear race condition between the two threads and the mutable contents

of the IORef shared between them. Both threads have access to the same IORef and it

could be unclear which will access the resource first. Under these conditions the issue

is not only that we have shared mutable state but that we have shared access to that

state.

This kind of race condition would be difficult to detect. The easy culprit to blame

in the previous example would be the mutable IORef shared between the two threads.

Immutable data structures simplify concurrency and are preferable to mutable structures.



3

However, categories of problems still exist where a mutable structure is required.

The OChan and ORef operations provided by this report’s library allow a user to detect

situations, similar to the one created by the previous example, which would result in a

race condition. A comparable program using the abstractions provided by the ownership

system would be able to detect the race condition before it occurred:

1 import Data.ORef

2 import Control.Concurrent.OChan

3

4 introOChan :: IO (Either String ())

5 introOChan = startOwn $ do

6 ref <- newORef "resource"

7 let ch = newOChan

8 writeOChan ch ref

9

10 let down :: String -> Own String

11 down x = return (map toLower x)

12

13 up :: String -> Own String

14 up x = return (map toUpper x)

15

16 _ <- liftIO . forkIO $ do

17 _childResult <- startOwn $ do

18 ref ’ <- readOChan ch

19 borrowAndUpdate ref ’ down

20 writeOChan ch ref ’

21 return ()

22

23 borrowAndUpdate ref up

24 return ()

Here a resource is created and placed within an ORef. The parent thread proceeds

to give up ownership of the ORef when it writes to the owned channel on line 8. The

child thread can read the ORef from the OChan and claim ownership over its contents.



4

The child thread can then mutate the resource in a borrow operation before writing it

back to the channel.

Each of the ownership operations used in this example will be defined and discussed

at greater length later on. This example demonstrates a sequence of actions that result

in an ownership violation. This violation occurs when a parent thread tries to use

a reference that it has already given up ownership over by writing the reference to a

channel.

When the overall example is evaluated it will result in a Left value which will indicate

the kind of ownership violation which took place. A simple remedy for the violation can

then be found. For this example the parent thread could take back ownership of the

reference by reading it from the owned channel.

1.1 Contributions

This project draws from the use of affine types in Rust for ownership typing to define a

similar method for tracking resources with Haskell. This is combined with the approach

of defining embedded languages in monadic programming to allow for dynamic ownership

checking without language-level support for affine types in Haskell.

Despite its purity, concurrent Haskell programs can still fall prey to some of the

same fundamental problems that other impure languages can, namely deadlock and data

races. This project report will demonstrate a motivation for adding the kind of resource

tracking that ownership typing provides by looking at what some of these problems look

like and how resource tracking acts to mitigate these problems. This will use the basic

concurrency tools available in Haskell such as shared state with IORef’s and message

passing with channels. It will then demonstrate and explain the benefits of tracking

resource usage with a set of rules similar to affine types.



5

Chapter 2: Background

2.1 Linear and Affine Types

A linear type system enforces the rule that resources are used exactly once. Linear types

are often suggested as a possible solution to limit the issues that result from mutable

state [13] and concurrency [2].

Language level support for linear types has been proposed for the Glasgow Haskell

Compiler [1]. Ways to add linear types to Haskell without language level support have

also been demonstrated using embedded domain specific languages within a monadic

context [12].

Other less restrictive forms of logic have been used in type systems for similar resource

tracking. Affine type systems weaken the restrictions imposed by linear type systems.

Instead of requiring every variable to be used exactly once - as is the case with linear

types - every variable must be used at most once. The language-level ownership typing

in Rust has been directly inspired by affine type systems.

2.2 Uniqueness Types

Idris, a dependently typed language, treats uniqueness types as a subkind of regular

types. Uniqueness types in Idris are also inspired by ownership types and borrowed

pointers in the Rust programming language, as well as Uniqueness Types in the Clean

programming language.

In Idris a value that has a type that is made up of a UniqueType will only be able

to have at most one reference to it at run-time [3]. In order to make this guarantee, any

value of a unique type is kept separate from normally typed values - which have the type

Type.

Polymorphic functions which take either unique types or regular types can exist. The

type Type* is used to denote when a type which can either be a unique type or a regular

type (but not both) may be used in a polymorphic function.



6

head : {a : Type*} -> List a -> a

A polymorphic function that takes either unique types or regular types will also have

to obey the rules for how values that are uniquely typed can be used on the right-hand

side of a function.

Idris allows for uniquely typed variables to be used more than once on the right side

of a function as long as they are being read and the value is not updated. This means

that a uniquely typed variable can have its value inspected in a function, and this will

not count towards that variable being used. The variable will not be able to be mutated

or used in any way which would mutate the underlying resource.

To do this, Idris creates a new kind of type from the unique type. This new type is

called a BorrowedType and at the type level exists alongside UniqueType and Type.

Idris treats a borrowed type as a different kind of type from unique types. Using a

variable of the borrowed type adds in additional requirements and checks at the type

level to ensure that the borrowed type will not mutate while its resource is being read.

While a borrow is occurring the internals will exclude other functions or operations from

mutating the resource.

The Borrowed dependent data type is used to convert a unique type into a borrowed

type [3] :

data Borrowed : UniqueType -> BorrowedType where

Read : {a : UniqueType} -> a -> Borrowed a

implicit

lend : {a : UniqueType} -> a -> Borrowed a

lend x = Read x

The lend function can then be invoked to create a BorrowedType. Doing so will

indicate that while the underlying UniqueType variable is being used, new references

to it should not be tracked as additional references to a unique value. This allows the

borrowed variable to be used as many times as it needs to be instead of at most once.



7

2.3 Ownership Types in Rust

A central feature of the Rust programming language is its use of an ownership-based

type system. The ownership model used in Rust and the safety claims of using such a

system have been formally proved and machine-checked in Coq [10].

The Rust language has inherent state, and additionally all variables must obey the

ownership rules [9]. These rules are checked at compile time and are enforced over all

variables in a program. Doing so allows Rust to forgo a runtime system [5] or a garbage

collector [6].

In Rust, memory allocation is handled through the ownership system. The ownership

system is a language-level abstraction which makes use of affine types for resource man-

agement. Additionally, Rust uses lifetime analysis of resource use for fast deallocation.

Lifetimes in Rust are beyond the scope of this project report and in some ways are more

similar to a linearly typed language than an affine one.

