Lambda Calculus
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
What is the lambda calculus?

A very **simple**, but **Turing complete**, programming language
- created before concept of *programming language* existed!
- helped to define what *Turing complete* means!

Lambda calculus syntax

\[
\begin{align*}
 v \in \text{Var} & : \equiv \ x \mid y \mid z \mid \ldots \\
 e \in \text{Exp} & : \equiv \ v & \text{variable reference} \\
 & \mid e \ e & \text{application} \\
 & \mid \lambda v. \ e & \text{(lambda) abstraction}
\end{align*}
\]

Examples

\[
\begin{align*}
 x & \quad \lambda x. \ y & \quad x \ y & \quad (\lambda x. \ y) \ x \\
 \lambda f. (\lambda x. \ f (x \ x)) & \quad (\lambda x. \ f (x \ x))
\end{align*}
\]
Lambda calculus is the **theoretical foundation** for **functional programming**

<table>
<thead>
<tr>
<th>Lambda calculus</th>
<th>Haskell</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>f x</td>
<td>f x</td>
</tr>
<tr>
<td>(\lambda x. x)</td>
<td>(\lambda x \to x)</td>
</tr>
<tr>
<td>((\lambda f. f x) (\lambda y. y))</td>
<td>((\lambda f \to f x) (\lambda y \to y))</td>
</tr>
</tbody>
</table>

Similar to Haskell with only: variables, application, anonymous functions

- amazingly, we don’t lose anything by omitting all of the other features!
 (for a particular definition of “anything”)
Early history of the lambda calculus

Origin of the lambda calculus:
- **Alonzo Church** in 1936, to formalize “computable function”
 - proves Hilbert’s *Entscheidungsproblem* undecidable
 - provide an algorithm to decide truth of arbitrary propositions

Meanwhile, in England …
- young **Alan Turing** invents the Turing machine
- devises *halting problem* and proves undecidable

Turing heads to Princeton, studies under Church
- prove lambda calculus, Turing machine, general recursion are equivalent
- **Church–Turing thesis**: these capture all that can be computed
Why lambda?

Evolution of notation for a **bound variable**:

- Whitehead and Russell, *Principia Mathematica*, 1910
 - $2\hat{x} + 3$ – corresponds to $f(x) = 2x + 3$

- Church’s early handwritten papers
 - $\hat{x}. 2x + 3$ – makes scope of variable explicit

- Typesetter #1
 - $^\chi. 2x + 3$ – couldn’t typeset the circumflex!

- Typesetter #2
 - $\lambda x. 2x + 3$ – picked a prettier symbol

Impact of the lambda calculus

Turing machine: theoretical foundation for *imperative languages*
- Fortran, Pascal, C, C++, C#, Java, Python, Ruby, JavaScript, …

Lambda calculus: theoretical foundation for *functional languages*
- Lisp, ML, Haskell, OCaml, Scheme/Racket, Clojure, F#, Coq, …

In *programming languages research*:
- common language of discourse, formal foundation
- starting point for new features
 - extend syntax, type system, semantics
 - reveals precise impact and utility of feature
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices

Definition of lambda calculus
Syntax

Lambda calculus syntax

\(v \in \text{Var} ::= x \mid y \mid z \mid \ldots \)

\(e \in \text{Exp} ::= v \quad \text{variable reference} \)
\(\quad e \ e \quad \text{application} \)
\(\quad \lambda v. e \quad \text{(lambda) abstraction} \)

Syntactic sugar

Multi-parameter functions:

\(\lambda x. (\lambda y. e) \equiv \lambda x y. e \)
\(\lambda x. (\lambda y. (\lambda z. e)) \equiv \lambda x y z. e \)

Application is left-associative:

\((e_1 \ e_2) \ e_3 \equiv e_1 \ e_2 \ e_3 \)
\(((e_1 \ e_2) \ e_3) \ e_4 \equiv e_1 \ e_2 \ e_3 \ e_4 \)
\(e_1 \ (e_2 \ e_3) \equiv e_1 \ (e_2 \ e_3) \)

Abstraction extend as far right as possible

so \(\ldots \ \lambda x. x \ y \equiv \lambda x. (x \ y) \)

NOT \((\lambda x. x)y \)
β-reduction: basic idea

A **redex** is an expression of the form: \((\lambda v. e_1) \ e_2\)

(an application with an abstraction on left)

Reduce by **substituting** \(e_2\) for every reference to \(v\) in \(e_1\)
write this as: \([e_2 / v]e_1\)

lots of different notations for this!

