Semantics
Outline

What is semantics?

Denotational semantics

Semantics of naming
What is the meaning of a program?

Recall: aspects of a language

- **syntax**: the structure of its programs
- **semantics**: the meaning of its programs
How to define the meaning of a program?

Formal specifications

- **denotational semantics**: relates terms directly to values
- **operational semantics**: describes how to evaluate a term
- **axiomatic semantics**: describes the effects of evaluating a term
- ...

Informal/non-specifications

- **reference implementation**: execute/compile program in some implementation
- **community/designer intuition**: how people “think” a program should behave

What is semantics?
Advantages of a formal semantics

A formal semantics …

- is **simpler** than an implementation, **more precise** than intuition
 - can answer: is this implementation correct?

- supports the definition of analyses and transformations
 - prove properties about the language
 - prove properties about programs

- promotes better language design
 - better understand impact of design decisions
 - apply semantic insights to improve the language design (e.g. *compositionality*)
Outline

What is semantics?

Denotational semantics

Semantics of naming
A denotational semantics relates each term to a denotation:

- An abstract syntax tree
- A value in some semantic domain

Valuation function

\[[\cdot] : \text{abstract syntax} \rightarrow \text{semantic domain} \]

Valuation function in Haskell

\[
\text{sem :: Term} \rightarrow \text{Value}
\]
Semantic domain: captures the set of possible meanings of a program/term

what is a meaning? — it depends on the language!

Example semantic domains

<table>
<thead>
<tr>
<th>Language</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean expressions</td>
<td>Boolean value</td>
</tr>
<tr>
<td>Arithmetic expressions</td>
<td>Integer</td>
</tr>
<tr>
<td>Imperative language</td>
<td>State transformation</td>
</tr>
<tr>
<td>SQL query</td>
<td>Set of relations</td>
</tr>
<tr>
<td>MiniLogo program</td>
<td>Drawing</td>
</tr>
</tbody>
</table>
Defining a language with denotational semantics

Example encoding in Haskell:

1. Define the abstract syntax, T
 the set of abstract syntax trees

   ```haskell
   data Term = ...
   ```

2. Identify or define the semantics domain, V
 the representation of semantic values

   ```haskell
   type Value = ...
   ```

3. Define the valuation function, $\llbracket \cdot \rrbracket : T \rightarrow V$
 the mapping from ASTs to semantic values

   ```haskell
   sem :: Term -> Value
   ```
Example: simple arithmetic expressions

1. Define abstract syntax

```haskell
data Exp = Add Exp Exp
         | Mul Exp Exp
         | Neg Exp
         | Lit Int
```

2. Identify semantic domain

Use the set of all integers, \(\text{Int} \)

3. Define the valuation function

```haskell
sem :: Exp -> Int
sem (Add l r) = sem l + sem r
sem (Mul l r) = sem l * sem r
sem (Neg e) = negate (sem e)
sem (Lit n) = n
```
Desirable properties of a denotational semantics

Compositionality: a program’s denotation is built from the denotations of its parts
- supports modular reasoning, extensibility
- supports proof by structural induction

Completeness: every value in the semantics domain is denoted by some program
- ensures that semantics domain and language align
- if not, language has expressiveness gaps, or semantics domain is too general

Soundness: if two programs are “equivalent” then they have the same denotation
- equivalence: e.g. by some syntactic rule or law
- ensures the equivalence relation and denotational semantics are correct
More on compositionality

Compositionality: a program’s denotation is built from the denotations of its parts.

An AST \[\text{sub-ASTs} \]

Example: What is the meaning of \(\text{op } e_1 e_2 e_3 \)?