When a resource is created and bound to a variable, such as v1 in the example below,

that variable is the owner of the resource.

let v1 = vec!["Vector", "of", "Strings"];

Ownership may be transferred to a different variable with a new assignment. The

variable v2 in the next example takes ownership over the vector which belonged to v1.

let v2 = v1;

Any attempts to access the values in the vector by referring to them through the old

owner v1 will result in a compile time error. When the variable which owns the resource

goes out of scope at the end of a code block the resource will be freed.

There may be situations in which one variable needs to temporarily use the resource

owned by another variable without taking ownership over it. To do this a borrow of that

variable is created:

let v1 = vec!["Vector", "of", "Strings"];

let v2 = &v1;

Ampersands are used to create references to the resources owned by other variables.

In the last example the variable v2 was instantiated as an immutable reference of the



8

resource referred to by variable v1. In this case v2 is said to be borrowing the value that

v1 owns.

Borrows in Rust come in two flavors. We can either lend a resource to many borrowers

as long as the borrowers never mutate the underlying resource, or we can lend it to a

single borrower that will be able to mutate the resource [7]. It should be clear why giving

multiple variables mutable access to the same resource could create data races which is

why mutable borrows to multiple variables (or functions) are not allowed.

A function in Rust depending on the type signature will either copy the value it is

passed, take ownership of the value, or it will borrow the value — in which case ownership

of the value is automatically returned when the function has finished execution [9]. A

function in Rust that takes a borrowed value as an argument is syntactic sugar over

that function first taking ownership of the value and then returning ownership over the

value by placing it within the expression that is returned. Instead of having to do these

steps explicitly a value can be passed to a function as a borrowed value. When a value

is borrowed, the function will take a reference to that the value from the original owner

and eventually the ownership of the resource will be handed back when the function

returns. The Rust compiler will track the borrows (with the borrow checker) statically

at compile time.



9

Chapter 3: The Ownership Monad

The term Ownership System is used to describe the system for how resources are tracked

and how they can be used once they are created. This system operates within the context

of the ownership monad. The ownership system this library implements is inspired by

ownership typing in Rust [9] as well as uniqueness types from Idris [3].

The ownership system described by this paper approximates some of the features

from ownership typing in the Rust language. Differences between the two result from

the different language paradigms and the different use cases.

Uniqueness types in Idris, ownership typing in Rust, and the ownership system in

this report make use of the idea that by tracking resources and applying rules to how

resources are used, certain properties can be enforced. One of the primary motivations

for using the ownership monad is as a safer way to introduce mutability, when it is

needed, into a Haskell program.

3.1 Internal Implementation

Apart from the ownership monad type Own and the functions to evaluate the ownership

monad, the data structures and functions used in the implementation of the internal

module would be invisible to the user of the library. The operations which will be

discussed in the section following the internals section make up the public facing API

that is available to the library user.

The first major piece of the internals is the ownership monad. The type of the

ownership monad internally is:

type Own a = StateT (ID,Store) (EitherT String IO) a

Expressions written in the ownership monad will evaluate to a Left String value

when violations of the ownership rules are detected. The string value produced gives an

error message reporting the details of the ownership violation. Likewise, an ownership

monad with no violations will evaluate to a Right value which gives the outcome returned



10

from the ownership monad. Future work on error reporting, including structured error

types for ownership violations, will be discussed in section 5.2.1.

State is represented using the StateT monad transformer. The ownership monad

needs to track the state of ownership system operations that occur within its context,

but it does not need to be aware of the operations occurring in other ownership monads.

This latter aspect will become important when discussing Owned Channels between

separate threads later on.

The state in the ownership monad is comprised of the next ID to use and the current

Store. The Store maps each unique reference ID to an Entry.

data Entry =

forall v. Typeable v => Entry Flag ThreadId (Maybe (IORef v))

The first notable parts of the Entry datatype are the explicitly quantified forall v

along with the Typeable typeclass constraint on the type variable v. The combination

of these allows for the references in the state to be heterogeneous. Otherwise it would be

necessary to limit the Store to owned references of only one type per monadic state. Us-

ing the Typeable typeclass does require that values in each entry are cast in a type-cast

operation. However this is handled internally by the library when values are retrieved

from an entry. The cast function reifies the generic type v into a real type. Doing so is

necessary because it allows the value inside an entry to be used as a concrete type rather

than a polymorphic value.

Using the existentially quantified forall v also produces the ancillary benefit that

the Entry datatype does not need a type variable. As a result, the Store type does not

need to be a parameterized abstract data type and can instead be a simple mapping

between an integer ID and an entry.

type Store = IntMap Entry

Each owned reference Entry maintains a Flag to indicate the level of access currently

allowed by the ownership monad on the entry’s value.

data Flag = Locked

| Readable

| Writable



11

The ID of the thread which owns the entry is also stored as part of the Entry

datatype.

The value v in an Entry is maintained within the (Maybe (IORef v)) field of the

entry datatype. The main purpose of using the Maybe datatype is that it allows an

empty entry to be represented. Empty entries result when entries are dropped from one

ownership monad’s context. This allows the Glasgow Haskell Compiler to know that the

runtime memory storing the prior value in an entry can be freed.

Internally the value stored in a non-empty entry is placed in an IORef. An IORef in

Haskell is a mutable reference in the IO monad - an IO reference. The ownership monad

uses entries to store the values assigned to owned references. Even though the values in

entries are mutable because of the internal IORef implementation, they are encased in

the ownership system types which control access to the value.

3.2 Ownership System Operations

From the perspective of the library user: owned references are abstract data types defined

by the operations which can act on references in the ownership monad. The semantics

of how owned references exist and operate correspond to the outcomes of using these

operations.

The functions to perform operations are made available in the public facing API

module of the library for this implementation.

newORef :: Typeable a => a -> Own (ORef a)

dropORef :: Typeable a => ORef a -> Own ()

copyORef :: ORef a -> Own (ORef a)

moveORef :: Typeable a => ORef a -> Own (ORef a)

writeORef :: Typeable a => ORef a -> a -> Own ()

borrowORef :: Typeable a => ORef a -> (a -> Own b) -> Own b

readORef :: Typeable a => ORef a -> Own a

These functions provide the operations to create owned references, drop a reference

from the scope, copy them, move the resource from one reference to another, and write

a value to a reference. Additionally, there are operations for borrowing and reading the

resource inside a reference.



12

3.2.1 Owned References

Owned references represent variables which provide both the symbolic entity which owns

a resources as well as the mechanism to access the underlying resource. Resources are

bound to an owned reference variable when they are created inside the ownership monad.

In the library implementation these variables are called ORef’s or Owned References.

The type of an ORef is a thin wrapper around a way to tag and identify resources

stored in entries.

newtype ORef a = ORef {getID :: ID}

An ORef is a parameterized abstract data type. Because there is only one constructor

and one field associated with this datatype newtype is used to eliminate some of the

runtime overhead.

