
Semantics

1 / 21

Outline

What is semantics?

Denotational semantics

Semantics of naming

What is semantics? 2 / 21

What is the meaning of a program?

Recall: aspects of a language
• syntax: the structure of its programs
• semantics: the meaning of its programs

What is semantics? 3 / 21

How to define the meaning of a program?

Formal specifications
• denotational semantics: relates terms directly to values
• operational semantics: describes how to evaluate a term
• axiomatic semantics: defines the effects of evaluating a term
• . . .

Informal/non-specifications
• reference implementation: execute/compile program in some implementation
• community/designer intuition: how people think a program should behave

What is semantics? 4 / 21

Advantages of a formal semantics

A formal semantics . . .

• is simpler than an implementation, more precise than intuition
• can answer: is this implementation correct?

• supports the definition of analyses and transformations
• prove properties about the language
• prove properties about programs

• promotes better language design
• better understand impact of design decisions
• apply semantic insights to improve the language design (e.g. compositionality)

What is semantics? 5 / 21

Outline

What is semantics?

Denotational semantics

Semantics of naming

Denotational semantics 6 / 21

Denotational semantics

A denotational semantics relates each term to a denotation

an abstract syntax tree a value in some
semantic domain

Semantic function
J · K : abstract syntax → semantic domain

Semantic function in Haskell
eval :: Term -> Value

Denotational semantics 7 / 21

Semantic domains

Semantic domain: captures the set of possible meanings of a program/term

what is a meaning? — it depends on the language!

Example semantic domains
Language Meaning
Boolean expressions Boolean value
Arithmetic expressions Integer
Imperative language State transformation
SQL query Set of relations
MiniLogo program Drawing
MIDI Music performance

Denotational semantics 8 / 21

Defining a language with denotational semantics

Example encoding in Haskell:

1. Define the abstract syntax, T data Term = ...
the set of abstract syntax trees

2. Identify or define the semantic domain, V type Value = ...
the representation of semantic values

3. Define the semantic function, J·K : T → V eval :: Term -> Value
the mapping from ASTs to semantic values

Denotational semantics 9 / 21

Example: simple arithmetic expressions

1. Define abstract syntax
data Exp = Add Exp Exp

| Mul Exp Exp
| Neg Exp
| Lit Int

2. Identify semantic domain
Use the set of all integers, Int

3. Define the semantic function
eval :: Exp -> Int
eval (Add l r) = eval l + eval r
eval (Mul l r) = eval l * eval r
eval (Neg e) = negate (eval e)
eval (Lit n) = n

Denotational semantics 10 / 21

Desirable properties of a denotational semantics

Compositionality: a program’s denotation is built from the denotations of its parts
• supports modular reasoning, extensibility
• supports proof by structural induction

Completeness: every value in the semantic domain is denoted by some program
• if not, language has expressiveness gaps, or semantic domain is too general
• ensures that semantic domain and language align

Soundness: two programs are “equivalent” iff they have the same denotation
• equivalence: same w.r.t. to some other definition
• ensures that the denotational semantics is correct

Denotational semantics 11 / 21

More on compositionality

Compositionality: a program’s denotation is built from the denotations of its parts

an AST sub-ASTs

Example: What is the meaning of op e1 e2 e3?
1. Determine the meaning of e1, e2, e3
2. Combine these submeanings in some way specific to op

Implications:
• The semantic function is probably recursive
• Often need different semantic functions for each syntactic category (type of AST)

Denotational semantics 12 / 21

Example: simple arithmetic expressions (again)

1. Define abstract syntax
data Exp = Add Exp Exp

| Mul Exp Exp
| Neg Exp
| Lit Int

2. Identify semantic domain
Use the set of all integers, Int

3. Define the semantic function
eval :: Exp -> Int
eval (Add l r) = eval l + eval r
eval (Mul l r) = eval l * eval r
eval (Neg e) = negate (eval e)
eval (Lit n) = n

Denotational semantics 13 / 21

Example: move language

A language describing movements on a 2D plane
• a step is an n-unit horizontal or vertical movement
• a move is described by a sequence of steps

Abstract syntax
data Dir = N | S | E | W
data Step = Go Dir Int
type Move = [Step]

[Go N 3, Go E 4, Go S 1]

Denotational semantics 14 / 21

Semantics of move language

1. Abstract syntax
data Dir = N | S | E | W
data Step = Go Dir Int
type Move = [Step]

2. Semantic domain
type Pos = (Int,Int)

Domain: Pos -> Pos

3. Semantic function (Step)
step :: Step -> Pos -> Pos
step (Go N k) = \(x,y) -> (x,y+k)
step (Go S k) = \(x,y) -> (x,y-k)
step (Go E k) = \(x,y) -> (x+k,y)
step (Go W k) = \(x,y) -> (x-k,y)

3. Semantic function (Move)
move :: Move -> Pos -> Pos
move [] = \p -> p
move (s:m) = move m . step s

Denotational semantics 15 / 21

Alternative semantics

Often multiple interpretations (semantics) of the same language

Example: Database schema
One declarative spec, used to:
• initialize the database
• generate APIs
• validate queries
• normalize layout
• . . .

Distance traveled
type Dist = Int

dstep :: Step -> Int
dstep (Go _ k) = k

dmove :: Move -> Int
dmove [] = 0
dmove (s:m) = dstep s + dmove m

Combined trip information
trip :: Move -> Pos -> (Dist, Pos)
trip m = \p -> (dmove m, move m p)

Denotational semantics 16 / 21

Picking the right semantic domain (1/2)

Simple semantic domains can be combined in two ways:

• sum: contains a value from one domain or the other
• e.g. IntBool language can evaluate to Int or Bool
• use Haskell Either a b or define a new data type

• product: contains a value from both domains
• e.g. combined trip information for move language
• use Haskell (a,b) or define a new data type

Denotational semantics 17 / 21

Picking the right semantic domain (2/2)

Can errors occur?
• use Haskell Maybe or define a new data type

Does the language manipulate state or use names?
• use a function type

Example stateful domains
Read-only state: State -> Value
Modify as only effect: State -> State
Modify as side effect: State -> (State,Value)

Denotational semantics 18 / 21

Outline

What is semantics?

Denotational semantics

Semantics of naming

Semantics of naming 19 / 21

What is naming?

Most languages provide a way to name and reuse stuff

Naming concepts
declaration introduce a new name
binding associate a name with a thing
reference use the name to stand for the bound thing

C/Java variables
int x; int y;
x = slow(42);
y = x + x + x;

In Haskell:

Local variables
let x = slow 42
in x + x + x

Type names
type Radius = Float
data Shape = Circle Radius

Function parameters
area r = pi * r * r

Semantics of naming 20 / 21

Semantics of naming

Environment: a mapping from names to things type Env = Name -> Thing

Naming concepts
declaration add a new name to the environment
binding set the thing associated with a name
reference get the thing associated with a name

Example semantic domains for expressions with . . .
immutable vars (Haskell) Env -> Val
mutable vars (C/Java/Python) Env -> (Env,Val)

We’ll come back to
mutable variables in
unit on scope

Semantics of naming 21 / 21

	What is semantics?
	Denotational semantics
	Semantics of naming

