Denotational Semantics
and
Domain Theory
Outline

Denotational Semantics

Basic Domain Theory
- Introduction and history
- Primitive and lifted domains
- Sum and product domains
- Function domains

Meaning of Recursive Definitions
- Compositionality and well-definedness
- Least fixed-point construction
- Internal structure of domains
A denotational semantics relates each term to a denotation:

- an abstract syntax tree
- a value in some semantic domain

Valuation function

\[[\cdot] : \text{abstract syntax} \rightarrow \text{semantic domain} \]

Valuation function in Haskell

```
eval :: Term -> Value
```
Semantic domain: captures the set of possible meanings of a program/term

what is a meaning? — it depends on the language!

<table>
<thead>
<tr>
<th>Language</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean expressions</td>
<td>Boolean value</td>
</tr>
<tr>
<td>Arithmetic expressions</td>
<td>Integer</td>
</tr>
<tr>
<td>Imperative language</td>
<td>State transformation</td>
</tr>
<tr>
<td>SQL query</td>
<td>Set of relations</td>
</tr>
<tr>
<td>ActionScript</td>
<td>Animation</td>
</tr>
<tr>
<td>MIDI</td>
<td>Sound waves</td>
</tr>
</tbody>
</table>
Defining a language with denotational semantics

1. Define the abstract syntax, T
 the set of abstract syntax trees

2. Identify or define the semantic domain, V
 the representation of semantic values

3. Define the valuation function, \sem : T \rightarrow V
 the mapping from ASTs to semantic values
 a.k.a. the “semantic function”

Example encoding in Haskell:

```haskell
data Term = ...

type Value = ...

sem :: Term -> Value
```
Example: simple arithmetic expressions

1. Define abstract syntax

\[
\begin{align*}
n \in \text{Nat} & \quad ::= \quad 0 \mid 1 \mid 2 \mid \ldots \\
e \in \text{Exp} & \quad ::= \quad \text{add} \; e \; e \\
& \quad \mid \quad \text{mul} \; e \; e \\
& \quad \mid \quad \text{neg} \; e \\
& \quad \mid \quad n
\end{align*}
\]

2. Define semantic domain

Use the set of all integers, \(\text{Int} \)

Comes with some operations:

\(+, \times, -, \text{toInt} : \text{Nat} \to \text{Int}, \ldots\)

3. Define the valuation function

\[
\begin{align*}
[\text{Exp}] & \colon \text{Int} \\
[\text{add} \; e_1 \; e_2] & = [e_1] + [e_2] \\
[mul \; e_1 \; e_2] & = [e_1] \times [e_2] \\
[neg \; e] & = -[e] \\
[n] & = \text{toInt}(n)
\end{align*}
\]
1. **abstract syntax**: define a new **data type**, as usual
2. **semantic domain**: identify and/or define a new **type**, as needed
3. **valuation function**: define a **function** from ASTs to semantic domain

Valuation function in Haskell

```haskell
sem :: Exp -> Int
sem (Add l r) = sem l + sem r
sem (Mul l r) = sem l * sem r
sem (Neg e) = negate (sem e)
sem (Lit n) = n
```
Desirable properties of a denotational semantics

Compositionality: a program’s denotation is built from the denotations of its parts
- supports modular reasoning, extensibility
- supports proof by structural induction

Completeness: every value in the semantic domain is denoted by some program
- ensures that semantic domain and language align
- if not, language has expressiveness gaps, or semantic domain is too general

Soundness: two programs are “equivalent” iff they have the same denotation
- equivalence: same w.r.t. to some other definition
- ensures that the denotational semantics is correct
More on compositionality

Compositionality: a program’s denotation is built from the denotations of its parts

- an AST
- sub-ASTs

Example: What is the meaning of \(\text{op } e_1 e_2 e_3 \)?