A phantom type is used to add a type variable to each ORef. This ensures the type

safety of the code by requiring that a type be embedded with each ORef. This prevents

references of different types from being mixed by invoking a type error at compile time.

The polymorphic a allows any type to be stored in an ORef. This ORef datatype primarily

serves to provide a handle on each resource for the ownership monad to use as it enforces

ownership typing rules and tracks each resource.

When the operations inside an ownership monad are complete, the references will

no longer exist and the resources associated with each one will be marked as free. The

information inside the resource can only be accessed by the provided operations for

references within the ownership monad. The operations which act on owned references

will verify whether the ownership rules are being followed and detect violations.

3.2.2 Reference Creation

References need to be introduced into the ownership monad in order to be used. To do

this a library user would create a new reference and bind it with a resource. Both the

instantiation of the new reference as well as the resource binding occur in the same step.

A simple example of this is the creation of a reference x which is bound to the resource

[1,2,3]. In the following code the owned reference x is created.

x <- newORef [1,2,3]



13

The reference can now be used by other operations within the monad in which it resides.

The newORef function is part of the user facing API of the library. As the example

has shown, this function creates a new owned reference within the ownership monad and

places the value provided to the function inside the reference. This value is internally

stored within an IORef in the Entry datatype.

newORef :: Typeable a => a -> Own (ORef a)

newORef a = do

(newID, store) <- get

thrId <- liftIO $ myThreadId

v <- liftIO $ newIORef a

let entry = (Entry Writable thrId (Just v))

put (newID + 1, insert newID entry store)

return (ORef newID)

The current state of the monad is needed in order to produce the next state which

will include the new owned reference. The new owned reference is a mapping of an ID

and the entry. The entry contains the value being stored as well as the state of the

owned reference. Performing get will return the ID to use next as well as the current

mapping of owned reference ID’s and their entries.

The ID of the thread which created the owned reference must be stored. This is done

in order to prevent child threads from using the owned references that were potentially

inherited through the name-spacing scope of their parent threads. The thread ID field of

the entry is set when the owned reference is initially created. To get the current thread

ID of the thread creating the new ORef an IO operation is required.

The entry that will be inserted into the new mapping will have a Flag which is set to

Writable. The new store of entries, as well as the incremented ID, are put back into the

state. The final step is to return the new ORef so that it can be used by other ownership

operations.

3.2.3 Dropping an Owned Reference

Owned references can be removed from the context of the ownership monad. A user may

want to explicitly remove a reference that is no longer needed but the ability to destroy



14

an owned reference is also needed by other operations.

A user can destroy an owned reference using the drop operation on the owned ref-

erence. For a reference x that already exists in the same context as the drop operation

this can be done as follows:

dropORef x

Here the drop operation will explicitly remove an owned reference from the ownership

monad it previously existed in. This will destroy the resource from the point of view of

the other operations in that ownership context.

dropORef :: Typeable a => ORef a -> Own ()

dropORef oref = do

ok <- checkORef oref

case ok of

False -> lift $

left "Error during drop operation.\

\ Make sure ORef intended to be dropped is writable\

\ and within this thread."

True -> do

setORefLocked oref

setValueEmpty oref

Any further operations that try to use the dropped reference will be prevented from

occurring:

1 startOwn $ do

2 ref <- newORef "hello"

3 dropORef ref

4 _copy <- copyORef ref

5 return ()

The copy operation in this example expression will not create a copy of a dropped

reference. Instead, because of the earlier drop operation, the copy operation will cause

this expression to evaluate to a Left value: Left "Error during copy operation".



15

For a drop operation to occur the reference must be in the same thread as the drop

operation and the owned reference must have a Writable flag. In the previous example

the reference was writable prior to being dropped. These two conditions are internally

checked by the checkORef helper function:

checkORef :: ORef a -> Own Bool

checkORef oref = do

entry@(Entry _f thrId _v) <- getEntry oref

liftIO $ do

threadId <- myThreadId

return $ (threadId == thrId) && writable entry

If the ownership system rules are not being violated then the ORef will be dropped

by having it’s flag set to Locked and the value in the entry set to Nothing. The entry is

not deleted from the internal mapping of ID’s to entries. Doing so allows the ownership

system to determine if an ORef has been dropped or if it never existed.

The resource space inside the entry of a dropped reference can be freed since the

Haskell runtime will garbage collect the previous value that has now been set to the

Nothing case. The ability to drop an owned reference from a context will be used later

within larger abstractions.

3.2.4 Copying a Reference

A user may want to duplicate a reference in order to have two references that at one

point were copies of each other. This would be trivial to do with regular variables but

the ownership rules, which do not allow more than one binding to a resource, complicate

the task for owned references.

A simple assignment of a new reference to the old reference would mean that the

two references were now referring to the same underlying resource. While it’s possible

to make a copy of a variable this way in Haskell, doing so restricts us from making any

of the claims about resource use or safety.

To create a new owned reference that is a copy of an existing reference there is the

copy operation. For an owned reference x we can make a copy y using copyORef as

follows:



16

y <- copyORef x

This introduces the new reference y into the monadic context. Initially y is a copy

of x but since the references are now separate entities, they are able to diverge in terms

of what their internal values are following the completion of the copy operation.

The copy operation allows the underlying resource owned by a reference to be copied

by other references if they are within the scope of the same ownership monad. When this

occurs, a new reference is created and then given ownership over a copy of the resource.

After a copy operation is performed, the two references will each own what are now two

separate and different resources.

This property can be observed when a reference is copied (creating another reference),

and then the original reference is mutated:

1 startOwn $ do

2 x <- newORef (1 :: Int)

3 y <- copyORef x

4 let f :: Int -> Own Int

5 f i = return (i+1)

6 borrowAndUpdate x f

7 xContents <- readORef x

8 yContents <- readORef y

9 return (xContents , yContents)

This expression will evaluate to Right (2,1). After the reference y was created

by making a copy of reference x, the contents of reference x was mutated in a borrow

operation (borrow operations will be explained in depth later in the report). Due to this

mutable action, the contents inside the copy and the original reference diverged.

copyORef :: ORef a -> Own (ORef a)

copyORef oref = do

(new, store) <- get

entry <- getEntry oref

ok <- inThreadAndReadable oref

case ok of

False -> lift $ left "Error during copy operation"



17

True -> do

let newEntry = setEntryWritable entry

put (new + 1, insert new newEntry store)

return (ORef new)

A copy can be made if the underlying owned reference is at least readable and is in the

same thread as the copy operation. To perform a thread ID check the inThreadAndReadable

function needs to be lifted from the IO monad. The inThreadAndReadable function will

return true if the owned reference is at least readable and in the same thread.

inThreadAndReadable :: ORef a-> Own Bool

inThreadAndReadable oref = do

entry@(Entry _f thrId _v) <- getEntry oref

liftIO $ do

threadId <- myThreadId

return $ (threadId == thrId) && readable entry

An owned reference which is set to readable signals that there may be other operations

using the resource but in a way that is immutable. If an ORef is writable this indicates

that no function is currently using the resource in a way that may mutate the value.

