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wasowski@itu.dk

February 12, 2007

Please, report all the bugs you can spot to the author!
Acknowledgments: Inspired by the appendix of Cormen et al.
Introduction to Algorithms, and by some materials kindly provided
by Volodya Shavrukov.

Ingredients

A non exhaustive selection of mathematical concepts useful in an introductory
algorithms course.

Ingredients: basic set theory, relations, equivalence relations, functions, impor-
tant functions, graphs, trees, combinatorics, basic sums, probability

1 Basic Set Theory

x ∈ S means x is a member of S

x < S means x is not a member of S

Examples:

1. S = {1, 2, 3}, 2 ∈ S, 4 < S
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2. ∅— an empty set, for every a we have a < ∅

3. Z — the set of all integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }

4. R — all real numbers, cannot be counted

Sets are unordered: {1, 2, 3} = {3, 2, 1} = {1, 2, 3, 1}
Definition 1. Set inclusion: A ⊆ B if every a ∈ A implies a ∈ B

Example: {1, 2} ⊆ {1, 2, 3}.
Definition 2. [-] The set of all subsets of set S is called the powerset of S, denoted 2S

or P(S).

[-] Example: 2{a,b} = {∅, {a}, {b}, {a, b}}
Definition 3. A cartesian product of two sets A, B denoted A × B is the set of all
ordered pairs, such that the first element of the pair is an element of A and the second
is an element of B:

A × B = {(a, b) | a ∈ A and b ∈ B}

Example: {a, b} × {a, b, c} = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c)}

1.1 Set Operations

For any two sets A, B define

[intersection] A ∩ B = {x | x ∈ A and x ∈ B}

[union] A ∪ B = {x | x ∈ A or x ∈ B}

[difference] A \ B = {x | x ∈ A and x < B}

A B

[complement] A = {x | x ∈ U and x < A} = U \ A
A

U

A

where U is the universe (set of all elements discussed) and A ⊆ U.
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1.2 Set Laws

[-] Empty set: A ∩ ∅ = ∅, A ∪ ∅ = A

[-] Idempotence: A ∩ A = A, A ∪ A = A

[-] Commutativity: A ∩ B = B ∩ A, A ∪ B = B ∪ A

Associativity: A ∩ (B ∩ C) = (A ∩ B) ∩ C

Distributivity: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Proof of the latter distributive law using Venn diagrams:

A B

C

A B

C

A B

C

A B

C

A B

C

A

∩

B ∪ C

= = ∪

A ∩ B A ∩ C

Venn diagrams only work up to three sets. Use definitions of operations to
make proofs that cannot be made with Venn diagrams (or use definitions
always).

[-] Absorption: A ∩ (A ∪ B) = A, A ∪ (A ∩ B) = A

[-] Complement Laws: A = A, A ∩ A = ∅, A ∪ A = U

De Morgan’s Laws: A ∩ B = A ∪ B
A ∪ B = A ∩ B

Exercise. Prove de Morgan’s laws using Venn diagrams.

1.3 Set Partition

Definition 4. Two sets A,B are disjoint if they have no elements in common: A∩B = ∅

Definition 5. A collection S = {S1, . . . , Sn} forms a partition of a set S iff
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1. All Si are nonempty.

2. All Si are pairwise disjoint: i , j =⇒ Si ∩ S j = ∅.

3. Their union gives S:

S = S1 ∪ . . . Sn =
⋃

Si∈S
Si =

n⋃

i=1

Si

[-] Note: each element of S appears in exactly one Si:

Partitioning into 8 classes:

1.4 Set Cardinality

|S|— number of elements in set S (cardinality of S)

Properties:

|∅| = 0

|A ∪ B| = |A| + |B| − |A ∩ B| ≤ |A| + |B|

For A, B disjoint: |A ∪ B| = |A| + |B|

|2S| = 2|S|

|A × B| = |A| · |B|
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2 Relations

Definition 6. An n-ary relation R on sets A1, . . . ,An is a subset of A1×A2×· · ·×An.

If n = 2 then R is a binary relation.

(a, b) ∈ R is typically written aRb.

Example: “<” relation on natural numbers. We write 1 < 2 instead of (1, 2) ∈<.

Binary relations over A × A

• R ⊆ A × A is reflexive iff for every a ∈ A it holds that aRa
Example: “≤” on natural numbers, but not “<” on natural numbers.