1. Determine the meaning of \(e_1, e_2, e_3 \)
2. Combine these submeanings in some way specific to \(\text{op} \)

Implications:

- The valuation function is probably **recursive**
- Often need different valuation functions for **each syntactic category**
Example: move language

A language describing movements on a 2D plane

- a **step** is an \(n \)-unit horizontal or vertical movement
- a **move** is described by a sequence of steps

Abstract syntax

\[
\begin{align*}
n \in \text{Nat} & ::= 0 \mid 1 \mid 2 \mid \ldots \\
d \in \text{Dir} & ::= \text{N} \mid \text{S} \mid \text{E} \mid \text{W} \\
s \in \text{Step} & ::= \text{go } d \ n \\
m \in \text{Move} & ::= \epsilon \mid s \ ; \ m
\end{align*}
\]
Semantics of move language

1. Abstract syntax

\[
\begin{align*}
n & \in \text{Nat} & ::= & 0 | 1 | 2 | \ldots \\
\ d & \in \text{Dir} & ::= & N | S | E | W \\
\ s & \in \text{Step} & ::= & \text{go } d \ n \\
\ m & \in \text{Move} & ::= & \epsilon | s ; m
\end{align*}
\]

2. Semantic domain

\[
\text{Pos} = \text{Int} \times \text{Int}
\]

\[
\text{Domain: } \text{Pos} \rightarrow \text{Pos}
\]

3. Valuation function (Step)

\[
\begin{align*}
S[\text{Step}] : \text{Pos} & \rightarrow \text{Pos} \\
S[\text{go } N \ k] & = \lambda (x, y). \ (x, y + k) \\
S[\text{go } S \ k] & = \lambda (x, y). \ (x, y - k) \\
S[\text{go } E \ k] & = \lambda (x, y). \ (x + k, y) \\
S[\text{go } W \ k] & = \lambda (x, y). \ (x - k, y)
\end{align*}
\]

3. Valuation function (Move)

\[
\begin{align*}
M[\text{Move}] : \text{Pos} & \rightarrow \text{Pos} \\
M[\epsilon] & = \lambda p. \ p \\
M[s ; m] & = M[m] \circ S[s]
\end{align*}
\]
Alternative semantics

Often multiple interpretations (semantics) of the same language

Example: Database schema

One declarative spec, used to:

- initialize the database
- generate APIs
- validate queries
- normalize layout
- ...

Distance traveled

\[
S_D[\text{Step}] : \text{Int} \\
S_D[\text{go } d \ k] = k \\
M_D[\text{Move}] : \text{Int} \\
M_D[\epsilon] = 0 \\
M_D[s \; ; m] = S_D[s] + M_D[m]
\]

Combined trip information

\[
M_C[\text{Move}] : \text{Int} \times (\text{Pos} \to \text{Pos}) \\
M_C[m] = (M_D[m], M[m])
\]
Picking the right semantic domain

Simple semantic domains can be combined in two ways:

- **product**: contains a value from both domains
 - e.g. combined trip information for move language
 - use Haskell \((a, b)\) or define a new data type

- **sum**: contains a value from one domain or the other
 - e.g. IntBool language can evaluate to Int or Bool
 - use Haskell \(\text{Either } a \text{ } b\) or define a new data type

Can errors occur?

- use Haskell \(\text{Maybe } a\) or define a new data type

Does the language manipulate state or use naming?

- use a **function type**
Outline

Denotational Semantics

Basic Domain Theory
 Introduction and history
 Primitive and lifted domains
 Sum and product domains
 Function domains

Meaning of Recursive Definitions
 Compositionality and well-definedness
 Least fixed-point construction
 Internal structure of domains
What is domain theory?

Domain theory: a mathematical framework for constructing **semantic domains**

Recall …

A denotational semantics relates each **term** to a **denotation**

- an abstract syntax tree
- a value in some **semantic domain**

Semantic domain: captures the set of possible meanings of a program/term
Historical notes

Origins of domain theory:

- **Christopher Strachey**, 1964
 - early work on denotational semantics
 - used *lambda calculus* for denotations

- **Dana Scott**, 1975
 - goal: denotational semantics for lambda calculus itself
 - created domain theory for meaning of recursive functions

More on Dana Scott:

- Turing award in 1976 for nondeterminism in automata theory
- PhD advisor: **Alonzo Church**, 20 years after **Alan Turing**
Two views of denotational semantics

View #1: **Translation** from one formal system to another
- e.g. translate object language into lambda calculus