If the copy operation is able to occur, the new owned reference is inserted into the

internal store for that monad. The new owned reference created from the copy operation

is set as writable. The setEntryWritable function creates a duplicate entry with its flag

set to writable. This action is performed even if the original reference was only readable.

For those familiar with the terminology from the Rust programming language, the

term copy here is not the same as a copy in Rust. Rust makes a special distinction

between making a copy of resources that are fixed in size1 and making a copy of resources

which are more complex and not fixed in size. For the latter case it is still possible to

copy these kinds of resources, but these need to be cloned (using the clone function)

because otherwise Rust will consider these values to have been moved [9]. With this

library there is only one version of a copy, and it creates a new resource identical to the

original; there is no distinction given to the kinds of resources that are being copied.

1Rust will also consider an assignment operation to be a copy instead of a move if the Copy trait or
the Clone trait is implemented for that type of resource [4, 8].



18

3.2.5 Moving Ownership

It may be necessary to transfer a resource from one reference to another. Under these

circumstances the old reference would need to be dropped after the resource has been

transferred, otherwise the old reference and new reference would be referring to the same

resource.

Here the resource owned by the reference old is transferred to the reference new and

in the process the reference old is dropped:

new <- moveORef old

A move operation transfers a resource owned by one reference to a new reference.

An existing reference can also be overwritten by the moved contents of another reference

using moveORef’ :: Typeable a => ORef a -> ORef a -> Own (). After a move

operation is performed, it will no longer be possible to refer to the underlying resource

through the old reference. This operation removes the old reference from the scope of the

ownership monad it previously existed in, and the new reference is now the sole owner

of the resource.

moveORef :: Typeable a => ORef a -> Own (ORef a)

moveORef oldORef = do

ok <- checkORef oldORef

case ok of

False -> lift $

left "Error during move from an oref to a new oref\

\ check entry failed for the existing (old) oref."

True -> do

new <- copyORef oldORef

dropORef oldORef

return new

The implementation of moveORef verifies that the old ORef is writable. If the ORef

is writable, this indicates that the reference has not been dropped and is still valid to

use in this context. An ORef which is writable will also ensure that another operation is



19

not currently using the resource in a mutable way. The old ORef must exist within the

same thread as the ownership monad in which the operations are being performed in.

If the old ORef is valid and can be used in the operation, a copy of it is made with the

copyORef function. After the copy is complete during the move operation, the old ORef

is dropped using the dropORef function. This removes the old ORef from that monad

and prevents other operations from referring to the resource through the old ORef. The

old ORef and its entry have been dropped and internally within the state of the monad

are set to Nothing. The resource space inside the entry corresponding to the old ORef

can be safely freed.

There is a key difference between moving a resource from an existing reference and

copying it to a new one. Functionally a resource that is copied is cloned and duplicated;

doing this doubles the space and creates a new resource. A moved resource by comparison

doesn’t change. Instead what is altered is the record of who owns that resource. Neither

operation, moving and copying, creates a situation where more than one reference owns

a resource.

1 startOwn $ do

2 x <- newORef "greeting"

3 y <- moveORef x

4 yContents <- readORef y

5 return yContents

This expression does not violate the ownership rules and will evaluate to Right

"greeting". If, for example, an expression tried to use a moved resource through an old

reference binding, the expression will evaluate to a Left value such as for the following

code:

1 startOwn $ do

2 x <- newORef "greeting"

3 y <- moveORef x

4 xContents <- readORef x

5 yContents <- readORef y

6 return (xContents , yContents)

This expression violates the ownership system rules and will evaluate to a Left value



20

because the first readORef operation is attempting to read the resource in x that has

been moved to y.

3.2.6 Writing to a Resource

The write operation exists in order for a user to be able to write over the current value in

an owned reference with a new value. This provides a way to safely mutate the contents

of the reference while at the same time discarding it previous contents.

For example in the following expression the contents of ref will be destructively

updated with the new contents. This expression does not violate any ownership rules

and will evaluate to Right "Some new contents".

1 startOwn $ do

2 ref <- newORef "Original contents"

3 writeORef ref "Some new contents"

4 readORef ref

Write operations will follow the ownership rules. Consequently the operation will not

allow a resource to be updated if the reference no longer exists. If the reference in the

previous example was dropped prior to the write operation, the expression will evaluate

to a Left value. The ownership monad will prevent the write operation from occuring

because a dropped entry will no longer be writable.

1 startOwn $ do

2 ref <- newORef "Original contents"

3 dropORef ref

4 writeORef ref "Some new contents"

5 readORef ref

The value within the resource can be updated and changed through the reference

that owns the resource. This is to say that the underlying resource can be changed

by referring to its owner as long as it is in scope and writable. This operation can be

performed safely because the usage of the underlying resource is tracked by the ownership

monad.

writeORef :: Typeable a => ORef a -> a -> Own ()



21

writeORef oref a = do

ok <- checkORef oref

case ok of

False -> lift $

left "Error during write operation. Checking if the entry\

\ could be written to or if it was in the same thread\

\ returned False."

True -> setValue oref a

The reference that is being changed cannot have any functions using the ORef and it

must be in the same thread as the write operation. When the operation is performed,

the existing resource inside the ORef is overwritten by the new value. This naturally

limits the user to overwriting the referrence with a new value without any regards to

what the previous value was inside the reference. In order to alter the contents of a

reference with a function based on what the contents of the reference presently is, the

user must use a borrow operation.

3.2.7 Borrowing a Resource

Borrowing a resource is a library operation which allows a function to be able to use

the contents of an owned reference and have protect access to the current value of the

reference. The function that is granted access to the resource will be required to remain

in the context of the ownership monad.

As a result, this operation can be used to lend out the contents of a reference tem-

porarily to be able to inspect its current contents in a print statement. While the resource

is lent out other operations will be prevented from using the reference.

