
View-based Editing of Variational Code

By
Miles Van de Wetering

A THESIS

submitted to

Oregon State University

University Honors College

in partial ful�llment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Scholar)

Presented May 22, 2017
Commencement June 2017

AN ABSTRACT OF THE THESIS OF

Miles Van de Wetering for the degree of Honors Baccalaureate of Science in Computer Science
presented on May 22, 2017. Title: View-based Editing of Variational Code

Abstract approved:

Eric Walkingshaw

This paper discusses the merits of providing users variational views when editing variational code. I

provide a plugin for the popular Atom Integrated Development Environment (IDE) which replaces #ifdef

annotations commonly used by the C PreProcessor (CPP) with colored backgrounds, thus reducing code

clutter and attempting to help programmers quickly distinguish code that belongs to di�erent features. I

also provide a number of helpful features designed to help the programmer create, remove, and refactor

feature code. Finally, I present a user study conducted in order to determine how helpful each of the

two main features (code folding and background color) are to programmers - it was determined that

while there were no signi�cant di�erences in e�ciency or accuracy, the user experience was considerably

enhanced.

Key Words: variation, ifdef, editing, hci, software product lines

Corresponding e-mail address: vandewmi@oregonstate.edu

©Copyright by Miles Van de Wetering
June 5, 2017

All Rights Reserved

View-based Editing of Variational Code

By
Miles Van de Wetering

A THESIS

submitted to

Oregon State University

University Honors College

in partial ful�llment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Scholar)

Presented May 22, 2017
Commencement June 2017

Honors Baccalaureate of Science in Computer Science project of Miles Van de Wetering presented on
May 22, 2017

APPROVED:

Eric Walkingshaw, Mentor, representing Computer Science

Mike Bailey, Committee Member, representing Computer Science

Carlos Jensen, Committee Member, representing Computer Science

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of Oregon State University
Honors College. My signature below authorizes release of my project to any reader upon request.

Miles Van de Wetering, Author

1 INTRODUCTION

Software Product Lines (SPLs) - programs consisting of a core set of functionality and one or many

optional features - are increasingly important in today’s world of complex, hierarchical software. They

are also extremely di�cult to reason about and debug. Often features are managed with pre-processor

code like the #ifdef construct in C, which has for some time been noted as potentially harmful to code

health [10]. Research into SPLs has suggested methods and architectures for better managing complexity

and easier feature addition and management [1] [3] [9], but the fact remains that SPLs pose a challenge to

even the best programmers. This research includes modularity and composition techniques which center

around clear separation of concerns in the source code, but pre-processor code is still widely used in

practice. Unfortunately, separation of concerns isn’t always possible, convenient, or even useful.

To this end, I have designed a plugin for the Atom IDE which assists users in working with CPP

annotations. Whether the programmer is working with legacy code (for example, the Linux kernel

which contains a huge number of optional features all using CPP syntax) or designing a new software

product line, my tool demonstrates a way of supporting programmers irrespective of methodology or

architecture. Through the use of helpful color annotation designed to reduce clutter and noise generated

by pre-processor annotations and a projectional viewing tool which allows the user to examine what

code will be compiled under di�erent scenarios, I aim to support programmers and make designing and

debugging software product lines easier.

2 RELATEDWORK

In previous research, a variety of methods have been proposed to create software product lines and ease

the use of pre-processor code. Couto et al. set out to extract a software product line from ArgoUML, an

open source tool used to design systems in the Uni�ed Modeling Language (UML), in order to evaluate

di�erent tools, techniques, and languages proposed to implement SPLs [2]. They noted a great deal of

complexity in that project arose from ‘tangling’ and ‘nesting’ of features. While they were able to annotate

the entire project using CPP code, they noted the tedium and complexity involved in doing so.

Another prominent project is the Colored IDE or CIDE [7]. Noting that �ne-grained extensibility of code

such as optional code statements or functions has the potential for reducing replicated code, potentially

resulting in less obfuscation of code in SPLs, they set out to extend the Eclipse IDE to better support

�ne-grained variability. The essential idea of this software was to avoid pollution of the source code

and allow programmers to more easily identify feature code. This was accomplished primarily through

colorization - the programmer annotated their code, telling the editor that a line belonged to a speci�c

feature. The line was then given an appropriate background color based on that feature. If code belonged

to multiple nested features then it was marked with a background color that was a blend of the relevant

feature colors. Lastly, a projectional view was implemented in CIDE which allowed the programmer to

view what her code would look like if certain features were disabled or removed.

Marco Tulio Valente, Virgilio Borges, and Leonardo Passos designed a semi-automatic method of

extracting software product lines from existing (unannotated) legacy code. Their tool accepted ‘seeds’ or

small pieces of code that belonged to a certain feature, and attempted to propogate that feature annotation

up syntactically if possible [12].

In our research’s group previous work, we tested a prototype of the tool presented in this paper which

added colorful backgrounds to source code and asked users to perform a variety of tasks both with the

colorization and without [8]. This prototype was based on the Choice Calculus [3] While the prototype

was simple and non-interactive, users could switch between di�erent ’projections’ of the code. This

allowed them to directly observe what code would be included in the product when di�erent sets of

features were enabled or disabled. We found that participants had a signi�cantly easier time analyzing

and understanding code which was annotated using our prototype tool than they did with the default

CPP representation [8].

Walkingshaw and Ostermann also proposed a ‘projectional editing’ scheme for variational software [13].