• R ⊆ A × A is irreflexive iff for every a ∈ A it holds that (a, a) < R
Example: “<” on natural numbers, but not “≤” on natural numbers.

• R ⊆ A × A is symmetric iff for every pair (a, b) ∈ A × A, aRb implies bRa.
Example: “=” on natural naumbers, but not “≤”.

• R ⊆ A × A is transitive iff for every a, b, c ∈ A it holds that aRb and bRc
together imply aRc.
Example: “=”, “≤”, “<” on natural numbers

• [-] R ⊆ A × A is antisymmetric iff for every pair (a, b) ∈ A × A if aRb and
bRa then also a = b.
Example: “≤” on natural numbers
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3 Equivalence Relations

Definition 7. A reflexive, symmetric and transitive relation is called an equivalence
relation.

Example: “=” on natural numbers is an equivalence relation, but not “<” and
“≤” (neither is symmetric and the former is not reflexive).

Definition 8. Let R be an equivalence relation on A. The equivalence class of
element a ∈ A is a set [a] = { b | b ∈ A and aRb }.

Example:
R = {(a, b) | a, b ∈ N and a + b is an even number.

Proposition 9. R is an equivalence relation.

Proof. R is reflexive (as a + a is even for any natural number a).

R is symmetric (because a + b = b + a).

R is transitive: Assume that aRb and bRc. If a is even then b and c are also even,
so a + c is even. If a is odd then b is odd, and also c must be odd, so a + c is
even. �

Equivalence classes of R: [4] = {0, 2, 4, 6, . . . } and [3] = {1, 3, 5, 7, . . . }. There are
no more distinct classes of R.

Theorem 10. 1. The equivalence classes of any equivalence relation R on A form
a partition of A.

2. Any partition of A determines an equivalence relation on A, for which the sets
in the partition are equivalence classes.

Proof. First show that equivalence classes form a partition:

1. Each equivalence class is non-empty as for every a ∈ [a] due to reflexivity
of R.
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2. They cover the entire set: each [a] ⊆ A and for each a ∈ A there exists a
class containing a (indeed it is precisely [a]). So

⋃
a∈A[a] = A.

3. Equivalence classes are disjoint: if two different classes overlap then
because of transitivity, they actually are the same class. Contradiction, so
it cannot be that two different classes overlap.

The above three statements together mean that equivalence classes for a par-
tition. Let us now turn to proving that a partition induces an equivalence
class.

LetA = {A1, . . . ,An} be a partition of A. We shall define an equivalence relation,
whose equivalence classes are the Ai sets. Take:

R = { (a, b) | there exists i such that a ∈ Ai and b ∈ Ai }

It is easy to show that R is reflexive, symmetric and transitive (exercise).

Equivalence classes of R are same as the Ai sets. First take any element a of
any of the Ai sets. Observe that for any b ∈ Ai we have that b ∈ [a], which
means that Ai ⊆ [a]. At the same time for any b ∈ [a] we know that b ∈ Ai by
definition of R, so [a] ⊆ Ai. By antisymmetry of set inclusion we conclude that
Ai = [a]. �
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4 Functions

Definition 11. A function f : A → B is a binary relation on A and B such that for
every a ∈ A there exists precisely one such b ∈ B that (a, b) ∈ f .

We typically write f (a) = b meaning (a, b) ∈ f . The set A is referred to as a
domain of function f , while B is sometimes called a codomain of the function.

A B

Figure 1: Function is a mapping.

Example: f : N→ {0, 1}, where f = { (a, b) | a, b ∈N and b = a mod 2 }

We would normally write: f (a) = a mod 2

Definition 12. A function f : A→ B is a surjection if for every b ∈ B there exists an
a ∈ A such that b = f (a).

A B

Figure 2: A surjection (all elements on the right hand side are pointed at).

Q. Which set has more elements on the above figure? A or B ?

Example: 1 : N → N, where 1(n) = n + 1 is not a surjection (no value in the
domain maps to zero in codomain).
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Definition 13. A function f : A → B is an injection if for distinct arguments it
produces different values: a , a′ implies f (a) , f (a′).

A B

Figure 3: An injection (elements on the right hand side are pointed at by at
most one arrow).

Q. Which set has more elements on the above figure? A or B ?

Example: 1 from earlier examples is an injection, while f is not.