1 startOwn $ do

2 x <- newORef "Hello from inside the reference"

3 let f :: String -> Own ()

4 f a = liftIO . putStrLn $

5 "The contents of the ORef is: " ++ a

6 _ <- borrowORef x f

7 return ()



22

The previous expression will evaluate to Right (), and the contents of the reference

will be printed to standard output. This would also be the outcome in a situation in

which a long-running function borrowed the resource.

1 startOwn $ do

2 x <- newORef "Hello from inside the reference"

3 let f :: String -> Own ()

4 f a = liftIO $ do

5 putStrLn $ "The contents of the ORef is: " ++ a

6 threadDelay 1000000 -- delay for 1 second

7 _ <- borrowORef x f

8 contents <- readORef x

9 return contents

Because of the monadic sequencing of operations in a single thread, the outcome of

a long-acting function borrowing a function will be the same as that of a short-acting

function. The previous expression will print the contents of the referrence to standard

output, delay for some time, and will then evalutate to a Right value. For single-threaded

operations the ownership rules will not be violated if a long-running function borrows

the resource inside a reference.

The borrow operation is similar to passing a value to a function as a mutable borrow

in the Rust language. As we saw in the previous example this library takes a slightly

different approach: instead of letting variables borrow a resource, a borrow operation

instead lends the resource to a function which temporarily borrows the resource in order

to use it and potentially mutate it in place.

borrowORef :: Typeable a => ORef a -> (a -> Own b) -> Own b

borrowORef oref k = do

ok <- checkORef oref

case ok of

False -> lift $

left "Error during borrow operation.\

\ The checks for if the entry was in the same thread\

\ as the borrow operation and if the entry could be\



23

\ written to returned false."

True -> do

setORefLocked oref

v <- getValue oref

b <- k v

setORefWritable oref

return b

A borrow operation can occur if the owned reference is writable and in the same

thread as the operation. While the resource is being borrowed it is prevented from being

written to or read by other operations. The setORefLocked function adjusts the flag on

the entry inside a owned reference to locked.

The function that is passed in a borrow can regard the value it sees as the current

state of the resource in the ORef. This differs from reading a reference and making a

copy of its value which will be discussed next.

The value inside a reference uses the internal library function getValue. This will

raise an error condition if an attempt is made to get an empty Nothing value.

getValue :: Typeable a => ORef a -> Own a

getValue oref = do

e <- getEntry oref

v <- liftIO (value e)

case v of

Just a -> return a

Nothing -> lift $ left "Cannot retrieve the value of an empty ORef"

The internal value function is responsible for reading a value from the IOREf it is

stored in and reifing it to a concrete type. This function handles the failure conditions

that could come about from casting the value inside an entry to a concrete type.

value :: Typeable a => Entry -> IO (Maybe a)

value (Entry _ _ (Just ioref)) = do

v <- readIORef ioref

case cast v of



24

Just a -> return (Just a)

Nothing -> error "internal cast error"

value (Entry _ _ Nothing) = return Nothing

The function that borrows the resource is of type (a -> Own b). The resource being

consumed in the function remains inside of the context of the ownership monad while

the function executes. Much like the Rust language, the borrow operation on an ORef

will not permit a (potentially mutable) resource to be lent to multiple borrowers.

This will ensure that the resource is not mutated or written to while is it lent out to

the borrowing function. Because each borrow operation occurs within the context of the

ownership monad the resource usage can be tracked and this property can be ensured.

The reference that owns the resource will track the resource while the function executes.

The borrow operation also ensures that the original ORef does not go away before

the function borrowing it is complete. This will make sure that the function is not

referring to an ORef that no longer exists. The borrowed ORef is not able to be moved or

dropped before the borrowing function completes. This is enforced by the move and drop

operations which individually check that a ORef does not have any functions borrowing

the resource.

This library does not allow multiple functions to simultaneously perform borrow

operations on an existing ORef. This restrictions means that the borrowing function is

assumed to mutate the value in the reference but it is not required to do so.

For convenience a second variant of the borrow operation is provided which updates

the contents of the borrowed reference with the result of the function. The type signature

ensures that the function borrowing the reference will have the same resulting type as

the reference:

borrowAndUpdate :: Typeable a => ORef a -> (a -> Own a) -> Own ()

3.2.8 Reading from an ORef

A read operation is slightly different than a borrow operation. Where a borrow operation

gives a function exclusive and monitored access to a resource, a read operation will take

a snapshot of the current contents. The snapshot is returned, but no guarantees can be

made about the current contents of the ORef after the read operation has completed.



25

1 box <- newORef True

2 schrodingers_cat_alive <- readORef box

Reading from an ORef will reveal what the contents of the ORef was at the time

the read was performed, but the ORef will continue to exist after the read operation.

Because of this the value inside the ORef may later change.

The advantage of using a read instead of a borrow is that the read operation will

remove a copy of the resource from the confines of the ORef. This copied value is freed

from the restrictions imposed on values contained inside references by the ownership

system. As previous examples for the other ownership operations have shown, read

operations are useful for extracting the final value from a reference at the completion of

a series of ownerhip monad operations.

readORef :: Typeable a => ORef a -> Own a

readORef oref = borrowORef oref return

3.2.9 Running the Ownership Monad

An ownership monad expression can be evaluated using the startOwn function. This

will run the expression in an initially empty ownership context, one that does not have

any existing owned references.

startOwn :: Own a -> IO (Either String a)

startOwn x = runEitherT (evalStateT x (0, empty))

The evalOwn function can be used to evaluate an ownership computation with the

initial context passed as an argument.

evalOwn :: Own a -> (ID,Store) -> IO (Either String a)

evalOwn actions startState =

runEitherT (evalStateT actions startState)

The continueOwn function can be used to evaluate a nested ownership computation

from within an existing ownership monad. This will use the existing monad as the

context to run the nested ownership computation.



26

continueOwn :: Own a -> Own (Either String a)

continueOwn x = do

s <- get

liftIO $ runEitherT (evalStateT x s)

Functions which operate in the ownership monad, or small ownership expressions,

might exist which a user would like to run in a separate thread. The forkOwn function

provides a way for an ownership expression to be evaluated in a separate thread.

forkOwn :: Own a -> Own ()

forkOwn innerOps = do

_ <- liftIO $ forkIO $ do

childResult <- startOwn innerOps

case childResult of

Left violation ->

putStrLn $ "A child thread failed with the following: " ++ violation

Right _ -> return ()

return ()

The ownership expresion of type Own a is passed as an argument. The forkOwn

function evaluates the ownership operations using a new ownership monad state. The

child thread will execute the expression it is given and will print debugging information

to standard output in the case of an ownership violation.