In their approach, users would make edits to a partially con�gured software product line (similar to the

approach that I take in my plugin) and those edits are re�ected back automatically on the original source

code according to de�ned rules. The core of this idea is the ‘edit isolation’ principle which mandates that

any edits made in a particular con�guration are isolated to the features which were con�gured when the

edit was made [11]. Originally, my plug in was designed to employ this ‘edit isolation’ model, but I found

very early on in the process that this principle can make editing somewhat tedious for users in practice.

When edit isolation is enforced, users have no manual control over which features the code they are

editing should belong to - any edits made are forced into the features that are currently con�gured. That

approach is useful in several speci�c scenarios [13] but not necessarily useful in the general editing case.

I instead opted for much more manual control to be given to the programmer - in this paper ‘projection’

will be used to indicate a partially con�gured view of the source code, but I pay no further attention to

the edit isolation principle.

Worthy of special note is work that was done by Feigenspan et al. on background colors in IDEs.

They implemented a program much like my own plugin which added background colors to features in

an e�ort to help with program comprehension [4]. They did not implement any sort of code �ltering

or projectional viewing. Unfortunately, with their very limited sample size they were unable to draw

statistically signi�cant results demonstrating that their prototype tool was e�ective. They did, however,

note that subjects preferred color based annotations when given the choice, even though they were

unable to conclude that programmers were more e�ective when provided with feature-based background

coloring.

3 CONTRIBUTIONS

In our view, CIDE was an excellent step forward but had several limitations. The �rst and perhaps most

important of these limitations was that CIDE only supported optional features. This precludes a case that

is common in pre-processor syntax:

1 #ifdef MY_FEATURE

2 // do some stuff

3 #else

4 // do something else

5 #endif

While supporting only the basic #ifdef ... #endif is certainly easier, it also means that a great

deal of existing legacy code is incompatible with their approach.

The second missing piece which we believe to be important is annotation of existing code. While CIDE

provided convenient functionality for annotating existing code with features, it did not provide a way

to import existing pre-processor annotated code into their tool. Third, color mixing seems intuitive as

a means of representing and understanding nested features, but unfortunately results in background

colors losing a great deal of meaning after just a few levels of nesting. Programmers are generally unable

to juggle more than a few colors at a time, and the cross product of just 5 features might result in a

great many color combinations [5]. In CIDE they got around this problem by providing helpful tooltips

clarifying which features a particular piece of code belonged to. Colors at this point simply served to

point out that a piece of code was annotated with some features, but they were insu�cient to discern

which ones. We wanted a tool which programmers could tell, at �rst glance, what the relationships were

between pieces of code and individual features. Lastly, CIDE limited feature annotation capability to valid

syntax sub-trees. They made this decision on the grounds that annotations which are limited to syntax

trees tend to be easier to support and understand. This may be true, but we are interested in supporting

existing use cases and unfortunately situations like the following are quite common in industry code, but

unsupported by syntax-tree limited software like CIDE:

1 #ifdef MY_FEATURE

2 if(condition) {

3 #else

4 if(different condition) {

5 #endif

Our group’s previous research demonstrated that a prototype tool that allowed colorful background

colors to di�erentiate features and a view selection tool to see what code would look like with certain

features enabled or disabled assisted users in understanding and correctly interpreting code. Unfortunately,

that study was unable to isolate the di�erence between the impacts that colorization may have had versus

those that code folding and projectional viewing may have had. In thus study we seek to carefully control

for these two di�erent independent variables and determine which is more helpful to the user.

4 IMPLEMENTATION

Based on this prior research, I hypothesize that complicated preprocessor syntax like ‘#ifdef’ can be made

more understandable to the programmer through careful use of colorization combined with relatively

familiar features like code folding. Ideally, these features would be integrated with an IDE in order to

allow the programmer to leverage her usual work�ow alongside the new tools at her disposal. Similar

tools have been made in the past, but they have failed to implement several key features, and were written

for IDEs that are used by only a subset of the industry. For the �rst several months of work on this project,

my time was devoted to selecting and evaluating di�erent IDEs that might be useful for our purposes.

Unfortunately many of the IDEs that I experimented with su�ered from the same problem - while they

allowed adding new language highlighting rules, they generally did not allow the basic functionality of

the editor to be modi�ed. Two that I considered carefully were the JetBrains IDE and the MPS IDE (tree

editing). JetBrains was eventually discarded because it did not allow me the versatility and control that I

required in order to make extensive modi�cations. While the MPS IDE did allow for major changes to its

functionality, we determined that it was too obscure to be of any great use for a user study. I wanted to

design a plugin that would implement these key features in a modern, popular IDE. Furthermore, selecting

a popular, simple IDE would help us evaluate the impacts of various features as accurately as possible.

For this reason, I selected Atom.