Definition 14. A function f : A → B is a bijection if it is both an injection and a
surjection.

Injection defines a one-to-one correspondence between elements of domain
and codomain.

A B

Figure 4: A bijection (all codomain elements are paired with domain elements).

Q. Which set has more elements on the above figure? A or B ?

Example: Neither f nor 1 are bijections. Function h : Z→ Z, where h(x) = −x
is a bijection.

Exercise. Is the function f (x) = x + 1 bijective when the domain and the
codomain are N?
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5 Common Functions

Floor bxc for a real number x is the greatest integer less than or equal to x.

Ceiling dxe for a real number x is the least integer greater than or equal to x.

Exponentials

a0 = 1 , (1)

a−1 =
1
a
, (2)

(am)n = amn , (3)

aman = am+n , (4)

Logarithms A logarithm of a with base b (b , 1), written logb a, is a number c
such that bc = a.

Assume that a, b, c > 0.

logc(ab) = logc a + logc b , (5)

logb an = n logb a , (6)

logb a =
logc a
logc b

(7)

We typically mean a logarithm with base 2, when we drop the base writing
log a (sometimes also lg a). Some authors mean a logarithm with base 10, when
writing log a. Note that in algorithmic this causes no confusion, in most of the
cases as log2 a is only by a constant factor different from log10 a.

Similarly the natural logarithm of a, written ln a (which is loge a), differs only
by a constant factor from other logarithms, too.

10



6 Graphs

6.1 Directed Graphs 6.2 Undirected Graphs

a loop

A directed graph (a digraph) An undirected graph

Definition 15. A directed graph G is a
pair G = (V,E), where V is a set of ver-
tices, and E is a binary relation on V
(edges)

Definition 16. An undirected graph G is
a pair G = (V,E), where V is a set of ver-
tices, and E is a symmetric and irreflexive
binary relation on V (edges)

A formal interpretation of pictures:

v1 v2

means (v1, v2) ∈ E
v1 v2

means (v1, v2) < E

v1 v2 {(v1, v2), (v2, v1)} ⊆ E
v1 v2 {(v1, v2), (v2, v1)}∩E = ∅

Our text book (RS) often uses E and V to denote number of edges and vertices:

E = |E| and V = |V| E = 1/2 |E| and V = |V|

Note: Graph is not a picture! These pictures show the same undirected graph.

1

2

3 4

2

3
1

4
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v1 v2 v1 v2

(v1, v2) is incident from v1 (leaves v1) {v1, v2} is incident on both v1 and v2

(v1, v2) is incident to v2 (enters v2)

out-deg v — out-degree, the number of
edges leaving v

deg v — degree, the number of edges
incident on v

in-deg v — in-degree, the number of
edges entering v

A property:

2E = |E| =
∑

v∈V
deg v (8)

Q. Why?

6.3 Directed Paths 6.4 Undirected Paths

v2

v1

v2

v1

A path from v1 to v2 A path between v1 and v2

A graph G is connected if there is a path
between any two of its vertices.

A path (both directed and undirected) is called a simple path if each of its vertices

occurs in it at most once (so cannot happen).
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6.5 Directed Cycles 6.6 Undirected Cycles

A cycle is a path with both the beginning and the end in the same vertex.

A directed cycle An undirected cycle

A directed graph not containing any
cycles is called a directed acyclic graph

An undirected graph not containing
any cycles is called a forest

If a forest is connected then we call it
a tree

7 Trees

Trees look like this:

Figure 5: A tree

Trees are often rooted

depth
root

v

ux

0

1

2

ancestors of u: {v, root}
u is a descendant of root
v is a parent of u
u is a child of v
x is a sibling of u
u is a leaf (so is x)
v is an internal node

Figure 6: A rooted tree (the same as before, but with a designated root node)
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Definition 17. A rooted tree such that each of its nodes has at most two children is
called a binary tree. A binary tree is a complete binary tree of depth n if all its leaves
have depth n and all its internal nodes have exactly two children.

We often denote a complete binary tree of depth n as Tn. Observe how wide
the tree becomes with the growth of n.

Figure 7: T3 on the left, a shape of Tn for large n on the right.

Q. How many leaves does Tn have?

0

0

0 0 0 0

1

0
1 1

1 1 1 1

Figure 8: Any leaf is uniquely determined by a sequence of n bits.