3.3 Mitigating Deadlock

Typically mutable resources are protected by granting exclusive access of the resource to

one thread at a time. Other threads will have to block until the thread which possesses

access releases the resource.

This form of concurrency control is often referred to as a mutex, a portmanteau

of the words mutual and exclusion. While a mutex is enough to prevent a data race,

where two resources have unfettered access to the same shared resource, without careful

consideration a mutex can easily create a deadlock situation.



27

Deadlock situations are common when shared resources, protected through mutual

exclusion, are nested. MVar’s (mutable variables) in Haskell can be used to demonstrate

such a situation:2

1 nestedResources :: MVar Int -> MVar Int -> IO ()

2 nestedResources outerResource innerResource = do

3 modifyMVar_ outerResource $ \outer -> do

4 yield

5 modifyMVar_ innerResource $

6 \inner -> return (inner + 1)

7 return (outer + 1)

8 return ()

9

10 deadlockMVar :: IO ()

11 deadlockMVar = do

12 resourceA <- newMVar 0

13 resourceB <- newMVar 0

14 forkIO $ nestedResources resourceA resourceB

15 forkIO $ nestedResources resourceB resourceA

16 return ()

The yield function is used here to force a context switch to the other available

runnable thread. Lock inversion deadlock in general, and in this example specifically, is

created because in order for the function to release the outer resource (if it possesses it)

it must gain access to the inner resource. In a multi-threaded program, one thread may

gain access to one resource, while at the same time another thread gains access to the

other resource. In such a situation both threads now need what the other thread has in

order to release the resource they hold.

This kind of bug is difficult to find and debug because it cannot be dependably

reproduced. The reason for this is that the situation described in this example which

creates the deadlock will not always occur. This contributes to deadlock bugs being

difficult to isolate and fix when they do occur.

2 This example of lock order inversion deadlock adapted from the example of deadlock from Chapter
24 of Real World Haskell [11]



28

This example can be adapted to work with owned references. When this is done,

instead of spasmodically creating a deadlock condition, it will always create an ownership

violation and fail with a description of the violation. Instead of having to remember what

order to acquire locks and where the resources are being accessed in their program, the

library user can fix the ownership violation they introduced into their multi-threaded

program:

1 nestedORef :: ORef Int -> ORef Int -> Own ()

2 nestedORef outerRef innerRef = do

3 borrowAndUpdate outerRef $ \outer -> do

4 liftIO $ yield

5 borrowAndUpdate innerRef $

6 \inner -> return (inner + 1)

7 return (outer + 1)

8 return ()

9

10 deadlockORef :: Own ()

11 deadlockORef = do

12 orefA <- newORef 0

13 orefB <- newORef 0

14 forkOwn $ nestedORef orefA orefB

15 forkOwn $ nestedORef orefB orefA

16 return ()

This example produces an ownership violation because owned references are only

owned by the thread which created them. The contents of the owned references, while

internally mutable, cannot be shared across a thread as a mutable value in the same way

that MVar’s or IORef’s can be. This restriction is intentional; the mutability only exists

within the scope of the monad which owns the ORef.

The issue presented in the earlier locking access example with MVar’s is rooted in the

ability to share access to mutable resources in un-intended ways. In comparison, while

owned references are mutable (as we have seen with their internal IORef implementation)

this is wrapped in the ownership system rules.



29

3.3.1 Owned References in Multi-threaded Programs

As the previous example demonstrated, owned references are only valid within the scope

of the thread that created them. But this does not preclude them from being used in

multi-threaded programs. In order to do that, a way to give up ownership of an ORef

when it’s been shared between threads is needed. The ownership system needs to prevent

a situation in which a thread attempts to use a resource that the thread has given up

ownership over by sharing.



30

Chapter 4: Owned Channels

4.1 Introduction

Owned Channels expand on the concept of using channels between threads to write to

and read from a shared location. As with traditional channels, this location can be used

by concurrent threads in order to share resources and to communicate.

Instead of sending the resource across a channel, owned channels send ownership of

the resource as well. The key idea behind owned channels is for the thread sending a

resource across a channel to relinquish ownership over the resource. A thread reading a

resource from the channel will automatically gain ownership over the resource it consumes

from the channel.

Once a thread has sent a resource over the channel, later operations in the thread

will be prevented from using that resource. If a thread needs to use the resource again,

it must read the resource from a channel and reclaim ownership over the resource.

4.1.1 Motivation

With traditional concurrent channels, the thread that originally wrote a mutable resource

to a channel would retain access to the resource. This is because the variable bound to

the resource is still valid in the scope of the code which wrote to the channel.

As a result it would be perfectly legal to write code that later referred to the resource

through an existing variable binding in the original thread. Channels from the collection

of concurrency abstractions available in the base libraries of Haskell do not track resource

ownership as it shared between threads. In order to enforce which thread owns which

resource, there would need to be some way to track not just what a resource is but also

what variable (and what thread) owns a resource.



31

4.1.2 Using Owned References to Construct Owned Channels

As discussed earlier, the functions to operate on owned references enforce how resources

may be used within the context of the ownership monad. It is possible to use the

resources in owned references safely, knowing that any violations of the ownership rules

will be detected. For that reason, owned references provide a useful building block for

constructing larger abstractions that are concerned with tracking resource ownership.

One such area of concern is how to enable expressions in separate threads to access

the same resource. Multiple (potentially mutable) concurrent expressions can evaluate

a shared resource as long as they do not do so simultaneously. It is well understood

that problems arise when threads attempt to access a shared resource without a control

mechanism. Likewise, a deadlock situation can accidentally be created when access to

shared resources is hoarded by a single thread. As the chapter introduction alluded, one

solution to this problem is to create a system for sharing access to resources between

channels which tracks both what the resources are as well as who owns the resources.

Using owned references as a building block it is quite easy to create such a system.

Additionally it is possible to do so on top of the existing channel interface and the

concurrency abstractions which the base libraries in Haskell provide.

4.2 Owned Channel Operations

The major idea that owned channels take advantage of is that ownership of resources

can be tracked and used in isolation. Each ownership monad only needs to concern itself

with references that are in the scope of that monad.

For that reason multiple threads can exist and each can have their own ownership

monad without sacrificing the ability to reason about resource use. The resources avail-

able to each of these threads are covered by that thread’s ownership monad. The act of

giving up ownership (on write operations) is enough information to facilitate the transfer

of resource ownership between threads.

Owned channels are the abstraction built on top of the ownership monad which han-

dle the inter-thread ownership information. The operations are intended to be similar to

the channel operations from Control.Concurrent.Chan in the base libraries of Haskell.

