Lambda Calculus
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
What is the lambda calculus?

A very **simple**, but **Turing complete**, programming language
- created before concept of *programming language* existed!
- helped to define what *Turing complete* means!

Lambda calculus syntax

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v \in Var$</td>
<td>$x</td>
</tr>
</tbody>
</table>
| $e \in Exp$ | v *variable reference*
$e e$ *application*
$\lambda v. e$ *(lambda) abstraction* |

Examples

| x | $\lambda x. y$ | $x \ y$ | $(\lambda x. y) \ x$ |
| $\lambda f. (\lambda x. f (x \ x))$ | $(\lambda x. f (x \ x))$ |
Lambda calculus is the **theoretical foundation** for **functional programming**

<table>
<thead>
<tr>
<th>Lambda calculus</th>
<th>Haskell</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(f , x)</td>
<td>(f , x)</td>
</tr>
<tr>
<td>(\lambda x. , x)</td>
<td>(\lambda x \rightarrow x)</td>
</tr>
<tr>
<td>((\lambda f. , f , x) , (\lambda y. , y))</td>
<td>((\lambda f \rightarrow f , x) , (\lambda y \rightarrow y))</td>
</tr>
</tbody>
</table>

Similar to Haskell with only: variables, application, anonymous functions
- amazingly, we don’t lose anything by omitting all of the other features!
 (for a particular definition of “anything”)
Early history of the lambda calculus

Origin of the lambda calculus:

- **Alonzo Church** in 1936, to formalize “computable function”
- proves Hilbert’s *Entscheidungsproblem* undecidable
 - provide an algorithm to decide truth of arbitrary propositions

Meanwhile, in England …

- young **Alan Turing** invents the Turing machine
- devises *halting problem* and proves undecidable

Turing heads to Princeton, studies under Church

- prove lambda calculus, Turing machine, general recursion are equivalent
- **Church–Turing thesis**: these capture all that can be computed
Why lambda?

Evolution of notation for a **bound variable**:

- **Whitehead and Russell, *Principia Mathematica*, 1910**
 - $2\hat{x} + 3$ – corresponds to $f(x) = 2x + 3$

- **Church’s early handwritten papers**
 - $\hat{x}.2x + 3$ – makes scope of variable explicit

- **Typesetter #1**
 - $\wedge x.2x + 3$ – couldn’t typeset the circumflex!

- **Typesetter #2**
 - $\lambda x.2x + 3$ – picked a prettier symbol

Impact of the lambda calculus

Turing machine: theoretical foundation for **imperative languages**
- Fortran, Pascal, C, C++, C#, Java, Python, Ruby, JavaScript, …

Lambda calculus: theoretical foundation for **functional languages**
- Lisp, ML, Haskell, OCaml, Scheme/Racket, Clojure, F#, Coq, …

In **programming languages research**:
- common language of discourse, formal foundation
- starting point for new features
 - extend syntax, type system, semantics
 - reveals precise impact and utility of feature
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of \(\beta \)-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Syntax

Lambda calculus syntax

\[\begin{align*}
\nu & \in \text{Var} \quad ::= \quad x \mid y \mid z \mid \ldots \\
\varepsilon & \in \text{Exp} \quad ::= \quad \nu \quad \text{variable reference} \\
& \quad | \quad \varepsilon \ v \quad \text{application} \\
& \quad | \quad \lambda \nu. \varepsilon \quad \text{(lambda) abstraction}
\end{align*} \]

Abstractions extend as far right as possible
so ... \(\lambda x. x \ y \equiv \lambda x. (x \ y) \)

NOT \((\lambda x. x) \ y \)

Syntactic sugar

Multi-parameter functions:

\[\lambda x. (\lambda y. \varepsilon) \equiv \lambda x y. \varepsilon \]
\[\lambda x. (\lambda y. (\lambda z. \varepsilon)) \equiv \lambda x y z. \varepsilon \]

Application is left-associative:

\[(e_1 \ e_2) \ e_3 \equiv e_1 \ e_2 \ e_3 \]
\[((e_1 \ e_2) \ e_3) \ e_4 \equiv e_1 \ e_2 \ e_3 \ e_4 \]
\[e_1 \ (e_2 \ e_3) \equiv e_1 \ (e_2 \ e_3) \]
β-reduction: basic idea

A **redex** is an expression of the form: \((\lambda v. e_1) e_2\)

(an application with an abstraction on left)

Reduce by **substituting** \(e_2\) for every reference to \(v\) in \(e_1\)

write this as: \([e_2/v]e_1\)

\(\rightarrow\) lots of different notations for this!