Atom is a highly con�gurable development environment built on the Chrome web browser. This meant

that all modi�cations would be written in JavaScript. I wrote a parsing program in Haskell using the

Megaparsec library. Haskell was chosen as the language for the parser because other members of our lab

are already very familiar with the language. This made it more maintainable for our group. The Haskell

parser reads in a C or C++ �le and outputs an abstract syntax tree that de�nes all information required

for the Atom plugin to replace concrete #ifdef syntax with colors. The AST nodes were de�ned as follows:

1 export interface ContentNode {

2 type: "text";

3 content: string;

4 span?: Span;

5 marker ?: AtomCore.IDisplayBufferMarker;

6 }

7

8 type ChoiceKind = "positive" | "contrapositive";

9

10 export interface ChoiceNode {

11 type: "choice";

12 name: string;

13 thenbranch: RegionNode;

14 elsebranch: RegionNode;

15 kind: ChoiceKind;

16 span?: Span;

17 marker ?: AtomCore.IDisplayBufferMarker;

18 delete ?: boolean;

19 }

20

21 export interface RegionNode {

22 type: "region";

23 segments: SegmentNode [];

24 span?: Span;

25 hidden ?: boolean;

26 }

The parser returns a Region node representing the top-level document to the JavaScript code whenever

the plugin is toggled. Using this meta-syntax tree that the parser has constructed, the JavaScript hides the

#ifdef syntax and replaces it with colors. The advantage of having a Haskell parser in addition to the main

JavaScript plugin is that this allows us to import any valid CPP code and immediately use it with our

plugin. It also means that the JavaScript code is syntax-agnostic: we can easily swap out any annotation

construct in place of the usual ‘#ifdef’ syntax. This was very helpful for us during development and it is a

crucial feature for any plugin meant for use maintaining legacy code.

During the development process, complexity of the plugin grew signi�cantly as features were added

and edge cases discovered. Eventually this became almost unmanageable in JavaScript, so the code base

was converted to Typescript (semantically equivalent to JavaScript, but allows for typed variables and a

better object model. This made code maintenance and debugging much easier. The code seen above was

in fact Typescript code taken from the �nal plugin source.

The plugin allows users to select which colors will represent each dimension of variation. Nested

features are depicted by having the main, most speci�c feature color as the primary background color

of a piece of code, but all of the other, less speci�c features which the code is nested inside of are also

represented as discreet bands of color along the left side of the editor, as shown in Figure 1.

Figure 1: Nested Colorization in Task 1

It also allows them to ’�lter’ the code to see what will be compiled if di�erent dimensions are de�ned

or unde�ned. Code that is hidden with this feature may be viewed with a mouse-over tooltip. It allows

the creation of new dimensions, and the insertion and deletion of arbitrarily nested choice nodes. Undo

was never implemented in the plugin, unfortunately, because keeping track of a stack of tree states was

not worth the usability gains for the purpose of our study. In the future, the ability to undo edits in the

plugin would be extremely useful.

To complete the project, four variants of the plugin were made and published. The �rst is simply

the default Atom IDE with undo disabled (undo was disabled in every version of the plugin). This was

necessary to ensure that all treatment groups had access to the same basic features to avoid skewing

results. The second included colorization and removal of ‘#ifdef’ syntax, but did not allow variant folding.

The third allowed variant folding but did not colorize the code, nor did it remove any of the ‘#ifdef’ syntax.

The fourth included all features.

5 RESEARCH QUESTIONS

The following research questions were central to the design of the view-based editing of variational code

study. The ultimate goal is to identify those factors that assist users in understanding and modifying

variational code – code containing de�ned and unde�ned variables that will be included or excluded from

the program (respectively) . Towards this goal, we would like to better understand whether �ltering or

colorization of code provides the most bene�t to users, or if the combination of the two is needed to assist

users in understanding and modifying code of this type.

RQ1. Can users more accurately deduce the number of variants and describe the behavior of a particular

variant represented in code presented in the plugin compared to code annotated with CPP?

RQ2. Can users more quickly deduce the number of variants and describe the behavior of a particular

variant represented in code presented in the plugin compared to code annotated with CPP?

RQ3. Can users more accurately identify and correct errors within variants represented in code presented

in the plugin compared to code annotated with CPP?

RQ4. Can users more quickly identify and correct errors within variants represented in code presented

in the plugin compared to code annotated with CPP?

RQ5. Does �ltering or colorization of variational code provide the contributing factor to performance

di�erences when code is presented in the plugin?

6 METHODS

This section is divided into a pro�le of participants as described in section 6.1, the apparatus and materials

used to conduct the study in section 6.2, and a detailed account of the procedure used in collection of data

is found in section 6.3.

6.1 Participants

Study participants were recruited from undergraduate and graduate electrical engineering and computer

science (EECS) students at Oregon State University. We employed the following eligibility criteria for

selecting students:

1. Adults (18 years of age or older);

2. Graduate or undergraduate student in the EECS department;

3. Correctly answered four questions designed to test for a basic understanding of CPP code. These

questions are shown in the Screening Test in Appendix A: Surveys.

We conducted our research using 29 subjects. Students were recruited from university mailing lists such

as the eecs-grads and eecs-undergrad mailing lists for the EECS department. Twenty-�ve males and 4

females participated in the study. Two participants reported as ‘Asian-American,’ 5 as ‘International,’ 3 as

’Multi-Racial,’ 9 as ‘White/Caucasian,’ 2 as ‘Other,’ and 12 declined to respond. Fourteen were between 18

and 24 years old, 7 were between 25 and 35 years old, and the rest did not report their age (all were at

least over the age of 18, however). Of the undergraduate students that reported their grade level, there

were 2 freshmen, 4 sophomores, 6 juniors, and 6 seniors. Eleven graduate students also participated.

The participants reported between a minimum of 1 year of C programming experience and a maximum

of 15 years of experience, with an average of 3.5 years and a standard deviation of 3.5 years. Twenty two

of the participants had taken and passed a data structures course, 7 had not. Eleven participants were

familiar with Atom, 18 were not. None of the participants reported that they were color blind. Twenty-six

of the participants had prior experience editing CPP code, while 3 did not.