Simple example

\((\lambda x. x \ y \ x) \ z \mapsto z \ y \ z\)

\[v \mapsto e_2 \]
Operational semantics

\[(\lambda v. e_1) e_2 \rightarrow [e_2/v]e_1 \]

Note: Reduction order is ambiguous!
Exercise

Apply β-reduction in the following expressions

Round 1:
- $(\lambda x. x) \, z$
- $(\lambda x \, y. x) \, z$
- $(\lambda x \, y. x) \, z \, u$

Round 2:
- $(\lambda x. x \, x) \, (\lambda y. y)$
- $(\lambda x. (\lambda y. y) \, z)$
- $(\lambda x. (x \, (\lambda y. x))) \, z$
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Variable scoping

An abstraction consists of:

1. a **variable declaration**
2. a **function body** – the variable can be **referenced** in here

The **scope** of a declaration: the parts of a program where it can be referenced

A reference is bound by its **innermost** declaration

Mini-exercise: $(\lambda x. e_1 \ (\lambda y. e_2 \ (\lambda x. e_3) \)) \ (\lambda z. e_4)$

- What is the scope of each variable declaration?

$e \in \text{Exp} ::= v \mid e \ e \mid \lambda v. e$
Free and bound variables

A variable v is **free** in e if:
- v is referenced in e
- the reference is *not* enclosed in an abstraction declaring v (within e)

If v is referenced and enclosed in such an abstraction, it is **bound**

Closed expression: an expression with no free variables
- equivalently, an expression where all variables are bound
Exercise

1. Define the abstract syntax of lambda calculus as a Haskell data type

2. Define a function: `free :: Exp -> Set Var`
 the set of free variables in an expression

3. Define a function: `closed :: Exp -> Bool`
 no free variables in an expression
Potential problem: variable capture

Principles of variable bindings:

1. variables should be bound according to their **static scope**
 - \(\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \mapsto \lambda x. \lambda x. x \ x \)

2. how we name bound variables doesn’t really matter
 - \(\lambda x. x \equiv \lambda y. y \equiv \lambda z. z \) \((\alpha\text{-equivalence})\)

If violated, we can’t reason about functions separately from their use!

Example with naive substitution

A binary function that always returns its first argument: \(\lambda x y. x \) \(\ldots \) or does it?

\[
(\lambda x y. x) \ y \ u \mapsto (\lambda y. y) \ u \mapsto u
\]
Solution: capture-avoiding substitution

Capture-avoiding (safe) substitution: \([e/v]e'\)

\[
\begin{align*}
[e/v]v &= e \\
[e/v]w &= w \\
[e/v](e_1 e_2) &= [e/v]e_1 [e/v]e_2 \\
[e/v](\lambda u. e') &= \lambda w. [e/v](w/u)e' & w \notin \{v\} \cup FV(\lambda u. e') \cup FV(e)
\end{align*}
\]

Example with safe substitution

\((\lambda x y. x) \ y \ u\)

\[
\begin{align*}
\mapsto [y/x](\lambda y. x) u &= (\lambda z. [y/x]([z/y]x)) u = (\lambda z. [y/x]x) u = (\lambda z. y) u \\
\mapsto [u/z]y &= y
\end{align*}
\]
Recall example: \(\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \ \mapsto \ \lambda x. \lambda x. x \ x \)

Reduction with safe substitution

\[
\begin{align*}
\lambda x. (\lambda y. (\lambda x. y \ x)) \ x & \mapsto \lambda x. [x/y](\lambda x. y \ x) = \lambda x. \lambda z. [x/y][z/x](y \ x)) = \lambda x. \lambda z. [x/y](y \ z) \\
&= \lambda x. \lambda z. x \ z
\end{align*}
\]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Question: what is a **value** in the lambda calculus?