1. Determine the meaning of \(e_1, e_2, e_3 \)
2. Combine these submeanings in some way specific to \(\text{op} \)

Implications:
- The valuation function is probably **recursive**
- We need different valuation functions for each **syntactic category** (type of AST)
Example: simple arithmetic expressions (again)

1. Define abstract syntax

\[
\text{data Exp} = \text{Add Exp Exp} \\
| \text{Mul Exp Exp} \\
| \text{Neg Exp} \\
| \text{Lit Int}
\]

2. Identify semantic domain

Use the set of all integers, \text{Int}

3. Define the valuation function

\[
\text{sem :: Exp} \rightarrow \text{Int} \\
\text{sem (Add l r)} = \text{sem l} + \text{sem r} \\
\text{sem (Mul l r)} = \text{sem l} \times \text{sem r} \\
\text{sem (Neg e)} = \text{negate (sem e)} \\
\text{sem (Lit n)} = n
\]
Example: move language

A language describing movements on a 2D plane
- a **step** is an n-unit horizontal or vertical movement
- a **move** is described by a sequence of steps

Abstract syntax

```haskell
data Dir = N | S | E | W
data Step = Go Dir Int
type Move = [Step]
```

[Go N 3, Go E 4, Go S 1]
Semantics of move language

1. Abstract syntax

```haskell
data Dir = N | S | E | W
data Step = Go Dir Int
type Move = [Step]
```

2. Identify semantic domain

```haskell
type Pos = (Int,Int)
Domain: Pos -> Pos
```

3. Valuation function (Step)

```haskell
step :: Step -> Pos -> Pos
step (Go N k) = \(x,y) -> (x,y+k)
step (Go S k) = \(x,y) -> (x,y-k)
step (Go E k) = \(x,y) -> (x+k,y)
step (Go W k) = \(x,y) -> (x-k,y)
```

3. Valuation function (Move)

```haskell
move :: Move -> Pos -> Pos
move [] = \p -> p
move (s:m) = move m . step s
```
Alternative semantics

Often multiple interpretations (semantics) of the same language

Example: Database schema
One declarative spec, used to:

- initialize the database
- generate APIs
- validate queries
- normalize layout
- ...

Distance traveled

```haskell
type Dist = Int

dstep :: Step -> Int
dstep (Go _ k) = k

dmove :: Move -> Int
dmove [] = 0
dmove (s:m) = dstep s + dmove m
```

Combined trip information

```haskell
trip :: Move -> Pos -> (Dist, Pos)
trip m = \p -> (dmove m, move m p)
```
Picking the right semantic domain (1/2)

Simple semantics domains can be combined in two ways:

- **sum**: contains a value from one domain or the other
 - e.g. IntBool language can evaluate to `Int` or `Bool`
 - use Haskell `Either a b` or define a new data type

- **product**: contains a value from both domains
 - e.g. combined trip information for move language
 - use Haskell `(a, b)` or define a new data type
Picking the right semantic domain (2/2)

Can errors occur?
- use Haskell **Maybe** or define a new data type

Does the language manipulate state or use names?
- use a **function type**

Example stateful domains

- Read-only state: \(\text{State} \rightarrow \text{Value} \)
- Modify as only effect: \(\text{State} \rightarrow \text{State} \)
- Modify as side effect: \(\text{State} \rightarrow (\text{State},\text{Value}) \)
Outline

What is semantics?

Denotational semantics

Semantics of naming
What is naming?

Most languages provide a way to **name** and **reuse** stuff.

Naming concepts
- **declaration**: introduce a new name
- **binding**: associate a name with a thing
- **reference**: use the name to stand for the bound thing

C/Java variables
```java
int x; int y;
x = slow(42);
y = x + x + x;
```

In Haskell:
- **Local variables**
  ```haskell```
  let x = slow 42
  in x + x + x
  ```haskell```
- **Type names**
  ```haskell```
  type Radius = Float
  data Shape = Circle Radius
  ```haskell```
- **Function parameters**
  ```haskell```
  area r = pi * r * r
  ```haskell```
Semantics of naming

Environment: a mapping from names to things

\[\text{type Env} = \text{Name} \rightarrow \text{Thing} \]

Naming concepts

- **declaration**: add a new name to the environment
- **binding**: set the thing associated with a name
- **reference**: get the thing associated with a name

Example semantic domains for expressions with ...

- **immutable vars** (Haskell): Env \(\rightarrow \) Val
- **mutable vars** (C/Java/Python): Env \(\rightarrow \) (Env, Val)

We’ll come back to mutable variables in unit on **scope**