As the goal of the study was to capture data for three treatments of the plugin (one with only �ltering,

one with only colorization, and one with both �ltering and colorization) in addition to the control, each of

the participants was assigned to a particular treatment on a task-by-task basis. In this way we could vary

the treatment across the tasks, and users were exposed to each of the four treatments in random order.

All subjects were given the same set of reading and understanding, and debugging tasks to complete

using di�erent treatments applied to the Atom IDE in the form of plugins. Participants were randomly

assigned to treatments for each of the tasks.

6.2 Apparatus and Materials

Participants performed reading and understanding tasks as well as debugging tasks in a standard Microsoft

Windows environment. The environment was installed on 7 Dell Optiplex desktop computers, and was

implemented the same way on each to ensure consistency of the environment for all participants. In

addition to the Windows environment, each participant had the following applications installed:

1. Firefox web browser;

2. Atom IDE (four plugins were installed in conjunction with this – see below);

a. variational-java version 0.7.5 – this is the version of the plugin with both �ltering and

colorization;

b. VAtom-NoColor version 1.0.6 – this is the version of the plugin with only �ltering;

c. VAtomNoFeatures version 0.1.0 – this is the control;

d. VAtomNoFold version 0.1.0 – this is the version of the plugin with only colorization.

All applications were present and pre-con�gured to have the same representation for each participant.

We assigned users a “subject ID” in order to maintain participant anonymity. These IDs were randomly

generated combinations of alpha-numeric characters (each string 10 characters in length). Each participant

took a 9-item “background” questionnaire (see Background Questionnaire in Appendix A: Surveys)

designed to characterize the participant’s background and relative expertise in relation to using CPP. In

addition, we asked users to self-identify color-blindness in order to further parse the a�ect of colorization

on code understanding an modi�cation. Participants were evaluated using a 6 to 8-item (this varied by

task) Reading and Understanding questionnaire (see Appendix A: Surveys) to gauge the participant’s

ability to understand a particular variant of code based on which variables were included or excluded

from execution.

Participants were then presented with a “bug report” from a user of the code involved with the task.

They were asked to identify and correct the defect in the code, and then re�ect on their experience by

�lling out a 5-item Post Task questionnaire (see Appendix A: Surveys). This post-task questionnaire

was implemented utilizing the NASA-TLX questionnaire format [6]. The only modi�cation we made to

the formatting was to remove the “Physical Demand” input. Because of the nature of the tasks being

performed, and the lack of physical exertion involved it was not relevant.

6.3 Procedure

Participants were assigned to speci�c seat locations where computers were already logged into Windows,

with no other markers from previous study sessions remaining on the computer. The entirety of the

procedure was replicated across all study sessions (which consisted of between three and �ve subjects

each) in order to minimize any variance in the study session experience. In addition, a tutorial script was

followed to ensure subjects all received the baseline information necessary for completing the study, as

well as any information about the tools not covered in the minimum requirements for study participation.

Subjects were given a background questionnaire in order to establish some baseline information about

experience using Atom as well as working with CPP in general. Tasks were provided to all subjects using

the same mechanism (study team members loaded the IDE environment and �les prior to the start of

each task), and all users had access to the Firefox browser (see Appendix B: Tasks) for a detailed view

of the tasks all subjects received). Subjects were randomly assigned to treatments groups without prior

knowledge of their background with Atom or CPP. All tasks were completed in their entirety before the

next task was provided to them.

During the tasks, subjects were asked to answer questions designed to access their understanding of

the code as well as its readability using the di�erent versions of the plugin (as well as the default editor

view). They were also asked to modify the code by performing a debugging task. Lastly during the tasks

they were asked to re�ect on the task load the encountered while completing the requirements of the

task. Once all the tasks were completed, a post-study questionnaire was administered to evaluate the

usefulness of the versions of the plugin.

6.3.1 Research Design. The choice of an exploratory study design should be valuable for identifying

ways to improve our theories and models of how students approach and complete variational coding

tasks. These theories and models will help us re�ne IDE plugins, and other tools for reading and editing

variational code in order to reduce human e�ort required for variational coding tasks.

The study protocol is centered on giving subjects a particular set of tasks in a prescribed order, assigning

the users a randomized treatment order for those tasks, and capturing reading and understanding informa-

tion as well as the actions of the subjects as they complete a debugging task using the applications provided

(Atom, Firefox, et al.). In a manner of speaking the independent variable is the task being completed, and

the dependent variables are the di�erent versions of the Atom plugin the users are using to complete those

tasks. Therefore, we analyzed the level of understanding, time of completion, and successful completion

of the tasks.

In addition to the independent and dependent variables described above, we identi�ed our choice

of platform (e.g. Microsoft Windows), choice of applications (e.g. Firefox and Atom IDE), the desktop

environment consistency, and commonality of code feature numbers and expressions in the variational

coding tasks as control variables. We also took into consideration potential random variables in the form

of demographic information, and experience using the platform or applications beyond the minimum

required for the study. The various dependent variables were mapped to a user comprehension metric, an

observed task completion metric, and other relevant metrics.

7 DATA

We collected data in the form of questionnaires (section 7.1), instrumentation logs (section 7.2), as well as

observational data sources (section 7.3).

7.1 Questionnaires

There were four questionnaires designed by the study team for use in this study. The �rst was a background

questionnaire that was completed by the subjects before they had started any variational coding tasks.