- how do we know when we’re done reducing?

One answer: a value is an expression that **contains no redexes**

- called β-**normal form**

Not all expressions can be reduced to a value!

$$(\lambda x. xx) \ (\lambda x. xx) \mapsto (\lambda x. xx) \ (\lambda x. xx) \mapsto (\lambda x. xx) \ (\lambda x. xx) \mapsto \cdots$$
Does reduction order matter?

Recall: operational semantics is ambiguous

- in what order should we β-reduce redexes?
- does it matter?

\[
e \mapsto e' \subseteq \text{Exp} \times \text{Exp}
\]

\[
(\lambda v. e_1) e_2 \mapsto [e_2/v]e_1
\]

\[
\lambda v. e \mapsto \lambda v. e'
\]

\[
e_1 \mapsto e_1'
\]

\[
e_2 \mapsto e_2'
\]

\[
e_1 e_2 \mapsto e_1' e_2
\]

\[
e_1 e_2 \mapsto e_1 e_2'
\]

\[
e \mapsto^* e' \subseteq \text{Exp} \times \text{Exp}
\]

\[
s \mapsto^* s
\]

\[
s \mapsto s'
\]

\[
s' \mapsto^* s''
\]

\[
s \mapsto^* s''
\]
Church–Rosser Theorem

Reduction is **confluent**

If \(e \leadsto^* e_1 \) and \(e \leadsto^* e_2 \), then

\[\exists e' \text{ such that } e_1 \leadsto^* e' \text{ and } e_2 \leadsto^* e' \]

Corollary: any expression has **at most one normal form**

- if it exists, we can still reach it after any sequence of reductions
- ... but if we pick badly, we might never get there!

Example: \((\lambda x. y) ((\lambda x. x x) (\lambda x. x x))\)
Reduction strategies

Redex positions

- **leftmost redex**: the redex with the leftmost \(\lambda \)
- **outermost redex**: any redex that is not part of another redex
- **innermost redex**: any redex that does not contain another redex

Label redexes

\[(\lambda x. (\lambda y. x) z) ((\lambda y. y) z) (\lambda y. z)\]

Reduction strategies

- **normal order reduction**: reduce the leftmost redex
- **applicative order reduction**: reduce the leftmost of the innermost redexes

Compare reductions: \((\lambda x. y) ((\lambda x. x) (\lambda x. x))\)
Exercises

Write **two reduction sequences** for each of the following expressions

- one corresponding to a normal order reduction
- one corresponding to an applicative order reduction

1. \((\lambda x. x \ x) \ ((\lambda x. y \ x) \ z \ (\lambda x. x))\)
2. \((\lambda x. y \ z \ x \ z) \ (\lambda z. z) \ ((\lambda y. y) (\lambda z. z)) \ x\)
Comparison of reduction strategies

Theorem
If a normal form exists, normal order reduction will find it!

Applicative order: reduces arguments first
- evaluates every argument exactly once, even if it’s not needed
- corresponds to “call by value” parameter passing scheme

Normal order: copies arguments first
- doesn’t evaluate unused arguments, but may re-evaluate each one many times
- guaranteed to reduce to normal form, if possible
- corresponds to “call by name” parameter passing scheme
Lazy evaluation: reduces arguments only if used, but *at most once*
- essentially, an efficient implementation of normal order reduction
- only evaluates to “weak head normal form”
- corresponds to “call by need” parameter passing scheme

Expression e is in **weak head normal form** if:
- e is a variable or lambda abstraction
- e is an application with a variable in the left position

... in other words, e does not start with a redex
Outline

Introduction and history

Definition of lambda calculus
- Syntax and operational semantics
- Minutia of β-reduction
- Reduction strategies

Programming with lambda calculus
- Church encodings
- Recursion

De Bruijn indices
Data and operations are encoded as **functions** in the lambda calculus

