Lambda Calculus
Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
What is the lambda calculus?

A very **simple**, but **Turing complete**, programming language

- created before concept of *programming language* existed!
- helped to define what *Turing complete* means!

Lambda calculus syntax

\[v \in \text{Var} :::= x \mid y \mid z \mid \ldots \]

\[e \in \text{Exp} :::= v \quad \text{variable reference} \]
\[\mid e \ e \quad \text{application} \]
\[\mid \lambda v. \ e \quad \text{(lambda) abstraction} \]

Examples

\[x \quad \lambda x. y \quad x \ y \quad (\lambda x. y) \ x \]
\[\lambda f. (\lambda x. f (x \ x)) \ (\lambda x. f (x \ x)) \]
Lambda calculus is the **theoretical foundation** for **functional programming**

<table>
<thead>
<tr>
<th>Lambda calculus</th>
<th>Haskell</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>f x</td>
<td>f x</td>
</tr>
<tr>
<td>(\lambda x. x)</td>
<td>(\lambda x -> x)</td>
</tr>
<tr>
<td>((\lambda f. f x) (\lambda y. y))</td>
<td>((\lambda f -> f x) (\lambda y -> y))</td>
</tr>
</tbody>
</table>

Similar to Haskell with only: variables, application, anonymous functions

- amazingly, we don’t lose anything by omitting all of the other features!
 (for a particular definition of “anything”)

Introduction and history
Early history of the lambda calculus

Origin of the lambda calculus:
- **Alonzo Church** in 1936, to formalize “computable function”
- proves Hilbert’s *Entscheidungsproblem* undecidable
 - provide an algorithm to decide truth of arbitrary propositions

Meanwhile, in England …
- young **Alan Turing** invents the Turing machine
- devises *halting problem* and proves undecidable

Turing heads to Princeton, studies under Church
- prove lambda calculus, Turing machine, general recursion are equivalent
- **Church–Turing thesis**: these capture all that can be computed
Evolution of notation for a **bound variable**:

- **Whitehead and Russell, *Principia Mathematica*, 1910**
 - $2\hat{x} + 3$ – corresponds to $f(x) = 2x + 3$

- **Church’s early handwritten papers**
 - $\hat{x}. 2x + 3$ – makes scope of variable explicit

- **Typesetter #1**
 - $^x. 2x + 3$ – couldn’t typeset the circumflex!

- **Typesetter #2**
 - $\lambda x. 2x + 3$ – picked a prettier symbol

Impact of the lambda calculus

Turing machine: theoretical foundation for **imperative languages**
- Fortran, Pascal, C, C++, C#, Java, Python, Ruby, JavaScript, …

Lambda calculus: theoretical foundation for **functional languages**
- Lisp, ML, Haskell, OCaml, Scheme/Racket, Clojure, F#, Coq, …

In **programming languages research**:
- common language of discourse, formal foundation
- starting point for new features
 - extend syntax, type system, semantics
 - reveals precise impact and utility of feature
Definition of lambda calculus

- Syntax and operational semantics
- Minutia of β-reduction
- Reduction strategies

Programming with lambda calculus

- Church encodings
- Recursion

De Bruijn indices
Syntax

Lambda calculus syntax

\[
\begin{align*}
\nu \in \text{Var} & \;::=\; x \mid y \mid z \mid \ldots \\
\epsilon \in \text{Exp} & \;::=\; \nu \quad \text{variable reference} \\
& \quad | \epsilon \epsilon \quad \text{application} \\
& \quad | \lambda \nu. \epsilon \quad \text{(lambda) abstraction}
\end{align*}
\]

Abstractions extend as far right as possible
so … \(\lambda x. x \ y \) \(\equiv \) \(\lambda x. (x \ y) \)

NOT \((\lambda x. x)y \)

Syntactic sugar

Multi-parameter functions:

\[
\begin{align*}
\lambda x. (\lambda y. e) & \equiv \lambda x y. e \\
\lambda x. (\lambda y. (\lambda z. e)) & \equiv \lambda x y z. e
\end{align*}
\]

Application is left-associative:

\[
\begin{align*}
(e_1 \ e_2) \ e_3 & \equiv e_1 \ e_2 \ e_3 \\
((e_1 \ e_2) \ e_3) \ e_4 & \equiv e_1 \ e_2 \ e_3 \ e_4 \\
e_1 \ (e_2 \ e_3) & \equiv e_1 \ (e_2 \ e_3)
\end{align*}
\]
β-reduction: basic idea

A **redex** is an expression of the form: \((\lambda v. e_1)\ e_2\)

(an application with an abstraction on left)

Reduce by **substituting** \(e_2\) for every reference to \(v\) in \(e_1\)

write this as: \([e_2/v]e_1\)

lots of different notations for this!