The aim of this �rst questionnaire was to explore the subject’s background information about experience

working with variational code and more general topics regarding demographic information. This was a

12-item questionnaire that highlighted expertise beyond the minimum requirement of the study.

The second questionnaire was a reading and understanding questionnaire that was completed by the

subjects as part of the task completion process (e.g. after the code was given to them, but before the

subjects began any debugging work). The aim of the second questionnaire was to ask some speci�c

questions about the code the subjects would be working with in the debugging task that would follow.

The questionnaire had between 4 and 7 questions, depending upon the task, two of which were common

questions across all of the tasks while the remainder were speci�c to the piece of code the subjects were

looking at. This allowed us to gauge the abilities of subjects to understand di�erent pieces of code using

di�ering versions of the plugin.

For the third questionnaire we included a modi�ed NASA-TLX [6] questionnaire designed to measure

task load index. For the purposes of our study, we weren’t interested in physical task load, so we used a

subset of the original questionnaire as a basis for our post-task questionnaire. The aim of this questionnaire

was to gauge responses to task load based on the task the subject just completed while the task was fresh

in their mind.

The �nal questionnaire was a post-task questionnaire that was completed by the subjects as part of

the exit process (e.g. after the subjects had completed all of the variational coding tasks). The aim of this

questionnaire was to ask speci�c questions about the versions of the plugin the subjects just used to

complete the tasks. We wanted to get an subjective measure of how users felt they did, and how well they

felt the treatments a�ected their performance in each of the tasks.

7.2 Instrumentation Logs

Application-speci�c instrumentation was used to record log events. We collected Firefox window events

(e.g. activate/deactivate, UI focus, tab activate/show/close, �le downloads, print, and clipboard copy/cut/-

paste).

For File I/O we used an o�-the-shelf system logging tool to monitor �le opens, closes, renames, etc, at

the operating system level. We used a home-grown logging tool to record low-level keyboard, mouse and

clipboard events that integrated with the application-speci�c logging tools that were already built.

All of the logs were merged using the shared ISO time �eld and some common �elds like “app”, and

“properties.” As di�erent events had di�erent relevant properties, some custom extraction code was needed

for the properties �eld. The merged system logs gave a consistent time-ordered view of user behavior

across all the applications at the disposal of the user.

In order to formulate the beginning and ending of tasks, we used a program designed for screen capture

(TechSmith Camtasia Recorder 8). The frames within the screen capture gave us a straightforward way to

observe the beginning and ending of the tasks, which allowed us to infer time to complete, as well as

e�ort metrics from the events using the log event timestamps.

7.3 Observational Data

As it is not uncommon for instrumentation logs to miss key events, we also conducted screen recording

screen recording of the subjects during the course of each session. As previously stated we used an

o�-the-shelf software package (TechSmith Camtasia Recorder 8) that ran in the background to avoid

distracting users. It is worth noting that no recording of the actual subjects occurred.

In addition, we recorded observational data using journal entries for each session. These entries

contained notes about the subjects on questions asked, struggles encountered, and barriers to completion

of the tasks. These journal entries were coded for analysis.

8 RESULTS

None of the treatments demonstrated signi�cant divergence from the control, except with respect to one

metric which was ‘Frustration.’ Table 1 shows our results, along with p-values derived from an ANOVA

analysis to determine if the treatment groups diverged from the control. Figures 2 through 8 show the

Figure 2: Reading & Understanding Times

Figure 3: Debug Times

data as box-plots (the box-plots only compare the full treatment with the control for the NASA-TLX data).

Fourteen participants reported that it was much easier to determine how many variants there were when

using the plugin, 13 said that it was easier, and 2 said that it was the same di�culty either way. Fourteen

said it was much easier to understand a particular variant using the full plugin, 13 said that it was easier,

and 2 said that it was harder. Thirteen said that it was much easier to see how variants were related in the

plugin, 1 said that it was easier, 1 said it was the same di�culty, 2 said that it was harder, and 1 said that

it was much harder.

Table 1: Treatment Results

Measurement Treatment p-value
Reading and Understanding Time NoFolding .5854

NoColor .7119
Full .931

Debugging Time NoFolding .2971
NoColor .4327
Full .8284

Mental Di�culty NoFolding .5854
NoColor .7119
Full .1039

Temporal Di�culty NoFolding .4615
NoColor 1
Full .857

Performance (Self-rated) NoFolding .3672
NoColor .2444
Full .3315

E�ort NoFolding .2291
NoColor .4554
Full .2582

Frustration NoFolding .6777
NoColor .4652
Full .008 **

Figure 4: Mental Di�culty

Figure 5: Temporal Di�culty

Figure 6: Performance

Figure 7: E�ort

Figure 8: Frustration

9 DISCUSSION

In general, we were unable to glean any signi�cant empirical data that colorization or folding are useful

to programmers. There was little evidence that it either sped them up or improved their accuracy for

the purposes of the tasks they were presented. This did not match our expectations, however, it does

match the results of some other studies which have been conducted [4], with the exception of some of

our group’s previous work [13]. There are many possible reasons that these features might not be useful

for our subjects. Firstly, since we attempted to study four unique treatments, subjects were only exposed

to each new feature set for about twenty minutes. This may not be enough time to familiarize one’s self

with the tools. This theory is supported by some observational data. Users were sometimes seen to be

performing tasks with the plugin without changing the colors (making it very di�cult to discern which

pieces of code belonged to which features) or making use of the projectional viewing functionality.

