Inductive Definitions with Inference Rules
Outline

Introduction

Specifying inductive definitions
 Inference rules in action
 Judgments, axioms, and rules

Reasoning about inductive definitions
 Direct proofs
 Admissibility
 Rule induction
What are inference rules?

Inference rules – a mathematical metalanguage

For specifying and formally reasoning about inductive definitions

Inductive definition

Recursively defines something in terms of itself

\[
\frac{\text{Human}(x) \to \text{Mortal}(x) \quad \text{Human}(x)}{\text{Mortal}(x)}
\]

premises

conclusion
Outline

Introduction

Specifying inductive definitions
 Inference rules in action
 Judgments, axioms, and rules

Reasoning about inductive definitions
 Direct proofs
 Admissibility
 Rule induction
Other metalanguages for inductive definitions

Haskell data types

```haskell
data Nat = Z | S Nat
data Exp = Add Exp Exp
       | Neg Exp
       | Lit Nat
```

Recursive functions in Haskell

```haskell
even :: Nat -> Bool
even Z = True
even (S Z) = False
even (S (S n)) = even n
```

Grammars

```
n ∈ Nat ::= Z | S n
e ∈ Exp ::= add e e
   | neg e
   | n
```

Can also define all of these with inference rules!
Example: defining syntax by inference rules

Grammars

\[n \in \text{Nat} \quad ::= \quad Z \mid S \ n \]

\[e \in \text{Exp} \quad ::= \quad \text{add} \ e \ e \]

\(\mid \) \quad \text{neg} \ e

\(\mid \) \quad n

Rule schema

\[Z \in \text{Nat} \]

\[n \in \text{Nat} \]

\[S \ n \in \text{Nat} \]

Axiom

(no premises)

\[n \in \text{Nat} \]

\[e \in \text{Exp} \]

\[\text{neg} \ e \in \text{Exp} \]

\[e_1 \in \text{Exp} \quad e_2 \in \text{Exp} \]

\[\text{add} \ e_1 \ e_2 \in \text{Exp} \]
Example: defining a predicate

Recursive function in Haskell

```haskell
even :: Nat -> Bool
even Z = True
even (S Z) = False
even (S (S n)) = even n
```

Option 1: Constructive judgment

\[
\begin{align*}
\text{Even}(Z) & \quad \text{Even}(n) \\
\downarrow & \quad \downarrow \\
\text{Even}(S (S n)) & \\
\end{align*}
\]

Option 2: Relate inputs to outputs

\[
\begin{align*}
\text{Even}(Z, \text{true}) & \quad \text{Even}(S Z, \text{false}) \\
\downarrow & \quad \downarrow \\
\text{Even}(n, b) & \quad \text{Even}(S (S n), b) \\
\end{align*}
\]
Outline

Introduction

Specifying inductive definitions
 Inference rules in action
 Judgments, axioms, and rules

Reasoning about inductive definitions
 Direct proofs
 Admissibility
 Rule induction
The structure of a definition

How to define a “concept” in three parts:

1. **syntax** – how to express the concept
2. **type** – what kind of information is it?
3. **content** – the definition itself

Example: dictionary definition

Syntax: `even`
Type: adjective
Content: (of a number) divisible by two without a remainder

Example: function definition

```
even :: Nat -> Bool
even Z = True
even (S Z) = False
even (S (S n)) = even n
```
How to define a concept using inference rules

1. Define a **judgment form** – syntax and type
 States that one or more values have some **property**
 or exist in some **relation** to each other

2. Write down the **rules** for the judgment – content
 - **axioms** – base cases, only conclusion
 - **proper rules** – recursive cases, premises + conclusion
Judgments

1. Define a **judgment form** – syntax and type

States that one or more values have some property or exist in some relation to each other

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Type</th>
<th>Property or relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \in \text{Nat}$</td>
<td>AST</td>
<td>n is in the syntactic category Nat</td>
</tr>
<tr>
<td>Even(n)</td>
<td>Nat</td>
<td>n is an even number</td>
</tr>
<tr>
<td>$n_1 < n_2$</td>
<td>$\text{Nat} \times \text{Nat}$</td>
<td>n_1 is less than n_2</td>
</tr>
<tr>
<td>$e : T$</td>
<td>$\text{Exp} \times \text{Type}$</td>
<td>e has type T</td>
</tr>
<tr>
<td>$\Gamma \vdash e : T$</td>
<td>$\text{Env} \times \text{Exp} \times \text{Type}$</td>
<td>e has type T in environment Γ</td>
</tr>
</tbody>
</table>
A judgment is (conceptually) a **predicate** that indicates set membership.