View #2: “**True meaning**” of a program as a mathematical object
- e.g. map programs to elements of a semantic domain
- need **domain theory** to describe set of meanings
Domains as semantic algebras

A semantic domain can be viewed as an algebraic structure:

- a set of values the meanings of the programs
- a set of operations on the values used to compose meanings of parts

Domains also have internal structure: complete partial ordering (later)
Outline

Denotational Semantics

Basic Domain Theory
 Introduction and history
 Primitive and lifted domains
 Sum and product domains
 Function domains

Meaning of Recursive Definitions
 Compositionality and well-definedness
 Least fixed-point construction
 Internal structure of domains
Primal domains

Values are **atomic**
- often correspond to **built-in types** in Haskell
- **nullary operations** for naming values explicitly

Domain: \(\text{Bool} \)
- \(\text{true} : \text{Bool} \)
- \(\text{false} : \text{Bool} \)
- \(\text{not} : \text{Bool} \to \text{Bool} \)
- \(\text{and} : \text{Bool} \times \text{Bool} \to \text{Bool} \)
- \(\text{or} : \text{Bool} \times \text{Bool} \to \text{Bool} \)

Domain: \(\text{Int} \)
- \(0, 1, 2, \ldots : \text{Int} \)
- \(\text{negate} : \text{Int} \to \text{Int} \)
- \(\text{plus} : \text{Int} \times \text{Int} \to \text{Int} \)
- \(\text{times} : \text{Int} \times \text{Int} \to \text{Int} \)

Domain: \(\text{Unit} \)
- \(() : \text{Unit} \)

Also: \(\text{Nat} \), \(\text{Name} \), \(\text{Addr} \), \(\ldots \)
Lifted domains

Construction: add \(\bot \) (bottom) to an existing domain

\[
A_\bot = A \cup \{ \bot \}
\]

New operations

\[
\bot : A_\bot \\
map : (A \rightarrow B) \times A_\bot \rightarrow B_\bot \\
maybe : B \times (A \rightarrow B) \times A_\bot \rightarrow B_\bot
\]
Option #1: **Maybe**

```haskell
data Maybe a = Nothing
              | Just a

fmap :: (a -> b) -> Maybe a -> Maybe b
maybe :: b -> (a -> b) -> Maybe a -> Maybe b
```

Can also use pattern matching!

Option #2: new data type with nullary constructor

```haskell
data Value = Success Int | Error
```

Best when combined with other constructions
Outline

Denotational Semantics

Basic Domain Theory
 Introduction and history
 Primitive and lifted domains
 Sum and product domains
 Function domains

Meaning of Recursive Definitions
 Compositionality and well-definedness
 Least fixed-point construction
 Internal structure of domains
Sum domains

Construction: the disjoint union of two existing domains

- contains a value from either one domain or the other

\[A \oplus B = A \uplus B \]

New operations

\[
\begin{align*}
\text{inL} : A &\rightarrow A \oplus B \\
\text{inR} : B &\rightarrow A \oplus B \\
\text{case} : (A \rightarrow C) \times (B \rightarrow D) \times (A \oplus B) &\rightarrow C \oplus D
\end{align*}
\]
Encoding sum domains in Haskell

Option #1: Either

```haskell
data Either a b = Left a  
| Right b

either :: (a -> c) -> (b -> d) -> Either a b -> Either c d
```

Can also use pattern matching!

Option #2: new data type with multiple constructors

```haskell
data Value = I Int  | B Bool
```

Best when combined with other constructions, or more than two options
Example: a language with multiple types

\[
\begin{align*}
b \in \text{Bool} & \ ::= \ \text{true} \mid \text{false} \\
n \in \text{Nat} & \ ::= \ 0 \mid 1 \mid 2 \mid \ldots \\
e \in \text{Exp} & \ ::= \ \text{add} \ e \ e \\
& \quad \mid \ \text{neg} \ e \\
& \quad \mid \ \text{equal} \ e \ e \\
& \quad \mid \ \text{cond} \ e \ e \ e \\
& \quad \mid \ n \\
& \quad \mid \ b
\end{align*}
\]