It is also possible the features we are providing users with are not signi�cantly more useful than the basic

representation because they do not actually add any new information. Rather, they reformat information

that was already there to (hopefully) make things nicer for the user. This might explain why correctness

values do not change with treatment type - correct responses from users are much more highly correlated

with user experience than with treatment type.

User’s responses to our subjective questions were extremely positive. Almost all the subjects reported

that they found the tasks to be easier in a variety of ways when they were using the plugin, and almost

all reported that they preferred the plugin to the default view. The user’s perception of their experience

did not match our empirical data - although it is important to note that they did no worse than with the

default view, despite using new and very unfamiliar tooling.

With all this we are forced to conclude without signi�cant evidence that users are more accurate or

faster when working with our plugin. Rather, what we do have is a very solid consensus among our

test subjects that their experience is better when given access to colorization and folding features. The

user’s experience is a valuable thing, and we believe that it is worth further consideration to see if these

user-pleasing features can be enhanced to help user e�ciency and accuracy in addition to their experience.

9.1 Threats to Validity

A concise listing of potential threats to validity for an empirical study is provided by Wohlin at al. [14],

and we addressed those threats we were able to identify as pertinent to this study.

9.1.1 Internal Validity.

1. History: The study is exposed to this potential threat, since we have no idea whether or not subjects

are performing tasks while “fresh” or after a long stressful day. We scheduled subjects into sessions

at the same time of day (starting at 15:00) in order to minimize the e�ects of subjects having

variation in their level of energy.

2. Maturation: Our study was scheduled to take as much as two hours to complete. Because subjects

react di�erently as time passes, we feel there is some potential exposure to this threat. We mitigated

the e�ect of this by maintaining a consistent stream of tasks so subjects weren’t constantly waiting

on the study.

3. Selection: Because humans naturally vary in performance, this is a potential threat. We minimized

this threat through the use of our background questionnaire, as well as through the random

assignment of treatments to tasks with a consistent presentation of task order. We also plan

to analyze data that compares how well each subject did compared with themselves, and then

compare these relative numbers between subjects, in addition to a standard comparison of raw

numbers. We believe that by adjusting this way for individual skill we will be able to strengthen

the validity of our conclusions.

4. Ambiguity: It could be that some factor causes di�erences in performance between subjects, rather

than the version of the plugin being used. The use of randomization of treatment assignment

could potentially amplify this a�ect. We mitigated this by designing as unambiguous of tasks as

we could, though we still believe there is some necessary bias introduced through the use of a

single IDE as the delivery tool for tasks.

9.1.2 External Validity.

1. Interaction of setting and treatment: In this study, we selected participants from a speci�c population

(students in an academic environment) in order to study the di�erences presented by the tools.

Because we assigned people randomly into treatments on a per task basis, with enough participants

we obtain a natural distribution of plugin versions per task.

9.1.3 Construct Validity.

1. Interaction of di�erent treatments: Because users were randomly assigned to plugin versions on

a per task basis, it becomes di�cult to disentangle the e�ects of the plugin from the e�ects of

user expertise. In order to minimize this we take into account a large number of users in order to

obtain a natural distribution of plugin versions per task.

9.1.4 Conclusion Validity.

1. Reliability of measures: Reliance on instrumentation event logging to obtain a good portion of our

results puts us at risk of exposure to this threat. To decrease our exposure we not only collected

logging data, but also had an observer record any anomalies that may have occurred, and we also

employed screen capture as a backup to review sessions that had missing or incorrect logging

information.

In addition to the threats above, there are two other aspects that are worth considering as threats to

validity in our study:

1. Human work behavior for “fake” tasks is not always the same as that for “real” or “important”

tasks.

2. Completion of “fake” tasks is often less than “real” or “important” tasks.

REFERENCES

[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Software Product Lines. In Feature-Oriented Software

Product Lines. Springer Berlin Heidelberg, Berlin, Heidelberg, 3–15. DOI:https://doi.org/10.1007/978-3-642-37521-7_1

[2] M V Couto, M T Valente, and E Figueiredo. 2011. Extracting software product lines: A case study using conditional

compilation. 2011 15th European Conference on Software Maintenance and Reengineering, CSMR 2011 (2011), 191–200. DOI:

https://doi.org/10.1109/CSMR.2011.25

[3] Martin Erwig and Eric Walkingshaw. 2013. The Choice Calculus: A Representation for Software Variation. (2013).

http://web.engr.oregonstate.edu/

[4] J. Feigenspan, M. Schulze, M. Papendieck, C. Kastner, R. Dachselt, V. Koppen, and M. Frisch. 2011. Using background colors

to support program comprehension in software product lines. In 15th Annual Conference on Evaluation & Assessment in

Software Engineering (EASE 2011). IET, 66–75. DOI:https://doi.org/10.1049/ic.2011.0008

https://doi.org/10.1007/978-3-642-37521-7_1
https://doi.org/10.1109/CSMR.2011.25
http://web.engr.oregonstate.edu/
https://doi.org/10.1049/ic.2011.0008

[5] Mark Harrower and Cynthia A Brewer. ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps. (????).

DOI:https://doi.org/10.1179/000870403235002042

[6] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and

theoretical research. Advances in psychology 52 (1988), 139–183.

