Lambda Calculus
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

De Bruijn indices

Programming with lambda calculus
 Church encodings
 Recursion
What is the lambda calculus?

A very simple, but Turing complete, programming language

- created before concept of programming language existed!
- helped to define what Turing complete means!

Lambda calculus syntax

\[v \in Var ::= x \mid y \mid z \mid \ldots \]

\[e \in Exp ::= v \text{ variable reference} \]
| \[e e \text{ application} \]
| \[\lambda v. e \text{ (lambda) abstraction} \]

Examples

\[x \quad \lambda x. y \quad x \quad y \quad (\lambda x. y) x \]
\[\lambda f. (\lambda x. f (x x)) \quad (\lambda x. f (x x)) \]
Lambda calculus is the **theoretical foundation** for **functional programming**

<table>
<thead>
<tr>
<th>Lambda calculus</th>
<th>Haskell</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(f \ x)</td>
<td>(f \ x)</td>
</tr>
<tr>
<td>(\lambda x. \ x)</td>
<td>(\lambda x \rightarrow x)</td>
</tr>
<tr>
<td>((\lambda f. \ f \ x) \ (\lambda y. \ y))</td>
<td>((\lambda f \rightarrow f \ x) \ (\lambda y \rightarrow y))</td>
</tr>
</tbody>
</table>

Similar to Haskell with only: variables, application, anonymous functions

- amazingly, we don’t lose anything by omitting all of the other features!
 (for a particular definition of “anything”)

Introduction and history
Early history of the lambda calculus

Origin of the lambda calculus:
- **Alonzo Church** in 1936, to formalize “computable function”
- proves Hilbert’s *Entscheidungsproblem* undecidable
 - provide an algorithm to decide truth of arbitrary propositions

Meanwhile, in England …
- young **Alan Turing** invents the Turing machine
- devises *halting problem* and proves undecidable

Turing heads to Princeton, studies under Church
- prove lambda calculus, Turing machine, general recursion are equivalent
- **Church–Turing thesis**: these capture all that can be computed
Why lambda?

Evolution of notation for a **bound variable**:

- Whitehead and Russell, *Principia Mathematica*, 1910
 - $2\hat{x} + 3$ – corresponds to $f(x) = 2x + 3$

- Church’s early handwritten papers
 - $\hat{x}. 2x + 3$ – makes scope of variable explicit

- Typesetter #1
 - $\wedge x. 2x + 3$ – couldn’t typeset the circumflex!

- Typesetter #2
 - $\lambda x. 2x + 3$ – picked a prettier symbol

Impact of the lambda calculus

Turing machine: theoretical foundation for *imperative languages*
- Fortran, Pascal, C, C++, C#, Java, Python, Ruby, JavaScript, ...

Lambda calculus: theoretical foundation for *functional languages*
- Lisp, ML, Haskell, OCaml, Scheme/Racket, Clojure, F#, Coq, ...

In *programming languages research*:
- common language of discourse, formal foundation
- starting point for new features
 - extend syntax, type system, semantics
 - reveals precise impact and utility of feature
Definition of lambda calculus

- Syntax and operational semantics
- Minutia of β-reduction
- Reduction strategies

De Bruijn indices

Programming with lambda calculus

- Church encodings
- Recursion
Lambda calculus syntax

\[\begin{align*}
\nu \in \text{Var} & \ ::= \ x \mid y \mid z \mid \ldots \\
\epsilon \in \text{Exp} & \ ::= \ \nu \quad \text{variable reference} \\
& \quad \mid \epsilon \ \epsilon \quad \text{application} \\
& \quad \mid \lambda \nu. \epsilon \quad \text{(lambda) abstraction}
\end{align*} \]

Syntactic sugar

\textit{Multi-parameter functions:}

\[\lambda x. (\lambda y. \epsilon) \equiv \lambda x y. \epsilon \]
\[\lambda x. (\lambda y. (\lambda z. \epsilon)) \equiv \lambda x y z. \epsilon \]

\textit{Application is left-associative:}

\[(\epsilon_1 \ \epsilon_2) \ \epsilon_3 \equiv \epsilon_1 \ \epsilon_2 \ \epsilon_3 \]
\[((\epsilon_1 \ \epsilon_2) \ \epsilon_3) \ \epsilon_4 \equiv \epsilon_1 \ \epsilon_2 \ \epsilon_3 \ \epsilon_4 \]
\[\epsilon_1 \ (\epsilon_2 \ \epsilon_3) \equiv \epsilon_1 \ (\epsilon_2 \ \epsilon_3) \]