Example: \(\text{Even}(n) \subseteq \text{Nat} \)

\[
\text{Even} : \text{Nat} \to \mathbb{B} \\
= \{ (\mathbb{Z}, \text{true}), (\mathbb{S} \mathbb{Z}, \text{false}), (\mathbb{S} (\mathbb{S} \mathbb{Z}), \text{true}), \ldots \} \\
\equiv \{ \mathbb{Z}, \mathbb{S} (\mathbb{S} \mathbb{Z}), \mathbb{S} (\mathbb{S} (\mathbb{S} (\mathbb{S} \mathbb{Z}))), \ldots \} \subseteq \text{Nat}
\]

Example: \(n_1 < n_2 \subseteq \text{Nat} \times \text{Nat} \)

\[
< : \text{Nat} \times \text{Nat} \to \mathbb{B} \\
= \{ ((\mathbb{0}, \mathbb{0}), \text{false}), ((\mathbb{0}, \mathbb{1}), \text{true}), \ldots ((\mathbb{5}, \mathbb{3}), \text{false}), \ldots ((\mathbb{5}, \mathbb{7}), \text{true}), \ldots \} \\
\equiv \{ (\mathbb{0}, \mathbb{1}), \ldots (\mathbb{5}, \mathbb{7}), \ldots \} \subseteq \text{Nat} \times \text{Nat}
\]
2. Write down the **rules** of the judgment – content

- **axioms** – base cases, only conclusion
- **proper rules** – recursive cases, premises + conclusion

Inductively defines the **instances** of a judgment (i.e. members of its set)

Rules for: $\text{Even}(n) \subseteq \text{Nat}$

<table>
<thead>
<tr>
<th>Rule</th>
<th>Precondition</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Even}(Z)$</td>
<td>$\text{Even}(n)$</td>
<td>$\text{Even}(S \ (S \ n))$</td>
</tr>
</tbody>
</table>

Rules for: $n_1 < n_2 \subseteq \text{Nat} \times \text{Nat}$

<table>
<thead>
<tr>
<th>Rule</th>
<th>Precondition</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z < S \ Z$</td>
<td>$n_1 < n_2$</td>
<td>$n_1 < S \ n_2$</td>
</tr>
<tr>
<td>$n_1 < S \ n_2$</td>
<td>$S \ n_1 < S \ n_2$</td>
<td></td>
</tr>
</tbody>
</table>
Exercises

1. Define the judgment: \(\text{Odd}(n) \subseteq \text{Nat} \)

2. Define the judgment: \(n_1 + n_2 = n_3 \subseteq \text{Nat} \times \text{Nat} \times \text{Nat} \)

For reference:

Rules for: \(\text{Even}(n) \subseteq \text{Nat} \)

\[
\begin{array}{c}
\text{Even}(\mathbb{Z})
\end{array}
\]

\[
\begin{array}{c}
\text{Even}(n) \\
\hline
\text{Even}(S(Sn))
\end{array}
\]

Rules for: \(n_1 < n_2 \subseteq \text{Nat} \times \text{Nat} \)

\[
\begin{array}{c}
\text{Z} < S\text{Z}
\end{array}
\]

\[
\begin{array}{c}
\frac{n_1 < n_2}{n_1 < S\text{ }n_2}
\end{array}
\]

\[
\begin{array}{c}
\frac{n_1 < n_2}{S\text{ }n_1 < S\text{ }n_2}
\end{array}
\]
Outline

Introduction

Specifying inductive definitions
- Inference rules in action
- Judgments, axioms, and rules

Reasoning about inductive definitions
- Direct proofs
- Admissibility
- Rule induction
Expressing claims

We can also use inference rules to express **claims** about judgments

Examples

<table>
<thead>
<tr>
<th>S (S Z) ∈ Nat</th>
<th>Even(S n)</th>
<th>n₁ < n₂</th>
<th>n₂ < n₃</th>
<th>n₁ + n₂ = n₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odd(n)</td>
<td></td>
<td>n₁ < n₃</td>
<td></td>
<td>n₂ + n₁ = n₃</td>
</tr>
</tbody>
</table>

How can we **prove** these claims?