[7] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in software product lines. Proceedings of 30th

International conference on Software engineering (2008), 311–320. DOI:https://doi.org/10.1145/1368088.1368131

[8] Duc Le, Eric Walkingshaw, and Martin Erwig. 2011. #ifdef con�rmed harmful: Promoting understandable software

variation. Proceedings - 2011 IEEE Symposium on Visual Languages and Human Centric Computing, VL/HCC 2011 (2011),

143–150. DOI:https://doi.org/10.1109/VLHCC.2011.6070391

[9] L. Neves, P. Borba, V. Alves, L. Turnes, L. Teixeira, D. Sena, and U. Kulesza. 2015. Safe evolution templates for software

product lines. Journal of Systems and Software 106 (2015), 42–58. DOI:https://doi.org/10.1016/j.jss.2015.04.024

[10] Henry Spencer and Geo� Collyer. 1992. #ifdef Considered Harmful, or Portability Experience With C News. In USENIX

Conf. https://www.usenix.org/legacy/publications/library/proceedings/sa92/spencer.pdf

[11] Stefan Stanciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wasowski. 2016. Concepts, Operations, and

Feasibility of a Projection-Based Variation Control System. In 2016 IEEE International Conference on Software Maintenance

and Evolution (ICSME). IEEE, 323–333. DOI:https://doi.org/10.1109/ICSME.2016.88

[12] M T Valente, V Borges, and L Passos. 2012. A semi-automatic approach for extracting software product lines. IEEE

Transactions on Software Engineering 38, 4 (2012), 737–754. DOI:https://doi.org/10.1109/TSE.2011.57

[13] Eric Walkingshaw and Klaus Ostermann. 2014. Projectional editing of variational software. In ACM SIGPLAN Notices,

Vol. 50. ACM, 29–38.

[14] C Wohlin, P Runeson, M Host, MC Ohlsson, B Regnell, and A Wesslen. 2000. Experimentation in software engineering:

an introduction. 2000. (2000).

https://doi.org/10.1179/000870403235002042
https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1109/VLHCC.2011.6070391
https://doi.org/10.1016/j.jss.2015.04.024
https://www.usenix.org/legacy/publications/library/proceedings/sa92/spencer.pdf
https://doi.org/10.1109/ICSME.2016.88
https://doi.org/10.1109/TSE.2011.57

A SURVEYS

B TASKS

B.1 Task 1: Clock

1 #include <iostream >

2 #include <windows.h>

3

4 using namespace std;

5

6 #ifdef ALARMCLOCK

7 bool alarm_set = false;

8 int alarm_hour = -1;

9 int alarm_minute = -1;

10 int alarm_second = -1;

11 #endif

12

13

14 int main()

15 {

16 int a = 0;

17 int h;

18 int m;

19 int s;

20 #ifdef ALARMCLOCK

21 int res;

22 #endif

23

24 mistake:

25

26 cout << "What␣is␣the␣current␣hour?\n";

27 cin >> h;

28

29 cout << "\nWhat␣is␣the␣current␣minute ?\n";

30 cin >> m;

31

32 cout << "\nWhat␣is␣the␣current␣second ?\n";

33 cin >> s;

34

35 #ifdef TWENTYFOURHOUR

36 if (h > 24 || m > 60 || s > 60)

37 #else

38 if (h > 12 || m > 60 || s > 60)

39 #endif

40 {

41 cout << "\nPlease␣try␣again!\n\n";

42 goto mistake;

43 }

44 #ifdef ALARMCLOCK

45 cout << "Would␣you␣like␣to␣set␣an␣alarm?␣(0-no/1-yes)";

46 cin >> res;

47

48 alarm_mistake:

49 if (res == 1) {

50

51 #ifdef RELATIVE

52 cout << "How␣many␣hours␣from␣now␣should␣the␣alarm␣go␣off?";

53 #else

54 cout << "What␣hour␣should␣the␣alarm␣go␣off?";

55 #endif

56 cin >> alarm_hour;

57 #ifdef TWENTYFOURHOUR

58 #ifdef RELATIVE

59 if (alarm_hour + h > 24)

60 #else

61 if (alarm_hour > 24)

62 #endif

63 #else

64 #ifdef RELATIVE

65 if (alarm_hour + h > 12)

66 #else

67 if (alarm_hour > 12)

68 #endif

69 #endif

70 {

71 goto alarm_mistake;

72 }

73 #ifdef RELATIVE

74 else {

75 alarm_hour = alarm_hour + h;

76 }

77 #endif

78

79 #ifndef RELATIVE

80 cout << "What␣minute␣should␣the␣alarm␣go␣off?";

81 cin >> alarm_minute;

82

83 if (alarm_minute > 60)

84 {

85 goto alarm_mistake;

86 }

87 cout << "What␣second␣should␣the␣alarm␣go␣off?";

88 cin >> alarm_second;

89 if (alarm_second > 60)

90 {

91 goto alarm_mistake;

92 }

93 #else

94 alarm_minute = m;

95 alarm_second = s;

96 #endif

97

98 }

99 #endif

100

101

102 while (a == 0)

103 {

104 Sleep (1000);

105

106 #ifdef ALARMCLOCK

107 if (h == alarm_hour && m == alarm_minute && s ==

alarm_second) {

108 cout << "BEEP!␣BEEP!␣BEEP!";

109 }

110 #endif

111

112 // increment time

113 s++;

114 if (s > 59)

115 {

116 s = 0;

117 m++;

118

119 if (m > 59)

120 {

121 m = 0;

122 h++;

123

124 #ifdef TWENTYFOURHOUR

125 if (h > 24)

126 {

127 #else

128 if (h > 12)

129 #endif

130 {

131 h = 0;