Simple example

\((\lambda x. x y x) z \mapsto z y z\)

\(e \in \text{Exp} ::= v \mid e \ e \mid \lambda v. e\)
Operational semantics

Reduction semantics

\[
\begin{align*}
(\lambda v. e_1) e_2 & \mapsto [e_2/v] e_1 \\
\lambda v. e & \mapsto \lambda v. e' \\
e_1 & \mapsto e'_1 \\
e_2 & \mapsto e'_2
\end{align*}
\]

\[
\begin{align*}
e_1 e_2 & \mapsto e'_1 e_2 \\
e_1 e_2 & \mapsto e_1 e'_2
\end{align*}
\]

Note: Reduction order is ambiguous!
Exercise

Apply β-reduction in the following expressions

Round 1:
- $(\lambda x.\ x)\ z$
- $(\lambda x y.\ x)\ z$
- $(\lambda x y.\ x)\ z\ u$

Round 2:
- $(\lambda x.\ x\ x)\ (\lambda y.\ y)$
- $(\lambda x.\ (\lambda y.\ y)\ z)$
- $(\lambda x.\ (x\ (\lambda y.\ x)))\ z$

\[e \in \text{Exp} ::= \nu \mid e\ e \mid \lambda\nu.\ e \]

\[(\lambda\nu.\ e_1)\ e_2 \mapsto [e_2/\nu]e_1 \quad \frac{e \mapsto e'}{\lambda\nu.\ e \mapsto \lambda\nu.\ e'} \]

\[e_1 \mapsto e_1' \quad e_2 \mapsto e_2' \]

\[e_1\ e_2 \mapsto e_1'\ e_2 \quad e_1\ e_2 \mapsto e_1\ e_2' \]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Variable scoping

An abstraction consists of:

1. a **variable declaration**
2. a **function body** – the variable can be **referenced** in here

The **scope** of a declaration: the parts of a program where it can be referenced

A reference is bound by its **innermost** declaration

Mini-exercise:

\[
(\lambda x. e_1 \ (\lambda y. e_2 \ (\lambda x. e_3))) \ (\lambda z. e_4)
\]

• What is the scope of each variable declaration?
Free and bound variables

A variable \(v \) is **free** in \(e \) if:

- \(v \) is referenced in \(e \)
- the reference is *not* enclosed in an abstraction declaring \(v \) (within \(e \))

If \(v \) is referenced and enclosed in such an abstraction, it is **bound**

Closed expression: an expression with no free variables

- equivalently, an expression where all variables are bound

\[
e \in \text{Exp} ::= v \mid e \\ e \mid \lambda v. e
\]
Exercise

1. Define the abstract syntax of lambda calculus as a Haskell data type

\[
e \in \text{Exp} ::= v \mid e \; e \mid \lambda v. e
\]

2. Define a function: \text{free} :: \text{Exp} \to \text{Set Var}

the set of free variables in an expression

3. Define a function: \text{closed} :: \text{Exp} \to \text{Bool}

no free variables in an expression
Potential problem: variable capture

Principles of variable bindings:

1. variables should be bound according to their static scope
 - $\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \mapsto \lambda x. \lambda x. x \ x$

2. how we name bound variables doesn’t really matter
 - $\lambda x. x \equiv \lambda y. y \equiv \lambda z. z$ (α-equivalence)

If violated, we can’t reason about functions separately from their use!

Example with naive substitution

A binary function that always returns its first argument: $\lambda x \ y. x \ldots$ or does it?

$$ (\lambda x \ y. x) \ y \ u \mapsto (\lambda y. y) \ u \mapsto u $$
Solution: capture-avoiding substitution

Capture-avoiding (safe) substitution: $[e/v]e'$

\[
\begin{align*}
[e/v]v &= e \\
[e/v]w &= w & v \neq w \\
[e/v](e_1 e_2) &= [e/v]e_1 [e/v]e_2 \\
[e/v](\lambda u. e') &= \lambda w. [e/v][w/u]e' & w \notin \{v\} \cup FV(\lambda u. e') \cup FV(e)
\end{align*}
\]

