Operational Semantics

1/14

Outline

What is semantics?

Operational Semantics

What is semantics? 2/14

What is the meaning of a program?

Recall: aspects of a language
e syntax: the structure of its programs
® semantics: the meaning of its programs

What is semantics?

I WANT
TO KNOW
THE MEANING

OF MY PROGRAM

3/14

How to define the meaning of a program?

Formal specifications
® denotational semantics: relates terms directly to values
e operational semantics: describes how to evaluate a term

® axiomatic semantics: describes the effects of evaluating a term
. oo

Informal/non-specifications

¢ reference implementation: execute/compile program in some implementation
® community/designer intuition: how people think a program should behave

What is semantics? 4/14

Advantages of a formal semantics

A formal semantics ...

e is simpler than an implementation, more precise than intuition
® can answer: is this implementation correct?

® supports the definition of analyses and transformations

® prove properties about the language
® prove properties about programs written in the language

e promotes better language design

® better understand impact of design decisions
® apply semantic insights to improve the language design (e.g. compositionality)

What is semantics? 5/14

Outline

Operational Semantics

Operational Semantics 6/14

What is operational semantics?

Defines the meaning of a program by describing how it is evaluated

General strategy

1. identify machine state: the state of evaluation
® sometimes just the term being evaluated

2. define the machine transitions: relates old states to new states
e typically using inference rules

3. define semantics in terms of machine transitions (this part is trivial)

Operational Semantics

7/14

Two styles of operational semantics

Natural semantics (a.k.a. big-step semantics)

e define transition relation ({}) representing evaluation to a final state
® semantics is this relation directly

Structural operational semantics (a.k.a. small-step semantics)

e define transition relation (—) representing one step of evaluation
® semantics is the reflexive, transitive closure of this relation (—*)

Argument for structural operational semantics:

+ reason about intermediate steps + systematic type soundness proof
+ reason about incomplete derivations - a bit more complicated

Operational Semantics 8/14

Natural semantics example

Define one-step evaluation relation

ecExp := true
| false Step 1. identify final states: {true,false}
| not e Step 2. define evaluation relation:
| if eee el e C Exp x {true, false}
Definition: e || e C Exp x {true, false}
e | true e || false
NotT —————————— NotF ———
true || true false || false not e || false not e || true
o e1 | true ey e o e; | false es | e
© if e ey esle T ife e es|ée

Operational Semantics 9/14

Structural operational semantics example

Define one-step evaluation relation

ec Exp := true
| false Step 1. identify machine state: Exp
| not e Step 2. define transition relation:
| ifeee e— e C Exp x Exp

Definition: e+— e C Exp x Exp

not true — false not false — true
if true e; e3; — ey if false e; ez e3
/ /
e—e e—e
Not 5 If - = 7
not e— not e if e ey es— 1f € ey e3

Operational Semantics

} reduction rules
how to evaluate

} congruence rules
where to evaluate

10/ 14

Defining the one-step transition

Terminology:
¢ reduction rule: replaces an expression by a “simpler” expression
® redex (reducible expression): an expression that matches a reduction rule
e congruence rule: describes where to find the next redex
¢ value: a final state, has no more redexes (e.g. true or false)

Observations:
® No rules for values - nothing left to do!
e Congruence rules define the order of evaluation
® The meaning of a term is the sequence of steps that reduce it to a final state

Operational Semantics 11/14

Completion of the semantics

Semantics: the reflexive, transitive closure of the one-step transition judgment

Step 3. Define the judgment (—*) as follows
e just replace state by your machine state
e this last step is the same for any structural operational semantics!

Definition: s —* s’ C state x state

s s s —* s

Refl " Trans

si=*s si*s”

Operational Semantics 12/14

Full definition of the Boolean language

Definition: e— € C Exp x Exp

ec Exp := true
| false not true — false not false — true
| not e
| ifeee if true e; ez — e if false e; e3+— e3
/ /
e—e e—e
Not . If - ——
not e— not e if e ey ex— 1if € ey e3

Definition: e —* € C Exp x Exp

e— e e —*e’

Trans

Refl
e—*e e—*e’

Operational Semantics 13 /14

Reduction sequences

Reduction sequence

Shows the sequence of states after each application of a reduction rule
® congruence rules indicate where to find next redex (underline)
e reduction rules indicate how to reduce it

Example reduction sequence
if (not true) (not false) (if true (not true) false)

if false (not false) (if true (not true) false)

if true (not true) false

not true

I &Ll

false

Operational Semantics 14 /14

	What is semantics?
	Operational Semantics