Simple example

\((\lambda x. x\ y\ x)\ z \mapsto z\ y\ z\)

\[e \in \text{Exp} ::= v \mid e\ e \mid \lambda v. e \]
Operational semantics

Reduction semantics

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_1 e_2 \rightarrow e'_1 e'_2$</td>
<td>$e_1 \rightarrow e'_1$ and $e_2 \rightarrow e'_2$</td>
</tr>
<tr>
<td>$\lambda v. e \rightarrow \lambda v. e'$</td>
<td>$e \rightarrow e'$</td>
</tr>
</tbody>
</table>

$$
(\lambda v. e_1) e_2 \rightarrow [e_2/v]e_1

\begin{align*}
\lambda v. e &\rightarrow \lambda v. e' \\
\end{align*}

\text{Note: Reduction order is ambiguous!}
Exercise

Apply β-reduction in the following expressions

Round 1:

- $(\lambda x. x) \ z$
- $(\lambda x y. x) \ z$
- $(\lambda x y. x) \ z \ u$

Round 2:

- $(\lambda x. x \ x) \ (\lambda y. y)$
- $(\lambda x. (\lambda y. y) \ z)$
- $(\lambda x. (x (\lambda y. x))) \ z$

Definition of lambda calculus:

$$e \in \text{Exp} ::= v \mid e \ e \mid \lambda v. \ e$$

$$e_1 \ e_2 \mapsto [e_2/v]e_1$$

$$\lambda v. \ e \mapsto \lambda v. \ e'$$

$$e \mapsto e'$$

$$e_1 \mapsto e_1'$$

$$e_2 \mapsto e_2'$$

$$e_1 \ e_2 \mapsto e_1' \ e_2'$$

$$e_1 \ e_2 \mapsto e_1 \ e_2'$$
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Variable scoping

An abstraction consists of:

1. a **variable declaration**
2. a **function body** – the variable can be **referenced** in here

The **scope** of a declaration: the parts of a program where it can be referenced

A reference is bound by its **innermost** declaration

Mini-exercise: $(\lambda x. e_1 \ (\lambda y. e_2 \ (\lambda x. e_3 \))) \ (\lambda z. e_4)$

- What is the scope of each variable declaration?
Free and bound variables

A variable v is **free** in e if:
- v is referenced in e
- the reference is *not* enclosed in an abstraction declaring v (within e)

If v is referenced and enclosed in such an abstraction, it is **bound**

Closed expression: an expression with no free variables
- equivalently, an expression where all variables are bound

\[
e \in \text{Exp} ::= v \mid e \ e \mid \lambda v \cdot e
\]
1. Define the abstract syntax of lambda calculus as a Haskell data type

2. Define a function: \(\text{free} :: \text{Exp} \rightarrow \text{Set Var} \)
the set of free variables in an expression

3. Define a function: \(\text{closed} :: \text{Exp} \rightarrow \text{Bool} \)
no free variables in an expression
Potential problem: variable capture

Principles of variable bindings:

1. variables should be bound according to their **static scope**
 - \(\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \mapsto \lambda x. \lambda x. x \ x \)

2. how we name bound variables doesn’t really matter
 - \(\lambda x. x \equiv \lambda y. y \equiv \lambda z. z \) \((\alpha\)-equivalence\)

If violated, we can’t reason about functions separately from their use!