$FV(e)$ is the set of all free variables in e

Example with safe substitution

\[(\lambda x y. x) \ y \ u \mapsto [y/x](\lambda y. x) u = (\lambda z. [y/x]([z/y]x)) u = (\lambda z. [y/x]x) u = (\lambda z. y) u \mapsto [u/z]y = y\]
Example

Recall example: \(\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \ \mapsto \ \lambda x. \lambda x. x \ x \)

Reduction with safe substitution

\[
\begin{align*}
\lambda x. (\lambda y. (\lambda x. y \ x)) \ x & \mapsto \lambda x. \lambda z. [x/y](\lambda x. y \ x) = \lambda x. \lambda z. [x/y](\lambda z/x)(y \ x)) = \lambda x. \lambda z. [x/y](y \ z) = \lambda x. \lambda z. x \ z
\end{align*}
\]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Normal form

Question: what is a **value** in the lambda calculus?
- how do we know when we’re done reducing?

One answer: a value is an expression that **contains no redexes**
- called **β-normal form**

Not all expressions can be reduced to a value!

\[
(\lambda x. x\ x) \ (\lambda x. x\ x) \ \mapsto \ (\lambda x. x\ x) \ (\lambda x. x\ x) \ \mapsto \ (\lambda x. x\ x) \ (\lambda x. x\ x) \ \mapsto \ \ldots
\]
Does reduction order matter?

Recall: operational semantics is ambiguous
- in what order should we β-reduce redexes?
- does it matter?

\[
\begin{align*}
\lambda v. e_1 \ x \ &\mapsto [e_2/v]e_1 \\
\lambda v. e &\mapsto \lambda v. e' \\
e_1 &\mapsto e'_1 \\
e_1 e_2 &\mapsto e'_1 e_2 \\
\end{align*}
\]

\[
\begin{align*}
\ x &\mapsto e' \subseteq \text{Exp} \times \text{Exp} \\
e_1 e_2 &\mapsto e'_1 e_2
\end{align*}
\]
Church–Rosser Theorem

Reduction is **confluent**

If \(e \xrightarrow{*} e_1 \) and \(e \xrightarrow{*} e_2 \), then

\[\exists e' \text{ such that } e_1 \xrightarrow{*} e' \text{ and } e_2 \xrightarrow{*} e' \]

Corollary: any expression has **at most one normal form**

- if it exists, we can still reach it after any sequence of reductions
- … but if we pick badly, we might never get there!

Example: \((\lambda x. y) ((\lambda x. x x) (\lambda x. x x))\)
Reduction strategies

Redex positions

- **leftmost redex**: the redex with the leftmost λ
- **outermost redex**: any redex that is not part of another redex
- **innermost redex**: any redex that does not contain another redex

Label redexes

\[
(\lambda x. (\lambda y. x) z) ((\lambda y. y) z) (\lambda y. z)
\]

Reduction strategies

- **normal order reduction**: reduce the leftmost redex
- **applicative order reduction**: reduce the leftmost of the innermost redexes

Compare reductions: \((\lambda x. y) ((\lambda x. x x) (\lambda x. x x))\)
Exercises

Write **two reduction sequences** for each of the following expressions

- one corresponding to a normal order reduction
- one corresponding to an applicative order reduction

1. \((\lambda x. x x) ((\lambda x. y x) z (\lambda x. x))\)
2. \((\lambda x y z. x z) (\lambda z. z) ((\lambda y. y) (\lambda z. z)) x\)
Comparison of reduction strategies

Theorem
If a normal form exists, normal order reduction will find it!

Applicative order: reduces arguments first
- evaluates every argument exactly once, even if it’s not needed
- corresponds to “call by value” parameter passing scheme

Normal order: copies arguments first
- doesn’t evaluate unused arguments, but may re-evaluate each one many times
- guaranteed to reduce to normal form, if possible
- corresponds to “call by name” parameter passing scheme
Brief notes on lazy evaluation

Lazy evaluation: reduces arguments only if used, but at most once
- essentially, an efficient implementation of normal order reduction
- only evaluates to “weak head normal form”
- corresponds to “call by need” parameter passing scheme

Expression e is in **weak head normal form** if:
- e is a variable or lambda abstraction
- e is an application with a variable in the left position
... in other words, e does not start with a redex
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Church Booleans

