Types

April 30, 2015
Outline

Introduction
 Concepts and terminology
 The case for static typing

Implementing a static type system
 Basic typing relations
 Adding context
Types and type errors

Type: a set of syntactic terms (ASTs) that share the same behavior
- Int, Bool, String, Maybe Bool, [[Int]], Int -> Bool
- defines the **interface** for these terms – in what contexts can they appear?

Type error: occurs when a term cannot be assigned a type
- typically a violation of the type interface between terms
- if not caught/prevented, leads to a crash or unpredictable evaluation
Type safety

A type system detects and prevents/reports type errors

A language is **type safe** if an implementation can detect all type errors

- **statically**: by proving the absence of type errors
- **dynamically**: by detecting and reporting type errors at runtime

Type safe languages
- Haskell, SML
- Python, Ruby
- Java

Unsafe languages
- C, C++
- PHP, Perl, JavaScript

Notes

- pointers
- conversions
Implicit type conversions: strong vs. weak typing

Many languages **implicitly convert** between types – is this safe?

Only if it’s determined by the types, *not* the runtime values!

Java (safe)

```java
int n = 42;
String s = "Answer: " + n;
```

PHP, Perl (unsafe)

```php
n = "4" + 2;
s = "Answer: " + n
```
Static vs. dynamic typing

Static typing
- Types are associated with **syntactic terms** (ASTs)
- Type errors are reported at **compile time** (and typically prevent execution)
- Type checker **proves** that no type errors will occur at runtime

Dynamic typing
- Types are associated with **runtime values**
- Type errors are reported at **runtime** (e.g. by throwing an exception)
- Type checker is **integrated** into the runtime system
Outline

Introduction
 Concepts and terminology
 The case for static typing

Implementing a static type system
 Basic typing relations
 Adding context
Benefits of static typing

Usability and comprehension

1. **machine-checked documentation**
 - guaranteed to be correct and consistent with implementation
2. **better tool support**
 - e.g. code completion, navigation
3. **supports high-level reasoning**
 - by providing named abstractions for shared behavior
Correctness

4. **a partial correctness proof** – no runtime type errors
 - improves robustness, focus testing on more interesting errors

Efficiency

5. **improved code generation**
 - can apply type-specific optimizations

6. **type erasure**
 - no need for type information or checking at runtime
Drawback: static typing is conservative

Q: What is the type of this expression?
 \[\text{if } 3 > 4 \text{ then } \text{True} \text{ else } 5 \]
A: Static typing: **type error**
 Dynamic typing: **Int**

Silly examples, but …
- many advanced type features created to “reclaim” expressiveness

Q: What is the type of this one?
 \[\lambda x \to \text{if } x > 4 \text{ then } \text{True} \text{ else } x+2 \]
A: Static typing: **type error**
 Dynamic typing: ???
Outline

Introduction
 Concepts and terminology
 The case for static typing

Implementing a static type system
 Basic typing relations
 Adding context
Static typing is a “static semantics”

Dynamic semantics (a.k.a. execution semantics)
- *what is the meaning of this program?*
- relates an AST to a **value** (denotational semantics)
- describes what program does at **runtime**

\[
\text{sem} : \text{Exp} \rightarrow \text{Val}
\]

Static semantics
- *which programs have meaning?*
- classifies/restricts programs based on structure
- describes meaning of program at **compile time**

\[
\text{typeOf} : \text{Exp} \rightarrow \text{Type}
\]

Typing is just a semantics with a different type of value
Defining a static type systems

1. Define the **abstract syntax**, E
 the set of abstract syntax trees

2. Define the structure of **types**, T
 another abstract syntax

3. Define the **typing relation**, $E : T$
 the mapping from ASTs to types

Example encoding in Haskell:

```
data Exp = ...
data Type = ...
typeOf :: Exp -> Type
```

Then, we can define a dynamic semantics that **assumes** there are no type errors
Outline

Introduction
- Concepts and terminology
- The case for static typing

Implementing a static type system
- Basic typing relations
- Adding context
Typing contexts

Often we need to keep track of some information during typing

- types of top-level functions
- types of local variables
- an implicit program stack
- set of declared classes and their methods
- ...

Put this information in the typing context (a.k.a. the environment)

\[
\text{typeOf :: Exp} \to \text{Env} \to \text{Type}
\]