So there is a bijection between the set of leaves of Tn and the set of all binary
strings of length n (or in other words there is equally many of each).

There are 2 · 2 · 2 · · · · · 2 = 2n different binary sequences of length n.
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8 Combinatorics & Basic Sums

Let X = {a1, . . . , an}

Q. How many subsets does X have?

Each subset is uniquely identified by a sequence of n bits, saying which ele-
ments are in and which are not. A bijection again: 2n.

Q. How many nodes in Tn? (previously we have asked about leaves only)

2n + 2n−1 + · · · + 21 + 20 =
2n+1 − 1

2 − 1
= 2n+1 − 1 (9)

(computed using a formula for a sum of a geometric series)

Geometric series A sequence of numbers of the form x0, x1, x2, x3, . . . is called
a geometric series. The sum of the first n elements can be computed using the
following formula (for x , 1):

xn + xn−1 + · · · + x1 + x0 =
xn+1 − 1

x − 1
(10)

Why? Take the sum and multiply it by (x − 1). After simplifying a simple
closed form is obtained, equal to the sum multiplied by (x − 1).

(xn + xn−1 + · · · + x1 + x0)(x − 1) =

= xn+1 + xn + · · · + x2 + x1 − (xn + xn−1 + · · · + x1 + x0) =

= xn+1 − 1 (11)

Divide by (x − 1) and you are done. �
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Incidentally if |x| < 1 the value of the infinite sum is finite. In such case:

∞∑

k=0

xk =
1

1 − x
(12)

Permutations Let X = {a1, . . . , an}

A permutation of X is an ordered sequence of all elements of X.

Example. Let X = {a, b, c}
Permutations of X are abc, bac, cab, acb, bca, cba (6 altogether).

Definition 18. Let k ≤ n. A k-permutation of S = {a1, . . . , an} is an ordered sequence
of k distinct elements of S.

Example. Let X = {a, b, c, d}. 2-permuations of X are

ab, ba, ca, da
ac, bc, cb, db
ad, bd, cd, dc (12 altogether)

We denote the number of k-permutations of an n-element set by Pn
k .

Pn
k = n(n − 1)(n − 2) · · · (n − (k − 1)) =

n(n − 1) · · · 1
(n − k)(n − k − 1) · · · 1 =

n!
(n − k)!

(13)

Sn := Pn
n = n! (14)

Combinations. A k-combination of an n-element set X is a k-element subset
of X. Cn

k denotes the number of different k-combinations of an n-element set.

Example. X = {a, b, c, d}, 2-combinations of X are: {a, b}, {b, c}, {a, c}, {b, d}, {a, d},
{c, d} (6 altogether).
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Q. How many?

Since

Pn
k = Cn

k Sk (15)

so

Cn
k =

Pn
k

Sk
=

n!
(n − k)!k!

(16)

Arithmethic Series The following sum is known as an arithmetic series: 1 +

2 + 3 + 4 + · · · + .... The sum of the first n elements can be computed using the
following formula:

n∑

k=1

k =
n(n + 1)

2
(17)

It can be verified easily using mathematical induction.
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9 Probability

An elementary event is a possible single outcome of an experiment. All ele-
mentary events are different and mutually exclusive (it cannot be that a single
experiments results in two elementary events).

A set of all elementary events S for a given experiment is called a sample space.

An event A (note: not elementary) is a subset of the sample space, so A ⊆ S.

A function P : 2S → [0; 1] is a probability distribution iff

1. P(A) ≥ 0 for any event A ⊆ S.

2. P(S) = 1

3. P(A ∪ B) = P(A) + P(B) for any mutually exclusive events A ⊆ S, B ⊆ S.

For an event A the value of P(A is called the probability of A.

Probability of an impossible event ∅ is zero.

For two independent experiments S1,S2 the probability of an event that the
first one results in an event A1 ⊆ S1 and the second results in A2 ⊆ S2 equals
P(A1) · P(A2).

A random variable X is a function from the sample space to the real numbers R,
assigning a real number with each possible outcome of an experiment.

For a random variable X and a number x we define X = x to be an event
{s ∈ S | X(s) = x}. The probability of such an event is:

P{X = x} =
∑

{s∈S|X(s)=x}
P(s) . (18)

The expected value EX of a random variable X is defined by

EX =
∑

x

x · P{X = x} . (19)
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