Data and operations are encoded as **functions** in the lambda calculus

For Booleans, need lambda calculus terms for *true*, *false*, and *if*, where:

- \(\text{if } \text{true } e_1 e_2 \mapsto^* e_1 \)
- \(\text{if } \text{false } e_1 e_2 \mapsto^* e_2 \)

Church Booleans

\[
\begin{align*}
\text{true} & = \lambda x y. x \\
\text{false} & = \lambda x y. y \\
\text{if} & = \lambda b t e. b t e
\end{align*}
\]

More Boolean operations

\[
\begin{align*}
\text{and} & = \lambda p q. \text{if } p q p \\
\text{or} & = \lambda p q. \text{if } p p q \\
\text{not} & = \lambda p. \text{if } p \text{ false } \text{true}
\end{align*}
\]
Church numerals

A natural number n is encoded as a function that applies f to x n times

Church numerals

<table>
<thead>
<tr>
<th>Value</th>
<th>Church numeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>$\lambda f \ x. \ x$</td>
</tr>
<tr>
<td>one</td>
<td>$\lambda f \ x. \ f \ x$</td>
</tr>
<tr>
<td>two</td>
<td>$\lambda f \ x. \ f \ (f \ x)$</td>
</tr>
<tr>
<td>three</td>
<td>$\lambda f \ x. \ f \ (f \ (f \ x))$</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>$\lambda f \ x. \ f^n \ x$</td>
</tr>
</tbody>
</table>

Operations on Church numerals

<table>
<thead>
<tr>
<th>Operation</th>
<th>Church numeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>succ</td>
<td>$\lambda n \ f \ x. \ f \ (n \ f \ x)$</td>
</tr>
<tr>
<td>add</td>
<td>$\lambda n \ m \ f \ x. \ n \ f \ (m \ f \ x)$</td>
</tr>
<tr>
<td>mult</td>
<td>$\lambda n \ m \ f. \ n \ (m \ f)$</td>
</tr>
<tr>
<td>isZero</td>
<td>$\lambda n. \ n \ (\lambda x. \ false) \ true$</td>
</tr>
</tbody>
</table>
Encoding values of more complicated data types

At a minimum, need **functions** that encode how to:

- **construct** new values of the data type
- **destruct and use** values of the data type in a general way

Can encode values of many data types as **sums of products**

- corresponds to **tuples** and **Either** in Haskell

```haskell
data Val = A Nat | B Bool | C Nat Bool

≡

type Val' = Either Nat (Either Bool (Nat,Bool))
```
Encode the following values of type `Val` as values of type `Val'`

- A 2
- B True
- C 3 False
Products (a.k.a. tuples)

A tuple is defined by:
- a tupling function (constructor)
- a set of selecting functions (destructors)

Church pairs

<table>
<thead>
<tr>
<th>Function</th>
<th>Lambda Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>pair</td>
<td>(\lambda x y s. s x y)</td>
</tr>
<tr>
<td>fst</td>
<td>(\lambda t. t (\lambda x y. x))</td>
</tr>
<tr>
<td>snd</td>
<td>(\lambda t. t (\lambda x y. y))</td>
</tr>
</tbody>
</table>

Church triples

<table>
<thead>
<tr>
<th>Function</th>
<th>Lambda Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>tuple(_3)</td>
<td>(\lambda x y z s. s x y z)</td>
</tr>
<tr>
<td>sel(_{1/3})</td>
<td>(\lambda t. t (\lambda x y z. x))</td>
</tr>
<tr>
<td>sel(_{2/3})</td>
<td>(\lambda t. t (\lambda x y z. y))</td>
</tr>
<tr>
<td>sel(_{3/3})</td>
<td>(\lambda t. t (\lambda x y z. z))</td>
</tr>
</tbody>
</table>
A tagged union is defined by:

- a case function: a tuple of functions (destructor)
- a set of tags that select the correct function and apply it (constructors)

Church either

\[
either = \lambda f \, g \, u . \, u \, f \, g
\]

\[
in_L = \lambda x . \, f \, g \, . \, f \, x
\]

\[
in_R = \lambda y . \, f \, g \, . \, g \, y
\]