There are operations for creating an owned channel, writing to the owned channel and



32

reading from an owned channel:

type OChan a = Own (Chan a)

newOChan :: OChan a

writeOChan :: Typeable a => OChan a -> ORef a -> Own ()

readOChan :: Typeable a => OChan a -> Own (ORef a)

Owned channel operations detect ownership violations and prevent the accidental

shared ownership of a resource. This allows each thread to be able to acquire or give up

ownership of resources in a safe manner. The read and write operations will only allow

the user to read or write references to the channel. Read and write operations are also

restricted to the context of the ownership monad.

4.2.1 Writing to an Owned Channel

Writing to an owned channel takes the contents of an ORef in one thread and writes it to

the channel — the shared state between the threads. From the view-point of the thread

that wrote to the channel, this operation consumes the ORef and the thread loses the

ability to further use the ORef in later operations.

writeOChan :: Typeable a => OChan a -> ORef a -> Own ()

writeOChan ch oref = ch >>= (\x -> writeOChan x oref)

The writeOChan function takes an owned channel and writes the resource to it.

Because the owned reference only exists within the ownership monad, it is not necessary

for resource safety to use an OChan, and a regular Chan type can be substituted in

it’s place if used in combination with the writeOChan’ function. Using an OChan with

writeOChan saves the user from having to lift the regular channel out of the IO monad

within their ownership monad expression and is provided for convenience.

This write operation is composed from the combination of two ORef operations, a

borrow followed by a drop operation, although these ORef operations are hidden from

the user of the OChan library.

writeOChan’ :: Typeable a => Chan a -> ORef a -> Own ()



33

writeOChan’ ch oref = do

borrowORef oref (\v -> liftIO $ writeChan ch v)

dropORef oref

To write an ORef to a channel, the owned channel operation needs to use the value

that the owned reference refers to. This means that before any further operations can

occur, the ORef must not have any functions currently using its contents. The owned ref-

erence must exist within the context of the ownership monad as well. If those conditions

are satisfied, then the first of the two ORef operations can occur.

In order to write the resource inside the ORef to a traditional channel, within the

owned channel operation, the function writing the resource to the channel needs to

borrow the resource. This might seem odd since it would appear that the function

borrowing access to the resource intends to send the resource to another thread. The

resource that was written to the channel will not be returned. This is similar to a resource

being duplicated using the copy operation, the only difference is that the function which

is borrowing access performs an IO operation to send a copy of the resource to the

channel.

This step stands out because the function borrowing the resource is sharing it with

other threads and with different ownership monads. However, this step occurs inside the

larger owned channel write operation and will be opaque to the user of the library.

When the resource has been written to the channel, it will still exist in the original

thread. This is resolved in the next ORef operation which is to drop the ORef that was

just borrowed. This immediately follows the completion of the borrow operation which

used the underlying resource in order to send it to the channel. Upon completion, as far

as the ownership monad for that thread is concerned, the ORef has been consumed.1

Because the ORef no longer has any functions using it, it is now possible to drop it

from that monad using the ORef drop operation. This will update the resource ledger for

that monad — crucially without touching the resource itself. This prevents any further

operations from using the resource in that thread.

1The value sent across the channel will not be in an IORef. The borrow operation allows a function
act on the contents of the IORef in an ORef entry but not the IORef itself.



34

1 singleThreadedWrite :: Own ()

2 singleThreadedWrite = do

3 ref <- newORef ""

4 writeORef ref "Quark"

5 let ch = newOChan

6 writeOChan ch ref

7 writeORef ref "Odo"

8 -- ^^ writing to a ref that ’s no longer owned

This example will evaluate to a Left value which identifies a violation caused by a

writeORef operation in this monad. After the ORef, named ref, is written to the owned

channel on line 6 it no longer exists within this ownership environment. For that reason

when the expression tries to use ref on line 7, an ownership violation is detected.

A write operation should totally consume the resource. Even though a read operation

seems suitable for the first internal step in a write operation, the borrow operation on

owned references is used instead. This is done to ensure that the actual value in the

owned reference is being used and sent across the channel. The read operation would

report what the value was at the time of reading it, but other functions could then

mutate it in quick succession after the read is complete.

4.2.2 Reading from an Owned Channel

Reading from an owned channel can be thought of as the reverse of writing to an owned

channel. Rather than sending the contents of an ORef to another thread and giving

up ownership of the resource, we are instead taking ownership of a resource from the

channel and encapsulating it within a new ORef.

readOChan :: Typeable a => OChan a -> Own (ORef a)

readOChan oc = oc >>= readOChan

A normal channel can be used with the readOChan’ function because the reference

which is read from the channel will remain within the context of the ownership monad.

readOChan’ :: Typeable a => Chan a -> Own (ORef a)



35

readOChan’ ch = do

v <- liftIO $ readChan ch

newORef v

Within the read operation a resource is first read from the traditional channel. This

retrieves and removes the resource from the channel, which prevents other threads from

then reading that resource.

The second operation is to place the freshly acquired resource inside a new ORef.

This ORef will then be returned into the final ownership monad context. The thread

which performed the read operation will now have access to the ORef and will be able

to manipulate the value inside it using the provided operations for owned references.

1 chanTest :: Own ()

2 chanTest = do

3 ch <- newOChan

4 ref <- newORef ""

5 writeORef ref "Quark"

6 writeOChan ’ ch ref

7 _childThrID <- forkOwn $ do

8 -- in the child thread

9 childRef <- readOChan ’ ch

10 val <- readORef childRef

11 liftIO $ putStrLn $ "Child thread received: " ++ val

12 liftIO $ do

13 yield

14 threadDelay 3000000 -- 3 seconds

15 writeOChan ’ ch childRef

16 return ()

17 -- back in the parent thread

18 newParentRef <- readOChan ’ ch

19 writeORef newParentRef "Odo"

20 return ()

The previous example shows a set of operations that will not create an ownership



36

violation. In this example an owned channel is created in the parent thread and an

owned reference is written to the channel. This will remove that reference from the

parent environment. The thread is then forked with forkOwn, which will evaluate the

ownership expression passed to it in a child thread. The child thread reads the owned

reference from the channel and prints it. Even though the child thread then delays for

three seconds (line 14) before writing the reference back to the owned channel, there will

not be an ownership violation in the parent thread. The parent thread regains ownership

over the reference by reading it from the owned channel an is able to operate on it once

again.