Three main techniques:

1. **direct proof** – derive conclusion from premises using the definition
2. **admissibility** – derive conclusion from derivations of premises
3. **rule induction** – reason inductively using the definition
Introduction

Specifying inductive definitions
 Inference rules in action
 Judgments, axioms, and rules

Reasoning about inductive definitions
 Direct proofs
 Admissibility
 Rule induction
Direct proof by derivation

Definition: \(n \in \text{Nat} \)

- \(Z \in \text{Nat} \)
- \(\text{Succ} \quad n \in \text{Nat} \rightarrow Sn \in \text{Nat} \)
- \(Z \in \text{Nat} \)
- \(\text{Succ} \quad S Z \in \text{Nat} \)
- \(\text{Succ} \quad S (S Z) \in \text{Nat} \)

Definition: \(n_1 < n_2 \subseteq \text{Nat} \times \text{Nat} \)

- \(Z < S Z \)
 - \(S \quad n_1 < n_2 \rightarrow n_1 < S n_2 \)
 - \(+1 \quad n_1 < n_2 \rightarrow Sn_1 < S n_2 \)
- \(S Z < S (S Z) \)
 - \(S \quad Z < S Z \rightarrow S Z < S (S Z) \)
 - \(+1 \quad Z < S (S Z) \rightarrow SZ < S (S (S Z)) \)
Proof trees

Definition: \(e \in \text{Exp} \)

Axioms: \(0 \in \text{Nat}, \; 1 \in \text{Nat}, \; 2 \in \text{Nat}, \; \ldots \)

\[
\begin{align*}
\text{lit} & \quad n \in \text{Nat} \quad \quad \text{lit} & \quad \text{lit} 2 \in \text{Nat} \\
\text{neg} & \quad e \in \text{Exp} \quad \quad \text{neg} & \quad \text{lit} 4 \in \text{Nat} \\
\text{add} & \quad e_1 \in \text{Exp} \quad \quad \text{add} & \quad \text{lit} 3 \in \text{Exp} \\
\text{neg} & \quad \text{neg} e \in \text{Exp} \quad \quad \text{add} & \quad \text{add} e_1 e_2 \in \text{Exp} \\
\text{add} & \quad \text{add} 2 3 \in \text{Exp} \quad \quad \text{neg} & \quad \text{neg} 4 \in \text{Exp} \\
\text{add} & \quad \text{add} (\text{add} 2 3) (\text{neg} 4) \in \text{Exp}
\end{align*}
\]
Exercises

Prove that the following expressions are valid terms in Exp

1. $\text{neg} \ (\text{add} \ 5 \ (\text{neg} \ 2))$
2. $\text{add} \ (\text{neg} \ (\text{neg} \ 3)) \ 4$

Definition: $e \in Exp$

Axioms: $0 \in \text{Nat}$, $1 \in \text{Nat}$, $2 \in \text{Nat}$, ...
Outline

Introduction

Specifying inductive definitions
- Inference rules in action
- Judgments, axioms, and rules

Reasoning about inductive definitions
- Direct proofs
- Admissibility
- Rule induction
Admissibility

Construct proofs from assumed *derivations of the premises*

Insights:
- If the premise of a claim is satisfied, it must have a derivation
- Can use information in the derivations to prove the conclusion

Proof technique
Show that all possible derivations of premises yield a proof of the conclusion

Apply definition rules backwards on the premises, prove for each case!
Super simple example

Definition: \(n \in \text{Nat} \subseteq \text{AST} \)

- \(Z \in \text{Nat} \)
- \(\text{Succ} \quad n \in \text{Nat} \quad S \ n \in \text{Nat} \)

Bold claim

\[
\begin{align*}
S \ (S \ n) & \in \text{Nat} \\
n & \in \text{Nat}
\end{align*}
\]

Proof sketch:
- Enumerate derivations of premise
- Show that each derivation proves the conclusion

Only possible derivation

\[
\begin{align*}
\text{Succ} \quad n & \in \text{Nat} \\
\text{Succ} \quad S \ n & \in \text{Nat} \\
S \ (S \ n) & \in \text{Nat}
\end{align*}
\]
Outline

Introduction

Specifying inductive definitions
 Inference rules in action
 Judgments, axioms, and rules

Reasoning about inductive definitions
 Direct proofs
 Admissibility
 Rule induction
Rule induction

Just like structural induction on inductive data types!

Definition: $e \in \text{Exp} \subseteq \text{AST}$

- $n \in \text{Nat} \Rightarrow n \in \text{Exp}$
- $e \in \text{Exp} \Rightarrow \text{neg} e \in \text{Exp}$
- $e_1 \in \text{Exp}$, $e_2 \in \text{Exp} \Rightarrow \text{add } e_1 e_2 \in \text{Exp}$

Suppose I want to prove property P on all Exp. Just prove:

- $\forall n \in \text{Nat}, P(n)$
- $P(e) \rightarrow P(\text{neg } e)$
- $P(e_1) \rightarrow P(e_2) \rightarrow P(\text{add } e_1 e_2)$