Design a denotational semantics for \(\text{Exp}\)

1. How should we define our semantic domain?
2. Define a valuation semantics function

- **neg** – negates either a numeric or boolean value
- **equal** – compares two values of the same type for equality
- **cond** – equivalent to \textit{if–then–else}
Solution

$$[[\text{Exp}]] : (\text{Int} \oplus \text{Bool})_\bot$$

$$[[\text{add } e_1 e_2]] = \begin{cases} [e_1] + [e_2] & [e_1] \in \text{Int}, [e_2] \in \text{Int} \\ \bot & \text{otherwise} \end{cases}$$

$$[[\text{neg } e]] = \begin{cases} -[e] & [e] \in \text{Int} \\ \bot & [e] \in \text{Bool} \text{ otherwise} \end{cases}$$

$$[[\text{equal } e_1 e_2]] = \begin{cases} [e_1] = \text{Int } [e_2] & [e_1] \in \text{Int}, [e_2] \in \text{Int} \\ [e_1] = \text{Bool } [e_2] & [e_1] \in \text{Bool}, [e_2] \in \text{Bool} \\ \bot & \text{otherwise} \end{cases}$$

$$[[\text{cond } e_1 e_2 e_3]] = \begin{cases} [e_2] & [e_1] = \text{true} \\ [e_3] & [e_1] = \text{false} \\ \bot & \text{otherwise} \end{cases}$$

$$[[n]] = n$$
$$[[b]] = b$$
Product domains

Construction: the **cartesian product** of two existing domains
- contains a value from both domains

\[A \otimes B = \{(a, b) \mid a \in A, \ b \in B\} \]

New operations

- pair: \(A \times B \rightarrow A \otimes B \)
- \(\text{fst}: A \otimes B \rightarrow A \)
- \(\text{snd}: A \otimes B \rightarrow B \)
Encoding product domains in Haskell

Option #1: Tuples

```haskell
type Value a b = (a,b)
fst :: (a,b) -> a
snd :: (a,b) -> b
```

Can also use pattern matching!

Option #2: new data type with multiple arguments

```haskell
data Value = V Int Bool
```

Best when combined with other constructions, or more than two
Outline

Denotational Semantics

Basic Domain Theory
- Introduction and history
- Primitive and lifted domains
- Sum and product domains
- Function domains

Meaning of Recursive Definitions
- Compositionality and well-definedness
- Least fixed-point construction
- Internal structure of domains
Function space domains

Construction: the set of functions from one domain to another

$$A \rightarrow B$$

Create a function: \(A \rightarrow B \)

Lambda notation: \(\lambda x. y \)

where \(\Gamma, x : A \vdash y : B \)

Eliminate a function

\(\text{apply} : (A \rightarrow B) \times A \rightarrow B \)
Denotational semantics of naming

Environment: a function associating names with things

$$Env = Name \rightarrow Thing$$

Naming concepts

- **declaration**: add a new name to the environment
- **binding**: set the thing associated with a name
- **reference**: get the thing associated with a name

Example semantic domains for expressions with …

- **immutable** variables (Haskell): $$Env \rightarrow Val$$
- **mutable** variables (C/Java/Python): $$Env \rightarrow Env \otimes Val$$
Example: Denotational semantics of \texttt{let} language

1. Abstract syntax

\[
\begin{align*}
 i & \in Int & ::= & \text{(any integer)} \\
 v & \in Var & ::= & \text{(any variable name)} \\
 e & \in Exp & ::= & i \\
 & & | & \text{add } e \ e \\
 & & | & \text{let } v \ e \ e \\
 & & | & v
\end{align*}
\]

2. Identify semantic domain

i. Result of evaluation: \(Int_\perp \)

ii. Environment: \(Env = Var \rightarrow Int_\perp \)

iii. Semantic domain: \(Env \rightarrow Int_\perp \)