132 }

133 }

134 }

135 }

136 }

B.2 Task 2: Goto

1 #include "stdio.h"

2

3 typedef enum {

4 #ifdef HASGOTO

5 GOTO ,

6 #endif

7 #ifdef HASSKIP

8 SKIP ,

9 #endif

10 ADD , END

11 } t_code;

12

13 typedef struct {

14 t_code code; int arg;

15 } t_instr;

16

17 int reg = 0;

18 int ctr = 0;

19

20 void exec(t_instr i) {

21 if (i.code == ADD) {

22 reg += i.arg;

23 #ifdef HASSKIP

24 } else if (i.code == SKIP) {

25 if (reg > i.arg) ctr++;

26 #endif

27 #ifdef HASGOTO

28 } else if (i.code == GOTO) {

29 ctr = i.arg;

30 #endif

31 }

32

33

34 #ifdef HASGOTO

35 if (i.code != GOTO)

36 #endif

37 ctr++;

38 }

39

40 void eval(t_instr *instrs) {

41 t_instr i;

42 while (1) {

43 i = instrs[ctr];

44 if (i.code == END) return;

45 exec(i);

46 }

47 }

48

49 int main() {

50 t_instr is[] = {

51 {ADD ,1},

52 #ifdef HASSKIP

53 {SKIP ,3},

54 #endif

55 #ifdef HASGOTO

56 {GOTO ,0},

57 #endif

58 {ADD ,1}, {END ,0}};

59 printf("result =%d\n", eval(is));

60 }

B.3 Task 3: StackLang

1 #include <stdlib.h>

2 #include <stdio.h>

3

4

5 typedef struct Stack Stack;

6 struct Stack {

7 #ifdef STRDATA

8 void* value;

9 #else

10 int value;

11 #endif

12 Stack* next;

13

14 };

15

16 Stack* pushStack(Stack* s, int val) {

17 Stack* newStack = (Stack*) malloc(sizeof(Stack));

18 newStack ->value = val;

19 newStack ->next = s;

20 return newStack;

21 }

22 #ifdef POP

23 Stack* popStack(Stack* s) {

24 Stack* res = s->next;

25 free(s);

26 return res;

27 }

28 #else

29

30 #endif

31

32 void printStack(Stack* s) {

33 while (s != NULL) {

34 #ifndef STRDATA

35 printf("%d␣", s->value);

36 #else

37 printf("%s␣", (char*) s->value));

38 #endif

39 s = s->next;

40 }

41 printf("\n");

42 }

43

44 int main() {

45 Stack* s = NULL;

46 #ifdef STRDATA

47 s = pushStack(s, "I");

48 s = pushStack(s, "AM");

49 s = pushStack(s, "REALLY");

50 #ifdef POP

51 s = popStack(s);

52 #endif

53 s = pushStack(s, "ENJOYING");

54 printStack(s);

55 #ifdef POP

56 s = popStack(s);

57 #endif

58 s = pushStack(s, "A");

59 s = pushStack(s, "BEAVER");

60 s = pushStack(s, "BELIEVER");

61 #ifdef POP

62 s = popStack(s);

63 s = popStack(s);

64 s = popStack(s);

65 #endif

66 #else

67 s = pushStack(s, 2);

68 s = pushStack(s, 3);

69 #ifdef POP

70 s = popStack(s);

71 #endif

72 s = pushStack(s, 5);

73 printStack(s);

74 #ifdef POP

75 s = popStack(s);

76 #endif

77 s = pushStack(s, 6);

78 #ifdef POP

79 s = popStack(s);

80 s = popStack(s);

81 s = popStack(s);

82 #endif

83 #endif

84 printStack(s);

85 }

B.4 Task 4: Jeeves

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4

5 int health = 10;

6

7 #ifdef JOKER

8 int crime = 0;

9 #endif

10

11 void say(char* message) {

12 #ifdef POLITE

13 printf("%s", "Sir ,␣\n");

14 #endif

15 printf("%s", message)

16 }

17

18 void morning_greeting () {

19 say("Good␣morning !\n");

20 }

21

22 void lunch_time () {

23 say("It␣is␣time␣for␣lunch\n");

24 }

25

26 void bed_time () {

27 printf("%s", "It's␣getting␣late ...\n");

28 if(crime > 0) {

29 say("To␣the␣Bat␣Cave!\n");

30 #ifdef JOKER

31 crime --;

32 health --;

33 #else

34 crime --;

35 #endif

36 } else {

37 say("Go␣to␣bed");

38 health ++;

39 }

40 }

41

42 int main() {

43

44 while(health > 0) {

45 #ifdef BUTLER

46 morning_greeting ();

47 lunch_time ();

48 bed_time ();

49 #else

50 say("Batman␣forgets␣to␣take␣care␣of␣himself.");

51 health --;

52 #endif

53

54 #ifdef JOKER

55 crime += 3;

56 #else

57 crime += 1;

58 #endif

59 }

60 }

	1 Introduction
	2 Related Work
	3 Contributions
	4 Implementation
	5 Research Questions
	6 Methods
	6.1 Participants
	6.2 Apparatus and Materials
	6.3 Procedure

	7 Data
	7.1 Questionnaires
	7.2 Instrumentation Logs
	7.3 Observational Data

	8 Results
	9 Discussion
	9.1 Threats to Validity

	References
	A Surveys
	B Tasks
	B.1 Task 1: Clock
	B.2 Task 2: Goto
	B.3 Task 3: StackLang
	B.4 Task 4: Jeeves