4.2.3 Creating an Owned Channel

Creating an owned channel, comparatively, is a very simple operation. A traditional

channel is created through an IO operation and placed within the ownership monad.

newOChan :: OChan a

newOChan = do

ch <- liftIO newChan

return ch

It was noted earlier that there are write and read functions provided in the OChan

library that can operate on normal IO bound channels. Using a regular channel in the

ownership monad, with the write and read operation for owned channels, provides the

same ability to reason about resource use and detect violations.



37

Chapter 5: Conclusion

5.1 Resource management in the Ownership Monad

This project report has demonstrated a monadic library-based approach for tracking

resources. Resource management done in this way allows a user to detect when a program

tries to a use a resource in a referent with more than one variable binding.

Other languages have approached resource management with similar solutions: no-

tably language-level support for ownership typing in Rust as well as uniqueness types in

Idris which make use of Idris’ dependent type system. This report has demonstrated how

a similar approach to tracking resource use can be implemented in Haskell as a library.

The library approach shows how a similar ability for reasoning about resource use

can be attained without abstractions which require language-level support for affine or

linear types. While systems based on these approaches may provide more features for

resource tracking, the resource tracking functionality defined in the ownership monad

leverages existing language features and libraries in Haskell.

5.2 Future Work

5.2.1 Structured Error Reporting

In the current implementation of the ownership monad, violations are reported using

the existing Either monad transformer. This propagates a Left String value which

contains the error message when an ownership typing violation occurs. Future work

could instead use a structured error type in place of the string.

This approach would define a sum type encompassing the possible errors and own-

ership typing violations. As a Haskell data type, the representations of the failure cases

could have constructor fields which would indicate what ownership operation the error

occurred in and why. Using custom types in the constructor fields to represent this

information would allow library users to pattern match on those failure conditions.



38

5.2.2 Ownership Typing in Other Domains

This report has also shown that the operations presented with the ownership monad can

be used to construct larger abstractions which concern themselves with resource use. The

owned reference operations in this library were designed to create a system to explore

ownership typing rules in Haskell. Shared mutable state in concurrent programs using

owned channels was an early area where the usefulness of this system was discovered.

Owned channels are comprised of owned reference operations which enforce the own-

ership typing rules. In this design, owned reference operations are superficially decoupled

from the owned channel operations and are instead used internally as building blocks for

the owned channel operations.

This library, in its current form, is primarily concerned with resource use between

threads. For that reason thread ID is deeply routed in the ownership typing rules this

library implements for owned references. It may be possible to create other abstractions

out of the operations for owned references which target domains outside of concurrency.

Future forms could disentangle thread ID from this central internal role in owned

references in the Entry datatype and replace it with a type parameter or a type variable.

data Entry =

forall x v. Typeable v => Entry Flag x (Maybe (IORef v))

The possible types of identifying values for resource spaces in other project domains

could then be used in this type variable. For concurrency between threads this type

would continue to be the thread ID, but for other areas such as distributed computing

between separate machines or for operating system processes, other types could be used.

Doing so would then allow for the operations on owned references to be polymorphic

over those types.



39

Bibliography

[1] Linear types. https://ghc.haskell.org/trac/ghc/wiki/LinearTypes, 2017.

[2] Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions.
In CONCUR, volume 10, pages 222–236. Springer, 2010.

[3] The Idris Community. Uniqueness types. http://docs.idris-lang.org/en/

latest/reference/uniqueness-types.html, 2018.

[4] The Rust Project Developers. Trait std::clone::clone. https://doc.rust-lang.

org/std/clone/trait.Clone.html, 2017.

[5] The Rust Project Developers. Frequently asked questions. https://www.

rust-lang.org/en-US/faq.html#does-rust-have-a-runtime, 2018.

[6] The Rust Project Developers. Frequently asked questions. https://www.

rust-lang.org/en-US/faq.html#is-rust-garbage-collected, 2018.

[7] The Rust Project Developers. References and borrowing. https://doc.rust-lang.
org/book/second-edition/ch04-02-references-and-borrowing.html, 2018.

[8] The Rust Project Developers. Traits: Defining shared behavior. https://doc.

rust-lang.org/book/second-edition/ch10-02-traits.html, 2018.

[9] The Rust Project Developers. What is ownership? https://doc.rust-lang.org/

book/second-edition/ch04-01-what-is-ownership.html, 2018.

[10] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt:
Securing the foundations of the rust programming language. Proc. ACM Program.
Lang., 2(POPL):66:1–66:34, December 2017.

[11] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell. O’Reilly
Media, Inc., 1st edition, 2008.

[12] Jennifer Paykin and Steve Zdancewic. The linearity monad. In Proceedings of
the 10th ACM SIGPLAN International Symposium on Haskell, Haskell 2017, pages
117–132, New York, NY, USA, 2017. ACM.

[13] Philip Wadler. Linear types can change the world! In PROGRAMMING CON-
CEPTS AND METHODS. North, 1990.

https://ghc.haskell.org/trac/ghc/wiki/LinearTypes
http://docs.idris-lang.org/en/latest/reference/uniqueness-types.html
http://docs.idris-lang.org/en/latest/reference/uniqueness-types.html
https://doc.rust-lang.org/std/clone/trait.Clone.html
https://doc.rust-lang.org/std/clone/trait.Clone.html
https://www.rust-lang.org/en-US/faq.html#does-rust-have-a-runtime
https://www.rust-lang.org/en-US/faq.html#does-rust-have-a-runtime
https://www.rust-lang.org/en-US/faq.html#is-rust-garbage-collected
https://www.rust-lang.org/en-US/faq.html#is-rust-garbage-collected
https://doc.rust-lang.org/book/second-edition/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/second-edition/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/second-edition/ch10-02-traits.html
https://doc.rust-lang.org/book/second-edition/ch10-02-traits.html
https://doc.rust-lang.org/book/second-edition/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/second-edition/ch04-01-what-is-ownership.html



	Introduction
	Contributions

	Background
	Linear and Affine Types
	Uniqueness Types
	Ownership Types in Rust

	The Ownership Monad
	Internal Implementation
	Ownership System Operations
	Owned References
	Reference Creation
	Dropping an Owned Reference
	Copying a Reference
	Moving Ownership
	Writing to a Resource
	Borrowing a Resource
	Reading from an ORef
	Running the Ownership Monad

	Mitigating Deadlock
	Owned References in Multi-threaded Programs


	Owned Channels
	Introduction
	Motivation
	Using Owned References to Construct Owned Channels

	Owned Channel Operations
	Writing to an Owned Channel
	Reading from an Owned Channel
	Creating an Owned Channel


	Conclusion
	Resource management in the Ownership Monad
	Future Work
	Structured Error Reporting
	Ownership Typing in Other Domains


	Bibliography