Abstractions extend as far right as possible so \[\lambda x. x \ y \equiv \lambda x. (x \ y) \]

NOT \[(\lambda x. x) \ y \]
\[\begin{align*}
\beta\text{-reduction: basic idea} \\
\text{A redex is an expression of the form: } (\lambda v. e_1) \, e_2 \\
\text{(an application with an abstraction on left)} \\
\text{Reduce by substituting } e_2 \text{ for every reference to } v \text{ in } e_1 \\
\text{write this as: } [e_2/v]e_1 \\
\text{lots of different notations for this!} \\
\end{align*}\]
Operational semantics

\[e \in \text{Exp} ::= v \mid e \mid \lambda v. e \]

Reduction semantics

\[(\lambda v. e_1) e_2 \leftrightarrow [e_2/v]e_1 \]
\[e \leftrightarrow e' \]
\[\lambda v. e \leftrightarrow \lambda v. e' \]
\[e_1 \leftrightarrow e'_1 \]
\[e_2 \leftrightarrow e'_2 \]
\[e_1 e_2 \leftrightarrow e'_1 e_2 \]
\[e_1 e_2 \leftrightarrow e'_1 e'_2 \]

Note: Reduction order is ambiguous!
Exercise

Apply β-reduction in the following expressions

Round 1:
- $(\lambda x. x) \ z$
- $(\lambda x y. x) \ z$
- $(\lambda x y. x) \ z \ u$

Round 2:
- $(\lambda x. x \ x) \ (\lambda y. y)$
- $(\lambda x. (\lambda y. y) \ z)$
- $(\lambda x. (x \ (\lambda y. x))) \ z$

Definition of lambda calculus

$e \in \text{Exp} ::= v \mid e \ e \mid \lambda v. e$

$(\lambda v. e_1) \ e_2 \mapsto [e_2/v]e_1$

$\lambda v. e \mapsto \lambda v. e'$

$e_1 \mapsto e'_1$

$e_2 \mapsto e'_2$

$e_1 \ e_2 \mapsto e'_1 \ e_2$

$e_1 \ e_2 \mapsto e_1 \ e'_2$
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

De Bruijn indices

Programming with lambda calculus
 Church encodings
 Recursion
Variable scoping

An abstraction consists of:

1. a **variable declaration**
2. a **function body** – the variable can be **referenced** in here

The **scope** of a declaration: the parts of a program where it can be referenced

A reference is bound by its **innermost** declaration

Mini-exercise: \((\lambda x. e_1 (\lambda y. e_2 (\lambda x. e_3))) (\lambda z. e_4))\)

- What is the scope of each variable declaration?
Free and bound variables

A variable \(v \) is **free** in \(e \) if:

- \(v \) is referenced in \(e \)
- the reference is *not* enclosed in an abstraction declaring \(v \) (within \(e \))

If \(v \) is referenced and enclosed in such an abstraction, it is **bound**

Closed expression: an expression with no free variables

- equivalently, an expression where all variables are bound
Exercise

1. Define the abstract syntax of lambda calculus as a Haskell data type

2. Define a function: \(\text{free} :: \text{Exp} \to \text{Set Var} \)
 the set of free variables in an expression

3. Define a function: \(\text{closed} :: \text{Exp} \to \text{Bool} \)
 no free variables in an expression
Potential problem: variable capture

Principles of variable bindings:

1. variables should be bound according to their static scope
 - \(\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \mapsto \lambda x. \lambda x. x \ x \)

2. how we name bound variables doesn’t really matter
 - \(\lambda x. x \equiv \lambda y. y \equiv \lambda z. z \) \((\alpha\)-equivalence\)

If violated, we can’t reason about functions separately from their use!