Church union

\[
case_3 = \lambda f \, g \, h \, u . \, u \, f \, g \, h
\]

\[
in_{1/3} = \lambda x . \, f \, g \, h \, . \, f \, x
\]

\[
in_{2/3} = \lambda y . \, f \, g \, h \, . \, g \, y
\]

\[
in_{3/3} = \lambda z . \, f \, g \, h \, . \, h \, z
\]
Exercise

\[
\text{data Val} = \text{A Nat} \mid \text{B Bool} \mid \text{C Nat Bool}
\]

\[
\text{foo :: Val} \rightarrow \text{Nat}
\]

\[
\text{foo (A n)} = n \\
\text{foo (B b)} = \text{if b then 0 else 1} \\
\text{foo (C n b)} = \text{if b then 0 else n}
\]

1. Encode the following values of type \text{Val} as lambda calculus terms
 - A 2
 - B True
 - C 3 False

2. Encode the function \text{foo} in lambda calculus
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Naming in lambda calculus

Observation: can use abstractions to define names

```
let succ = \n -> n+1
in ... succ 3 ... succ 7 ...
```

\[\Rightarrow \]

\[
(\lambda \text{succ}.
\quad ... \text{succ} 3 ... \text{succ} 7 ...
\quad) (\lambda n f x. f (n f x))
\]

But this pattern doesn’t work for **recursive** functions!

```
let fac = \n ->
\quad ... n * fac (n-1)
in ... fac 5 ... fac 8 ...
```

\[\Rightarrow \]

\[
(\lambda \text{fac}.
\quad ... \text{fac} 5 ... \text{fac} 8 ...
\quad) (\lambda n f x. ... \text{mult} n (??? (\text{pred} n)))
\]
Recursion via fixpoints

Solution: Fixpoint function

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

\[Y \ g \]
\[\mapsto (\lambda x. g (x x)) (\lambda x. g (x x)) \]
\[\mapsto g ((\lambda x. g (x x)) (\lambda x. g (x x))) \]
\[\mapsto g (g ((\lambda x. g (x x)) (\lambda x. g (x x)))) \]
\[\mapsto g (g (g ((\lambda x. g (x x)) (\lambda x. g (x x))))) \]
\[\mapsto \ldots \]

Example recursive function (factorial)

\[Y (\lambda \text{fac} \ n. \ \text{if} \ (\text{isZero} \ n) \ \text{one} \ (\text{mult} \ n \ (\text{fac} \ (\text{pred} \ n)))) \]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
The role of names in lambda calculus

Variable names are a convenience for readability (mnemonics) …but they’re annoying in implementations and proofs

Annoyances related to names

- safe substitution is complicated, requires generating fresh names
- checking and maintaining α-equivalence is complicated and expensive

Recall: α-equivalence

Expressions are the same up to variable renaming

- $\lambda x. x \equiv \lambda y. y \equiv \lambda z. z$
- $\lambda x y. x \equiv \lambda y x. y$
A nameless representation of lambda calculus

Basic idea: de Bruijn indices

• an abstraction implicitly declares its input (no variable name)
• a variable reference is a number n, called a **de Bruijn index**, that refers to the nth abstraction up the AST

Nameless lambda calculus

$n \in Nat \ ::= \text{(any natural number)}$

$e \in Exp \ ::= \ e \ e \ \text{application}$

$| \ \lambda e \ \text{lambda abstraction}$

$| \ n \ \text{de Bruijn index}$

Named \rightsquigarrow nameless

• $\lambda x. \ x \rightsquigarrow \lambda \ 0$
• $\lambda x y. \ x \rightsquigarrow \lambda \ \lambda \ 1$
• $\lambda x y. \ y \rightsquigarrow \lambda \ \lambda \ 0$
• $\lambda x. (\lambda y. \ y) \ x \rightsquigarrow \lambda (\lambda \ 0) \ 0$

Main advantage: α-equivalence is just syntactic equality!
Deciphering de Bruijn indices

De Bruijn index: the number of λs you have to *skip* when moving up the AST

$\lambda \ 0 \ (\lambda \ 1 \ (\lambda \ 0 \ 1 \ 2) \ 0)$

Gotchas:

- the same variable will be a different number in different contexts
- scopes work the same as before; references respect the AST
 - e.g. the blue 0 refers to the blue λ since it is not in scope of the green λ, and the green λ does not count as a *skip*
Free variable in e: a de Bruijn index that skips over all of the λs in e

- the same free variables will have the same number of λs left to skip