3. Define a valuation function

\[
\begin{align*}
\llbracket Exp \rrbracket : (Var \rightarrow Int_\perp) \rightarrow Int_\perp \\
\llbracket i \rrbracket & = \lambda m. i \\
\llbracket \text{add } e_1 \ e_2 \rrbracket & = \lambda m. \llbracket e_1 \rrbracket (m) +_\perp \llbracket e_2 \rrbracket (m) \\
\llbracket \text{let } v \ e_1 \ e_2 \rrbracket & = \lambda m. \llbracket e_2 \rrbracket (\lambda w. \text{if } w = v \ \text{then } \llbracket e_1 \rrbracket (m) \ \text{else } m(w)) \\
\llbracket v \rrbracket & = \lambda m. m(v)
\end{align*}
\]

\[
i +_\perp j = \begin{cases}
 i + j & \text{if } i \in Int, \ j \in Int \\
 \perp & \text{otherwise}
\end{cases}
\]
What is mutable state?

Mutable state: stored information that a program can read and write

Typical semantic domains with state domain S:

- $S \rightarrow S$
 state mutation as **main effect**

- $S \rightarrow S \otimes Val$
 state mutation as **side effect**

Often: lifted codomain if mutation can fail

Examples

- the memory cell in a calculator
 $S = \text{Int}$

- the stack in a stack language
 $S = \text{Stack}$

- the store in many programming languages
 $S = \text{Name} \rightarrow \text{Val}$
1. Abstract syntax

\[
i \in \text{Int} \quad ::= \quad \text{(any integer)}
\]
\[
e \in \text{Exp} \quad ::= \quad i
| \quad e + e
| \quad \text{save } e
| \quad \text{load}
\]

Examples:

- save \((3+2) + \text{load}\)
 \(\leadsto 10\)
- save \(1 + (\text{save } 10 + \text{load}) + \text{load}\)
 \(\leadsto 31\)

2. Identify semantic domain

i. State (side effect): \(\text{Int}\)

ii. Result: \(\text{Int}\)

iii. Semantic domain: \(\text{Int} \to \text{Int} \otimes \text{Int}\)
Example: Single register calculator language

1. Abstract syntax

\[i \in \text{Int} ::= \text{(any integer)} \]
\[e \in \text{Exp} ::= i \mid e + e \mid \text{save } e \mid \text{load} \]

Examples:

- \text{save } (3+2) + \text{load} \quad \leadsto \quad 10
- \text{save } 1 + (\text{save } 10 + \text{load}) + \text{load} \quad \leadsto \quad 31

3. Define valuation function

\[\lbrack \text{Exp} \rbrack : \text{Int} \rightarrow \text{Int} \otimes \text{Int} \]

\[\lbrack i \rbrack = \lambda s. (s, i) \]
\[\lbrack e_1 + e_2 \rbrack = \lambda s. \text{let } (s_1, i_1) = \lbrack e_1 \rbrack (s) \]
\[(s_2, i_2) = \lbrack e_2 \rbrack (s_1) \]
\[\text{in } (s_2, i_1 + i_2) \]
\[\lbrack \text{save } e \rbrack = \lambda s. \text{let } (s', i) = \lbrack e \rbrack (s) \text{ in } (i, i) \]
\[\lbrack \text{load } e \rbrack = \lambda s. (s, s) \]
Outline

Denotational Semantics

Basic Domain Theory
 Introduction and history
 Primitive and lifted domains
 Sum and product domains
 Function domains

Meaning of Recursive Definitions
 Compositionality and well-definedness
 Least fixed-point construction
 Internal structure of domains
Recall: a \textbf{denotational semantics} must be \textbf{compositional}

- a term’s denotation is built from the denotations of its parts

\textbf{Example: integer expressions}

\[
\begin{align*}
i &\in \text{Int} & ::= & \text{(any integer)} \\
e &\in \text{Exp} & ::= & i \mid \text{add } e \ e \mid \text{mul } e \ e
\end{align*}
\]

\[
\begin{align*}
[\text{Exp}] & : \text{Int} \\
[i] & = i \\
[\text{add } e_1 \ e_2] & = [e_1] + [e_2] \\
[\text{mul } e_1 \ e_2] & = [e_1] \times [e_2]
\end{align*}
\]

Compositionality ensures the semantics is \textbf{well-defined} by \textbf{structural induction}

Each AST has \textbf{exactly one} meaning.
A non-compositional (and ill-defined) semantics