For Booleans, need lambda calculus terms for *true*, *false*, and *if*, where:

- if true \(e_1 \) \(e_2 \) \(\mapsto^* e_1 \)
- if false \(e_1 \) \(e_2 \) \(\mapsto^* e_2 \)

Church Booleans

\[
\begin{align*}
true & = \lambda x y. x \\
false & = \lambda x y. y \\
if & = \lambda b e_1 e_2. b e_1 e_2
\end{align*}
\]

More Boolean operations

\[
\begin{align*}
and & = \lambda p q. if p q p \\
or & = \lambda p q. if p p q \\
not & = \lambda p. if p false true
\end{align*}
\]
A natural number n is encoded as a function that applies \mathbf{f} to \mathbf{x} n times.

Church numerals

<table>
<thead>
<tr>
<th>Number</th>
<th>Church Numeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>$\lambda f \ x. \ x$</td>
</tr>
<tr>
<td>one</td>
<td>$\lambda f \ x. \ f \ x$</td>
</tr>
<tr>
<td>two</td>
<td>$\lambda f \ x. \ f \ (f \ x)$</td>
</tr>
<tr>
<td>three</td>
<td>$\lambda f \ x. \ f \ (f \ (f \ x))$</td>
</tr>
<tr>
<td>...</td>
<td>$\lambda f \ x. \ f^n x$</td>
</tr>
</tbody>
</table>

Operations on Church numerals

<table>
<thead>
<tr>
<th>Operation</th>
<th>Church Numeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>succ</td>
<td>$\lambda n \ f \ x. \ f \ (n \ f \ x)$</td>
</tr>
<tr>
<td>add</td>
<td>$\lambda n \ m \ f \ x. \ n \ f \ (m \ f \ x)$</td>
</tr>
<tr>
<td>mult</td>
<td>$\lambda n \ m \ f. \ n \ (m \ f)$</td>
</tr>
<tr>
<td>isZero</td>
<td>$\lambda n. \ n \ (\lambda x. \ false) \ true$</td>
</tr>
</tbody>
</table>
Encoding values of more complicated data types

At a minimum, need **functions** that encode how to:

- **construct** new values of the data type
- **destruct and use** values of the data type in a general way

Can encode values of many data types as **sums** of **products**

- corresponds to **tuples** and **Either** in Haskell

```
data Val = A Nat | B Bool | C Nat Bool
≡
type Val' = Either Nat (Either Bool (Nat,Bool))
```
Exercise

\[
\text{data Val} = A \text{ Nat} \mid B \text{ Bool} \mid C \text{ Nat Bool} \\
\equiv \\
\text{type Val'} = \text{Either Nat (Either Bool (Nat,Bool))}
\]

Encode the following values of type Val as values of type Val’

- A 2
- B True
- C 3 False
Products (a.k.a. tuples)

A tuple is defined by:

- a tupling function (constructor)
- a set of selecting functions (destructors)

Church pairs

\[\text{pair} = \lambda x y s. s x y\]
\[\text{fst} = \lambda t. t (\lambda x y. x)\]
\[\text{snd} = \lambda t. t (\lambda x y. y)\]

Church triples

\[\text{tuple}_3 = \lambda x y z s. s x y z\]
\[\text{sel}_{1/3} = \lambda t. t (\lambda x y z. x)\]
\[\text{sel}_{2/3} = \lambda t. t (\lambda x y z. y)\]
\[\text{sel}_{3/3} = \lambda t. t (\lambda x y z. z)\]
A tagged union is defined by:

- a case function: a tuple of functions (destructor)
- a set of tags that select the correct function and apply it (constructors)

Church either

\[
either = \lambda f g u. u f g
\]
\[
in_L = \lambda x f g. f x
\]
\[
in_R = \lambda y f g. g y
\]