Example with naive substitution

A binary function that always returns its first argument: \(\lambda x y. x \) … or does it?

\[
(\lambda x y. x) \ y \ u \mapsto (\lambda y. y) \ u \mapsto u
\]
Solution: capture-avoiding substitution

Capture-avoiding (safe) substitution: \([e/v]e'\)

\[
\begin{align*}
[e/v]v &= e \\
[e/v]w &= w \quad (v \neq w) \\
[e/v](e_1 e_2) &= [e/v]e_1 [e/v]e_2 \\
[e/v](\lambda u. e') &= \lambda w. [e/v]([w/u]e') \quad (w \notin \{v\} \cup \text{FV}(\lambda u. e') \cup \text{FV}(e))
\end{align*}
\]

Example with safe substitution

\((\lambda x y. x) y u\)

\[
\rightarrow [y/x](\lambda y. x) u = (\lambda z. [y/x]([z/y]x)) u = (\lambda z. [y/x]x) u = (\lambda z. y) u
\]

\[
\rightarrow [u/z]y = y
\]
Example

Recall example: $\lambda x. (\lambda y. (\lambda x. y\ x))\ x \mapsto \lambda x. \lambda x. x\ x$

Reduction with safe substitution

\[
\lambda x. (\lambda y. (\lambda x. y\ x))\ x
\]

\[
\mapsto \lambda x. [x/y](\lambda x. y\ x) = \lambda x. \lambda z. [x/y](\lambda z/x)(y\ x) = \lambda x. \lambda z. [x/y](y\ z)
\]

\[
= \lambda x. \lambda z. x\ z
\]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Question: what is a **value** in the lambda calculus?

- how do we know when we’re done reducing?

One answer: a value is an expression that **contains no redexes**

- called **β-normal form**

Not all expressions can be reduced to a value!

\[
(\lambda x. xx) (\lambda x. xx) \mapsto (\lambda x. xx) (\lambda x. xx) \mapsto (\lambda x. xx) (\lambda x. xx) \mapsto \ldots
\]
Does reduction order matter?

Recall: operational semantics is ambiguous

• in what order should we β-reduce redexes?
• does it matter?

\[
\begin{align*}
\text{Definition of lambda calculus 22 / 43}
\end{align*}
\]
Church–Rosser Theorem

Reduction is **confluent**

If $e \xrightarrow{*} e_1$ and $e \xrightarrow{*} e_2$, then

$\exists e'$ such that $e_1 \xrightarrow{*} e'$ and $e_2 \xrightarrow{*} e'$

Corollary: any expression has at most one normal form

- if it exists, we can still reach it after any sequence of reductions
- … but if we pick badly, we might never get there!

Example: $(\lambda x. y) ((\lambda x. x x) (\lambda x. x x))$
Reduction strategies

Redex positions

- **leftmost redex**: the redex with the leftmost \(\lambda \)
- **outermost redex**: any redex that is not part of another redex
- **innermost redex**: any redex that does not contain another redex

Label redexes

\[(\lambda x. (\lambda y. x) z) ((\lambda y. y) z)) (\lambda y. z)\]

Reduction strategies

- **normal order reduction**: reduce the leftmost redex
- **applicative order reduction**: reduce the leftmost of the innermost redexes

Compare reductions: \((\lambda x. y) ((\lambda x. x) x) ((\lambda x. x) x)\)
Write **two reduction sequences** for each of the following expressions

- one corresponding to a normal order reduction
- one corresponding to an applicative order reduction

1. \((\lambda x. x x) ((\lambda x. y. x) z (\lambda x. x))\)
2. \((\lambda x y z. x z) (\lambda z. z) ((\lambda y. y) (\lambda z. z))\) \(x\)
Comparison of reduction strategies

Theorem
If a normal form exists, normal order reduction will find it!

Applicative order: reduces arguments first
- evaluates every argument exactly once, even if it’s not needed
- corresponds to “call by value” parameter passing scheme

Normal order: copies arguments first
- doesn’t evaluate unused arguments, but may re-evaluate each one many times
- guaranteed to reduce to normal form, if possible
- corresponds to “call by name” parameter passing scheme
Lazy evaluation: reduces arguments only if used, but at most once
 • essentially, an efficient implementation of normal order reduction
 • only evaluates to “weak head normal form”
 • corresponds to “call by need” parameter passing scheme

Expression e is in **weak head normal form** if:
 • e is a variable or lambda abstraction
 • e is an application with a variable in the left position
 … in other words, e does not start with a redex
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Church Booleans

Data and operations are encoded as **functions** in the lambda calculus.