Anti-example: while statement

\[t \in \text{Test} ::= \ldots \]
\[c \in \text{Cmd} ::= \ldots \mid \text{while } t \ c \]

\[T[\text{Test}] : S \rightarrow \text{Bool} \]
\[C[\text{Cmd}] : S \rightarrow S \]

\[C[\text{while } t \ c] = \lambda s. \ \text{if } T[t](s) \ \text{then} \]
\[\quad C[\text{while } t \ c](C[c](s)) \]
\[\text{else } s \]

Meaning of \textbf{while } t \ c \ in \ state \ s:

1. evaluate \(t \) in state \(s \)
2. if true:
 a. run \(c \) to get updated state \(s' \)
 b. re-evaluate \textbf{while} in state \(s' \)
 (not compositional)
3. otherwise return \(s \) unchanged

Translational view:
meaning is an \textit{infinite} expression!

Mathematical view:
may have \textit{infinitely many} meanings!
Extensional vs. operational definitions of a function

Mathematical function
Defined **extensionally**:
- a relation between inputs and outputs

Computational function (e.g. Haskell)
Usually defined **operationally**:
- compute output by sequence of reductions

Example (intensional definition)

\[
\begin{align*}
\text{fac}(n) &= \left\{
\begin{array}{ll}
1 & \quad n = 0 \\
n \cdot \text{fac}(n - 1) & \quad \text{otherwise}
\end{array}
\right.
\end{align*}
\]

Extensional meaning
\{\ldots, (2, 2), (3, 6), (4, 24), \ldots\}

Operational meaning

\[
\begin{aligned}
\text{fac}(3) &\mapsto 3 \cdot \text{fac}(2) \\
&\mapsto 3 \cdot 2 \cdot \text{fac}(1) \\
&\mapsto 3 \cdot 2 \cdot 1 \cdot \text{fac}(0) \\
&\mapsto 3 \cdot 2 \cdot 1 \cdot 1 \\
&\mapsto 6
\end{aligned}
\]
Extensional meaning of recursive functions

\[
grow(n) = \begin{cases}
1 & n = 0 \\
grow(n + 1) - 2 & \text{otherwise}
\end{cases}
\]

Best extension (use \(\perp\) if undefined):
- \(\{(0, 1), (1, \perp), (2, \perp), (3, \perp), (4, \perp), \ldots\}\)

Other valid extensions:
- \(\{(0, 1), (1, 2), (2, 4), (3, 6), (4, 8), \ldots\}\)
- \(\{(0, 1), (1, 5), (2, 7), (3, 9), (4, 11), \ldots\}\)
- \(\ldots\)

Goal: best extension = only extension
A **function space domain** is a set of **mathematical functions**

Anti-example: while statement

\[
\begin{align*}
 t & \in \text{Test} \quad ::= \quad \ldots \\
 c & \in \text{Cmd} \quad ::= \quad \ldots \mid \textbf{while} \ t \ c \\
 T[\text{Test}] & : S \to \text{Bool} \\
 C[\text{Cmd}] & : S \to S \\
 C[\textbf{while} \ t \ c] & = \lambda s. \ \text{if} \ T[t](s) \ \text{then} \\
 & \quad \quad \quad C[\textbf{while} \ t \ c](C[c](s)) \\
 & \quad \quad \quad \text{else} \ s
\end{align*}
\]

Ideal semantics of \(\text{Cmd}\):
- **semantic domain**: \(S \to S_\bot\)
- **contains** \((s, s')\) if \(c\) terminates
- **contains** \((s, \bot)\) if \(c\) diverges
Outline

Denotational Semantics

Basic Domain Theory
 Introduction and history
 Primitive and lifted domains
 Sum and product domains
 Function domains

Meaning of Recursive Definitions
 Compositionality and well-definedness
 Least fixed-point construction
 Internal structure of domains
Least fixed points

Basic idea:

1. A recursive function defines a set of non-recursive, finite subfunctions.
2. Its meaning is the “union” of the meanings of its subfunctions.