Example with naive substitution

A binary function that always returns its first argument: \(\lambda x y. x \) ... or does it?

\[(\lambda x y. x) \ y \ u \mapsto (\lambda y. y) \ u \mapsto u \]
Solution: capture-avoiding substitution

Capture-avoiding (safe) substitution: \([e/v]e'\)

\[
\begin{align*}
[e/v]v &= e \\
[e/v]w &= w & v \neq w \\
[e/v](e_1 e_2) &= [e/v]e_1 [e/v]e_2 \\
[e/v](\lambda u. e') &= \lambda w. [e/v]([w/u]e') & w \notin \{v\} \cup FV(\lambda u. e') \cup FV(e)
\end{align*}
\]

Example with safe substitution

\((\lambda x y. x) y u\)
\rightarrow [y/x](\lambda y. x) u = (\lambda z. [y/x]([z/y]x)) u = (\lambda z. [y/x]x) u = (\lambda z. y) u
\rightarrow [u/z]y = y
Example

Recall example: \(\lambda x. (\lambda y. (\lambda x. y x)) \) \(x \) \(\mapsto \) \(\lambda x. \lambda x. x x \)

Reduction with safe substitution

\[
\begin{align*}
\lambda x. (\lambda y. (\lambda x. y x)) \ x & \mapsto \lambda x. [x/y](\lambda x. y x) = \lambda x. \lambda z. [x/y][z/x](y \ x) = \lambda x. \lambda z. [x/y](y \ z) \\
& = \lambda x. \lambda z. x \ z
\end{align*}
\]
Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

De Bruijn indices

Programming with lambda calculus
 Church encodings
 Recursion
Question: what is a **value** in the lambda calculus?
- how do we know when we’re done reducing?

One answer: a value is an expression that **contains no redexes**
- called **β-normal form**

Not all expressions can be reduced to a value!

\[
\begin{align*}
(\lambda x. xx) (\lambda x. xx) &\mapsto (\lambda x. xx) (\lambda x. xx) \\
&\mapsto (\lambda x. xx) (\lambda x. xx) \\
&\mapsto \ldots
\end{align*}
\]
Does reduction order matter?

Recall: operational semantics is ambiguous

- in what order should we β-reduce redexes?
- does it matter?

\[
e \mapsto e' \subseteq \text{Exp} \times \text{Exp}
\]

\[
(\lambda v. e_1) e_2 \mapsto [e_2/v]e_1
\]

\[
\lambda v. e \mapsto \lambda v. e'
\]

\[
e_1 \mapsto e_1'
\]

\[
e_1 e_2 \mapsto e_1' e_2
\]

\[
\frac{e_2 \mapsto e_2'}{e_1 e_2 \mapsto e_1' e_2'}
\]

\[
e \mapsto^* e' \subseteq \text{Exp} \times \text{Exp}
\]

\[
s \mapsto^* s
\]

\[
s \mapsto s' \quad s' \mapsto^* s''
\]

\[
s \mapsto^* s''
\]
Reduction is **confluent**

If $e \leftrightarrow^* e_1$ and $e \leftrightarrow^* e_2$, then

$\exists e'$ such that $e_1 \leftrightarrow^* e'$ and $e_2 \leftrightarrow^* e'$

Corollary: any expression has **at most one normal form**

- if it exists, we can still reach it after any sequence of reductions
- … but if we pick badly, we might never get there!

Example: $(\lambda x. y) \ ((\lambda x. x x) \ (\lambda x. x x))$
Reduction strategies

Redex positions

- **leftmost redex**: the redex with the leftmost λ
- **outermost redex**: any redex that is not part of another redex
- **innermost redex**: any redex that does not contain another redex

Label redexes

- $(\lambda x. (\lambda y. x) z) ((\lambda y. y) z)) (\lambda y. z)$

Reduction strategies

- **normal order reduction**: reduce the leftmost redex
- **applicative order reduction**: reduce the leftmost of the innermost redexes

Compare reductions: $(\lambda x. y) ((\lambda x. x x) (\lambda x. x x))$
Write two reduction sequences for each of the following expressions

- one corresponding to a normal order reduction
- one corresponding to an applicative order reduction

1. \((\lambda x. x x) ((\lambda x. y y) x z (\lambda x. x))\)

2. \((\lambda x y z. x z) (\lambda z. z) ((\lambda y. y) (\lambda z. z))\) x
Comparison of reduction strategies

Theorem
If a normal form exists, normal order reduction will find it!