For Booleans, need lambda calculus terms for `true`, `false`, and `if`, where:

- \(\text{if \ true} \ e_1 \ e_2 \mapsto^* e_1 \)
- \(\text{if \ false} \ e_1 \ e_2 \mapsto^* e_2 \)

Church Booleans

<table>
<thead>
<tr>
<th>True</th>
<th>(\lambda x y. x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>(\lambda x y. y)</td>
</tr>
<tr>
<td>If</td>
<td>(\lambda b t e. b t e)</td>
</tr>
</tbody>
</table>

More Boolean operations

- `and` = \(\lambda p q. \text{if} \ p \ q \ p \)
- `or` = \(\lambda p q. \text{if} \ p \ p \ q \)
- `not` = \(\lambda p. \text{if} \ p \ \text{false} \ \text{true} \)
Church numerals

A natural number n is encoded as a function that applies f to x n times

Church numerals

<table>
<thead>
<tr>
<th>Name</th>
<th>Church numeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>$\lambda f \ x. \ x$</td>
</tr>
<tr>
<td>one</td>
<td>$\lambda f \ x. \ f \ x$</td>
</tr>
<tr>
<td>two</td>
<td>$\lambda f \ x. \ f \ (f \ x)$</td>
</tr>
<tr>
<td>three</td>
<td>$\lambda f \ x. \ f \ (f \ (f \ x))$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>$\lambda f \ x. \ f^n \ x$</td>
</tr>
</tbody>
</table>

Operations on Church numerals

<table>
<thead>
<tr>
<th>Operation</th>
<th>Church numeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>succ</td>
<td>$\lambda n \ f \ x. \ f \ (n \ f \ x)$</td>
</tr>
<tr>
<td>add</td>
<td>$\lambda n \ m \ f \ x. \ n \ f \ (m \ f \ x)$</td>
</tr>
<tr>
<td>mult</td>
<td>$\lambda n \ m \ f. \ n \ (m \ f)$</td>
</tr>
<tr>
<td>isZero</td>
<td>$\lambda n. \ n \ (\lambda x. \ false) \ true$</td>
</tr>
</tbody>
</table>
Encoding values of more complicated data types

At a minimum, need **functions** that encode how to:

- **construct** new values of the data type
- **destruct and use** values of the data type in a general way

Can encode values of many data types as **sums of products**

- corresponds to **tuples** and **Either** in Haskell

```
data Val = A Nat | B Bool | C Nat Bool
```

```
type Val' = Either Nat (Either Bool (Nat,Bool))
```
Exercise

```
data Val = A Nat | B Bool | C Nat Bool

≡
type Val’ = Either Nat (Either Bool (Nat,Bool))
```

Encode the following values of type `Val` as values of type `Val’`

- A 2
- B True
- C 3 False
Products (a.k.a. tuples)

A tuple is defined by:

- a tupling function (constructor)
- a set of selecting functions (destructors)

Church pairs

\[
\begin{align*}
\text{pair} &= \lambda x y s. s x y \\
\text{fst} &= \lambda t. t (\lambda x y. x) \\
\text{snd} &= \lambda t. t (\lambda x y. y)
\end{align*}
\]

Church triples

\[
\begin{align*}
\text{tuple}_3 &= \lambda x y z s. s x y z \\
\text{sel}_{1/3} &= \lambda t. t (\lambda x y z. x) \\
\text{sel}_{2/3} &= \lambda t. t (\lambda x y z. y) \\
\text{sel}_{3/3} &= \lambda t. t (\lambda x y z. z)
\end{align*}
\]
Sums (a.k.a. tagged unions)

A tagged union is defined by:

- a case function: a tuple of functions (destructor)
- a set of tags that select the correct function and apply it (constructors)

Church either

\[\textit{either} = \lambda f \ g \ u. \ u \ f \ g \]

\[\textit{in}_L = \lambda x \ f \ g. \ f \ x \]

\[\textit{in}_R = \lambda y \ f \ g. \ g \ y \]