Iteratively grow the extension until we reach a fixed point:
- Essentially encodes computational functions as mathematical functions.
Example: unfolding a recursive definition

Recursive definition

\[
\text{\textit{fac}}(n) = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot \text{\textit{fac}}(n - 1) & \text{otherwise}
\end{cases}
\]

Non-recursive, finite subfunctions

\[
\begin{align*}
\text{\textit{fac}}_0(n) &= \bot \\
\text{\textit{fac}}_1(n) &= \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot \text{\textit{fac}}_0(n - 1) & \text{otherwise}
\end{cases} \\
\text{\textit{fac}}_2(n) &= \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot \text{\textit{fac}}_1(n - 1) & \text{otherwise}
\end{cases} \\
\text{\textit{fac}}_3(n) &= \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot \text{\textit{fac}}_2(n - 1) & \text{otherwise}
\end{cases}
\end{align*}
\]

\[
\text{\textit{fac}}_i(n) = \bigcup_{i=0}^{\infty} \text{\textit{fac}}_i
\]

Fine print:
- each \textit{fac}_i maps all other values to \bot
- \bigcup operation prefers non-\bot mappings
Computing the fixed point

In general

\[\text{fac}_0(n) = \perp \]

\[\text{fac}_i(n) = \begin{cases}
1 & n = 0 \\
 n \cdot \text{fac}_{i-1}(n - 1) & \text{otherwise}
\end{cases} \]

A template to represent all \(\text{fac}_i \) functions:

\[F = \lambda f. \lambda n. \begin{cases}
1 & n = 0 \\
 n \cdot f(n - 1) & \text{otherwise}
\end{cases} \]

Fixpoint operator

\[\text{fix} : (A \rightarrow A) \rightarrow A \]

\[\text{fix}(g) = \text{let } x = g(x) \text{ in } x \]

\[\text{fix}(h) = h(h(h(h(h(\ldots)))))) \]

Factorial as a fixed point

\[\text{fac} = \text{fix}(F) \]
Outline

Denotational Semantics

Basic Domain Theory
- Introduction and history
- Primitive and lifted domains
- Sum and product domains
- Function domains

Meaning of Recursive Definitions
- Compositionality and well-definedness
- Least fixed-point construction
- Internal structure of domains
Why domains are not flat sets

Internal structure of domains supports the least fixed-point construction

Recall fine print from factorial example:

- each fac_i maps all other values to \bot
- \cup operation prefers non-\bot mappings

How can we **generalize** and **formalize** this idea?
Partial orderings and joins

Partial ordering: \(\sqsubseteq : D \times D \rightarrow \mathbb{B} \)

- reflexive: \(\forall x \in D. \ x \sqsubseteq x \)
- antisymmetric: \(\forall x, y \in D. \ x \sqsubseteq y \land y \sqsubseteq x \implies x = y \)
- transitive: \(\forall x, y, z \in D. \ x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z \)

Join: \(\sqcup : D \times D \rightarrow D \)

\(\forall a, b \in D, \) the element \(c = a \sqcup b \in D, \) if it exists, is the smallest element that is larger than both \(a \) and \(b \)

i.e. \(a \sqsubseteq c \) and \(b \sqsubseteq c, \) and there is no \(d = a \sqcup b \in D \) where \(d \sqsubseteq c \)
A **domain** is a **directed-complete partial ordered** (dcpo) set:

- Every directed subset (related by \(\sqsubseteq\)) of a domain has \(\perp\)

The meaning of a (Scott-continuous) recursive function \(f\) is:

\[
\bigcup_{i=0}^{\infty} f_i
\]

where \(f_i\) are the finite approximations of \(f\)
Well-defined semantics for the while statement

Syntax

\[
\begin{align*}
t & \in Test \quad ::= \quad ... \\
c & \in Cmd \quad ::= \quad ... \quad | \quad \text{while } t \ c
\end{align*}
\]

Semantics

\[
\begin{align*}
T[\text{Test}] & \colon S \to \text{Bool} \\
C[\text{Cmd}] & \colon S \to S \\
C[\text{while } t \ c] & = \text{fix}(\lambda f. \lambda s. \text{if } T[t](s) \text{ then } f(C[c](s)) \text{ else } s)
\end{align*}
\]