Church union

\[
case_3 = \lambda f g h u. u f g h
\]
\[
in_{1/3} = \lambda x f g h. f x
\]
\[
in_{2/3} = \lambda y f g h. g y
\]
\[
in_{3/3} = \lambda z f g h. h z
\]
Exercise

data Val = A Nat | B Bool | C Nat Bool

foo :: Val -> Nat
foo (A n) = n
foo (B b) = if b then 0 else 1
foo (C n b) = if b then 0 else n

1. Encode the following values of type \textbf{Val} as lambda calculus terms
 - A 2
 - B True
 - C 3 False

2. Encode the function \textbf{foo} in lambda calculus
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Observation: can use abstractions to define names

\[
\text{let } \text{succ} = \lambda n \rightarrow n+1 \\
\text{in } ... \text{ succ 3 } ... \text{ succ 7 } ...
\]

\[
(\lambda \text{succ.} \\
... \text{ succ 3 } ... \text{ succ 7 } ...)
(\lambda n f x. f (n f x))
\]

But this pattern doesn’t work for **recursive** functions!

\[
\text{let } \text{fac} = \lambda n \rightarrow \\
... n * \text{ fac } (n-1) \\
\text{in } ... \text{ fac 5 } ... \text{ fac 8 } ...
\]

\[
(\lambda \text{fac.} \\
... \text{ fac 5 } ... \text{ fac 8 } ...)
(\lambda n f x. \ldots \text{ mult } n (??? (\text{pred } n)))
\]
Recursion via fixpoints

Solution: Fixpoint function

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

\[Y g \]

\[\mapsto (\lambda x. g (x x)) (\lambda x. g (x x)) \]
\[\mapsto g ((\lambda x. g (x x)) (\lambda x. g (x x))) \]
\[\mapsto g (g ((\lambda x. g (x x)) (\lambda x. g (x x)))) \]
\[\mapsto g (g (g ((\lambda x. g (x x)) (\lambda x. g (x x))))) \]
\[\mapsto \ldots \]

Example recursive function (factorial)

\[Y (\lambda \text{fac} \ n. \text{if } (\text{isZero } n) \text{ one } (\text{mult } n (\text{fac } (\text{pred } n)))) \]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
The role of names in lambda calculus

Variable names are a convenience for readability (mnemonics) … but they’re annoying in implementations and proofs

Annoyances related to names

• safe substitution is complicated, requires generating fresh names (minor)
• checking and maintaining α-equivalence is complicated and expensive (major)

Recall: α-equivalence

Expressions are the same up to variable renaming

• $\lambda x. x \equiv \lambda y. y \equiv \lambda z. z$
• $\lambda x y. x \equiv \lambda y x. y$
Basic idea: de Bruijn indices

- an abstraction implicitly declares its input (no variable name)
- a variable reference is a number n, called a de Bruijn index, that refers to the nth abstraction up the AST

Nameless lambda calculus

\[
\begin{align*}
n \in \text{Nat} & \quad ::= \quad \text{(any natural number)} \\
e \in \text{Exp} & \quad ::= \quad e \; e \quad \text{application} \\
& \quad | \quad \lambda \; e \quad \text{lambda abstraction} \\
& \quad | \quad n \quad \text{de Bruijn index}
\end{align*}
\]

Named \rightsquigarrow nameless

\[
\begin{align*}
\lambda x. \; x & \rightsquigarrow \lambda \; 0 \\
\lambda x. \; y. \; x & \rightsquigarrow \lambda \; \lambda \; 1 \\
\lambda x. \; y. \; y & \rightsquigarrow \lambda \; \lambda \; 0 \\
\lambda x. \; (\lambda y. \; y) \; x & \rightsquigarrow \lambda \; (\lambda \; 0) \; 0
\end{align*}
\]

Main advantage: α-equivalence is just syntactic equality!
Deciphering de Bruijn indices

De Bruijn index: the number of λs you have to skip when moving up the AST

Gotchas:

- the same variable will be a different number in different contexts
- scopes work the same as before; references respect the AST
 - e.g. the blue 0 refers to the blue λ since it is not in scope of the green λ, and the green λ does not count as a skip
Free variable in e: a de Bruijn index that skips over all of the λs in e

- the same free variables will have the same number of λs left to skip