Church union

\[\textit{case}_3 = \lambda f \ g \ h \ u. \ u \ f \ g \ h \]

\[\textit{in}_{1/3} = \lambda x \ f \ g \ h. \ f \ x \]

\[\textit{in}_{2/3} = \lambda y \ f \ g \ h. \ g \ y \]

\[\textit{in}_{3/3} = \lambda z \ f \ g \ h. \ h \ z \]
Exercise

```haskell
data Val = A Nat | B Bool | C Nat Bool

foo :: Val -> Nat
foo (A n) = n
foo (B b) = if b then 0 else 1
foo (C n b) = if b then 0 else n
```

1. Encode the following values of type `Val` as lambda calculus terms
 - A 2
 - B True
 - C 3 False

2. Encode the function `foo` in lambda calculus
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Observation: can use abstractions to define names

```plaintext
let succ = \n -> n+1
in ... succ 3 ... succ 7 ...
⇒ (
  \(\text{succ.}
   ... \text{succ } 3 \ldots \text{succ } 7 \ldots
  )
  (\text{\(\lambda n f x. f (n f x)\)})
```

But this pattern doesn’t work for **recursive** functions!

```plaintext
let fac = \n ->
  ... n * fac (n-1)
in ... fac 5 ... fac 8 ...
⇒ (
  \(\text{fac.}
   ... \text{fac } 5 \ldots \text{fac } 8 \ldots
  )
  (\text{\(\lambda n f x. \ldots \text{\(\text{mult} \ n \ (???) \ (\text{\(\text{pred} \ n\))}\)}}\))
```
Recursion via fixpoints

Solution: Fixpoint function

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

\[Y g \]

\[\mapsto (\lambda x. g (x x)) (\lambda x. g (x x)) \]
\[\mapsto g ((\lambda x. g (x x)) (\lambda x. g (x x))) \]
\[\mapsto g (g ((\lambda x. g (x x)) (\lambda x. g (x x)))) \]
\[\mapsto g (g (g ((\lambda x. g (x x)) (\lambda x. g (x x))))) \]
\[\mapsto \ldots \]

Example recursive function (factorial)

\[Y (\lambda \text{fac } n. \text{if } (\text{isZero } n) \text{ one } (\text{mult } n (\text{fac } (\text{pred } n)))) \]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
The role of names in lambda calculus

Variable names are a convenience for readability (mnemonics)
... but they’re annoying in implementations and proofs

Annoyances related to names

• safe substitution is complicated, requires generating fresh names (minor)
• checking and maintaining α-equivalence is complicated and expensive (major)

Recall: α-equivalence

Expressions are the same up to variable renaming

• $\lambda x. x \equiv \lambda y. y \equiv \lambda z. z$
• $\lambda x y. x \equiv \lambda y x. y$
A nameless representation of lambda calculus

Basic idea: de Bruijn indices

- an abstraction implicitly declares its input (no variable name)
- a variable reference is a number n, called a de Bruijn index, that refers to the nth abstraction up the AST

Nameless lambda calculus

\[
\begin{align*}
n \in \text{Nat} & \ ::= \ (\text{any natural number}) \\
e \in \text{Exp} & \ ::= \ e\ e \quad \text{application} \\
& \quad | \ \lambda e \quad \text{lambda abstraction} \\
& \quad | \ n \quad \text{de Bruijn index}
\end{align*}
\]

Named \rightsquigarrow nameless

- $\lambda x. x \rightsquigarrow \lambda 0$
- $\lambda x. y. x \rightsquigarrow \lambda \lambda 1$
- $\lambda x. y. y _rightsquigarrow \lambda \lambda 0$
- $\lambda x. (\lambda y. y) x \rightsquigarrow \lambda (\lambda 0) 0$

Main advantage: α-equivalence is just syntactic equality!
Deciphering de Bruijn indices

De Bruijn index: the number of λs you have to *skip* when moving up the AST

Gotchas:
- the same variable will be a different number in different contexts
- scopes work the same as before; references respect the AST
 - e.g. the blue 0 refers to the blue λ since it is not in scope of the green λ, and the green λ does not count as a *skip*
Free variable in e: a de Bruijn index that skips over all of the λs in e

- the same free variables will have the same number of λs left to skip