Applicative order: reduces arguments first
- evaluates every argument exactly once, even if it’s not needed
- corresponds to “call by value” parameter passing scheme

Normal order: copies arguments first
- doesn’t evaluate unused arguments, but may re-evaluate each one many times
- guaranteed to reduce to normal form, if possible
- corresponds to “call by name” parameter passing scheme
Brief notes on lazy evaluation

Lazy evaluation: reduces arguments only if used, but at most once

• essentially, an efficient implementation of normal order reduction
• only evaluates to “weak head normal form”
• corresponds to “call by need” parameter passing scheme

Expression e is in **weak head normal form** if:

• e is a variable or lambda abstraction
• e is an application with a variable in the left position

… in other words, e does not start with a redex
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

De Bruijn indices

Programming with lambda calculus
 Church encodings
 Recursion
The role of names in lambda calculus

Variable names are a convenience for readability (mnemonics) ... but they’re annoying in implementations and proofs

Annoyances related to names

- safe substitution is complicated, requires generating fresh names
- checking and maintaining α-equivalence is complicated and expensive

Recall: α-equivalence

Expressions are the same up to variable renaming

- $\lambda x. x \equiv \lambda y. y \equiv \lambda z. z$
- $\lambda x y. x \equiv \lambda y x. y$
A nameless representation of lambda calculus

Basic idea: de Bruijn indices

- An abstraction implicitly declares its input (no variable name)
- A variable reference is a number \(n \), called a de Bruijn index, that refers to the \(n \)th abstraction up the AST

Nameless lambda calculus

\[
\begin{align*}
n &\in \text{Nat} & \ ::= & \text{(any natural number)} \\
e &\in \text{Exp} & \ ::= & e \ e \ 	ext{application} \\
 & & \mid & \lambda \ e \ 	ext{lambda abstraction} \\
 & & \mid & n \ 	ext{de Bruijn index}
\end{align*}
\]

Named \(\rightsquigarrow \) nameless

\[
\begin{align*}
\lambda x. \ x & \rightsquigarrow \lambda 0 \\
\lambda x \ y. \ x & \rightsquigarrow \lambda \lambda 1 \\
\lambda x \ y. \ y & \rightsquigarrow \lambda \lambda 0 \\
\lambda x. \ (\lambda y. \ y) \ x & \rightsquigarrow \lambda (\lambda 0) 0
\end{align*}
\]

Main advantage: \(\alpha \)-equivalence is just syntactic equality!
Deciphering de Bruijn indices

De Bruijn index: the number of λs you have to *skip* when moving up the AST

λ θ $(\lambda$ 1 $(\lambda$ 0 1 2 $) \theta)$

$\lambda x. x (\lambda y. x (\lambda z. z y x) y)$

Gotchas:

- the same variable will be a different number in different contexts
- scopes work the same as before; references respect the AST
 - e.g. the blue θ refers to the blue λ since it is not in scope of the green λ, and the green λ does not count as a *skip*
Free variable in e: a de Bruijn index that skips over all of the λs in e

- the same free variables will have the same number of λs left to skip
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

De Bruijn indices

Programming with lambda calculus
 Church encodings
 Recursion
Church Booleans

Data and operations are encoded as **functions** in the lambda calculus.

For Booleans, need lambda calculus terms for *true*, *false*, and *if*, where:

- \(\text{if true } e_1 e_2 \mapsto^* e_1 \)
- \(\text{if false } e_1 e_2 \mapsto^* e_2 \)

Church Booleans

- *true* = \(\lambda x y. x \)
- *false* = \(\lambda x y. y \)
- *if* = \(\lambda b t e. b t e \)

More Boolean operations

- *and* = \(\lambda p q. \text{if } p q p \)
- *or* = \(\lambda p q. \text{if } p p q \)
- *not* = \(\lambda p. \text{if } p \text{ false true} \)
A natural number n is encoded as a function that applies f to x n times

Church numerals

- **zero** $= \lambda f \, x. \, x$
- **one** $= \lambda f \, x. \, f \, x$
- **two** $= \lambda f \, x. \, f \, (f \, x)$
- **three** $= \lambda f \, x. \, f \, (f \, (f \, x))$
- ...
- **n** $= \lambda f \, x. \, f^n \, x$

Operations on Church numerals

- **succ** $= \lambda n \, f \, x. \, (n \, f \, x)$
- **add** $= \lambda n \, m \, f \, x. \, n \, f \, (m \, f \, x)$
- **mult** $= \lambda n \, m \, f. \, n \, (m \, f)$
- **isZero** $= \lambda n. \, n \, (\lambda x. \, \text{false}) \, \text{true}$
Encoding values of more complicated data types

At a minimum, need **functions** that encode how to:

- **construct** new values of the data type
- **destruct and use** values of the data type in a general way

Can encode values of many data types as **sums** of **products**

- corresponds to **Either** and **tuples** in Haskell

```
data Val = A Nat | B Bool | C Nat Bool

≡

type Val' = Either Nat (Either Bool (Nat,Bool))
```
Encode the following values of type \(\text{Val} \) as values of type \(\text{Val'} \)

