
Operational Semantics

1 / 14



Outline

What is semantics?

Operational Semantics

What is semantics? 2 / 14



What is the meaning of a program?

Recall: aspects of a language
• syntax: the structure of its programs
• semantics: the meaning of its programs

What is semantics? 3 / 14



How to define the meaning of a program?

Formal specifications
• denotational semantics: relates terms directly to values
• operational semantics: describes how to evaluate a term
• axiomatic semantics: describes the effects of evaluating a term
• . . .

Informal/non-specifications
• reference implementation: execute/compile program in some implementation
• community/designer intuition: how people think a program should behave

What is semantics? 4 / 14



Advantages of a formal semantics

A formal semantics . . .

• is simpler than an implementation, more precise than intuition
• can answer: is this implementation correct?

• supports the definition of analyses and transformations
• prove properties about the language
• prove properties about programs written in the language

• promotes better language design
• better understand impact of design decisions
• apply semantic insights to improve the language design (e.g. compositionality)

What is semantics? 5 / 14



Outline

What is semantics?

Operational Semantics

Operational Semantics 6 / 14



What is operational semantics?

Defines the meaning of a program by describing how it is evaluated

General strategy
1. identify machine state: the state of evaluation

• sometimes just the term being evaluated

2. define the machine transitions: relates old states to new states
• typically using inference rules

3. define semantics in terms of machine transitions (this part is trivial)

Operational Semantics 7 / 14



Two styles of operational semantics

Natural semantics (a.k.a. big-step semantics)
• define transition relation (⇓) representing evaluation to a final state
• semantics is this relation directly

Structural operational semantics (a.k.a. small-step semantics)
• define transition relation (7→) representing one step of evaluation
• semantics is the reflexive, transitive closure of this relation (7→∗)

Argument for structural operational semantics:

+ reason about intermediate steps
+ reason about incomplete derivations

+ systematic type soundness proof
– a bit more complicated

Operational Semantics 8 / 14



Natural semantics example

e ∈ Exp ::= true
| false
| not e
| if e e e

Define one-step evaluation relation
Step 1. identify final states: {true,false}
Step 2. define evaluation relation:
e ⇓ e ⊆ Exp× {true, false}

Definition: e ⇓ e ⊆ Exp× {true, false}

true ⇓ true false ⇓ false
Not-T

e ⇓ true
not e ⇓ false

Not-F
e ⇓ false

not e ⇓ true

If-T
e1 ⇓ true e2 ⇓ e′

if e1 e2 e3 ⇓ e′
If-F

e1 ⇓ false e3 ⇓ e′

if e1 e2 e3 ⇓ e′

Operational Semantics 9 / 14



Structural operational semantics example

e ∈ Exp ::= true
| false
| not e
| if e e e

Define one-step evaluation relation
Step 1. identify machine state: Exp
Step 2. define transition relation:
e 7→ e′ ⊆ Exp× Exp

Definition: e 7→ e′ ⊆ Exp× Exp
not true 7→ false not false 7→ true

if true e2 e3 7→ e2 if false e2 e3 7→ e3

Not
e 7→ e′

not e 7→ not e′
If

e 7→ e′

if e e2 e3 7→ if e′ e2 e3

} reduction rules
how to evaluate

} congruence rules
where to evaluate

Operational Semantics 10 / 14



Defining the one-step transition

Terminology:
• reduction rule: replaces an expression by a “simpler” expression
• redex (reducible expression): an expression that matches a reduction rule
• congruence rule: describes where to find the next redex
• value: a final state, has no more redexes (e.g. true or false)

Observations:
• No rules for values – nothing left to do!
• Congruence rules define the order of evaluation
• The meaning of a term is the sequence of steps that reduce it to a final state

Operational Semantics 11 / 14



Completion of the semantics

Semantics: the reflexive, transitive closure of the one-step transition judgment

Step 3. Define the judgment (7→∗) as follows
• just replace state by your machine state
• this last step is the same for any structural operational semantics!

Definition: s 7→∗ s′ ⊆ state× state

Refl
s 7→∗ s

Trans
s 7→ s′ s′ 7→∗ s′′

s 7→∗ s′′

Operational Semantics 12 / 14



Full definition of the Boolean language

e ∈ Exp ::= true
| false
| not e
| if e e e

Definition: e 7→ e′ ⊆ Exp× Exp
not true 7→ false not false 7→ true

if true e2 e3 7→ e2 if false e2 e3 7→ e3

Not
e 7→ e′

not e 7→ not e′
If

e 7→ e′

if e e2 e3 7→ if e′ e2 e3

Definition: e 7→∗ e′ ⊆ Exp× Exp

Refl
e 7→∗ e

Trans
e 7→ e′ e′ 7→∗ e′′

e 7→∗ e′′

Operational Semantics 13 / 14



Reduction sequences

Reduction sequence
Shows the sequence of states after each application of a reduction rule
• congruence rules indicate where to find next redex (underline)
• reduction rules indicate how to reduce it

Example reduction sequence
if (not true) (not false) (if true (not true) false)

7→ if false (not false) (if true (not true) false)
7→ if true (not true) false
7→ not true
7→ false

Operational Semantics 14 / 14


	What is semantics?
	Operational Semantics