- A 2
- B True
- C 3 False
Products (a.k.a. tuples)

A tuple is defined by:
- a tupling function (constructor)
- a set of selecting functions (destructors)

Church pairs

<table>
<thead>
<tr>
<th>Function</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pair</td>
<td>(\lambda x y s. s x y)</td>
</tr>
<tr>
<td>fst</td>
<td>(\lambda t. t (\lambda x y. x))</td>
</tr>
<tr>
<td>snd</td>
<td>(\lambda t. t (\lambda x y. y))</td>
</tr>
</tbody>
</table>

Church triples

<table>
<thead>
<tr>
<th>Function</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>tuple(_3)</td>
<td>(\lambda x y z s. s x y z)</td>
</tr>
<tr>
<td>sel(_{1/3})</td>
<td>(\lambda t. t (\lambda x y z. x))</td>
</tr>
<tr>
<td>sel(_{2/3})</td>
<td>(\lambda t. t (\lambda x y z. y))</td>
</tr>
<tr>
<td>sel(_{3/3})</td>
<td>(\lambda t. t (\lambda x y z. z))</td>
</tr>
</tbody>
</table>
Sums (a.k.a. tagged unions)

A tagged union is defined by:

- a case function: a tuple of functions (destructor)
- a set of tags that select the correct function and apply it (constructors)

Church either

\[
either :: (a \to c) \to (b \to c) \\
\to \text{ Either } a \to b \to c \\
either f _ (\text{Left } x) = f x \\
either _ g (\text{Right } y) = g y
\]

Church union

\[
case_3 = \lambda f g h u. u f g h \\
in_{1/3} = \lambda x f g h. f x \\
in_{2/3} = \lambda y f g h. g y \\
in_{3/3} = \lambda z f g h. h z
\]
Exercise

\[
\text{data } \text{Val} = \text{A Nat} \mid \text{B Bool} \mid \text{C Nat Bool}
\]

\[
\text{foo : Val} \rightarrow \text{Nat}
\]

\[
\text{foo (A n)} = n
\]

\[
\text{foo (B b)} = \text{if b then 0 else 1}
\]

\[
\text{foo (C n b)} = \text{if b then 0 else n}
\]

1. Encode the following values of type \text{Val} as lambda calculus terms
 - A 2
 - B True
 - C 3 False

2. Encode the function \text{foo} in lambda calculus
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

De Bruijn indices

Programming with lambda calculus
 Church encodings
 Recursion
Observation: can use abstractions to define names

\[
\text{let succ} = \lambda n \to n+1 \\
\text{in } \ldots \text{ succ 3 } \ldots \text{ succ 7 } \ldots
\]

\[
(\lambda \text{succ.} \\
\ldots \text{ succ 3 } \ldots \text{ succ 7 } \ldots \\
) (\lambda n f x. f (n f x))
\]

But this pattern doesn’t work for recursive functions!

\[
\text{let fac} = \lambda n \to \\
\ldots n * \text{ fac (n-1)} \\
\text{in } \ldots \text{ fac 5 } \ldots \text{ fac 8 } \ldots
\]

\[
(\lambda \text{fac.} \\
\ldots \text{ fac 5 } \ldots \text{ fac 8 } \ldots \\
) (\lambda n f x. \ldots \text{ mult n (??? (pred n))})
\]
Recursion via fixpoints

Solution: Fixpoint function

\[Y = \lambda f. (\lambda x. f \ (x\ x)) \ (\lambda x. f \ (x\ x)) \]

\[Y \ g \]
\[\mapsto (\lambda x. g \ (x\ x)) \ (\lambda x. g \ (x\ x)) \]
\[\mapsto g \ ((\lambda x. g \ (x\ x)) \ (\lambda x. g \ (x\ x))) \]
\[\mapsto g \ (g \ ((\lambda x. g \ (x\ x)) \ (\lambda x. g \ (x\ x)))) \]
\[\mapsto g \ (g \ (g \ ((\lambda x. g \ (x\ x)) \ (\lambda x. g \ (x\ x)))))) \]
\[\mapsto \ldots \]

Example recursive function (factorial)

\[Y \ (\lambda \text{fac} \ n. \ \text{if} \ (\text{isZero} \ n) \ \text{one} \ (\text{mult} \ n \ (\text{fac} \ (\text{pred} \ n)))) \]