Operational Semantics

Outline

What is semantics?

Operational Semantics

What is the meaning of a program?

Recall: aspects of a language

- syntax: the structure of its programs
- semantics: the meaning of its programs

How to define the meaning of a program?

Formal specifications

...

- denotational semantics: relates terms directly to values
- operational semantics: describes how to evaluate a term
- axiomatic semantics: describes the effects of evaluating a term

Informal/non-specifications

- reference implementation: execute/compile program in some implementation
- community/designer intuition: how people think a program should behave

Advantages of a formal semantics

A formal semantics ...

- is **simpler** than an implementation, **more precise** than intuition
 - can answer: is this implementation correct?
- supports the definition of analyses and transformations
 - prove properties about the language
 - prove properties about programs written in the language
- promotes better language design
 - better understand impact of design decisions
 - apply semantic insights to improve the language design (e.g. compositionality)

Outline

What is semantics?

Operational Semantics

What is operational semantics?

Defines the meaning of a program by describing **how it is evaluated**

General strategy

- 1. identify machine state: the state of evaluation
 - sometimes just the term being evaluated
- 2. define the machine transitions: relates old states to new states
 - typically using *inference rules*
- 3. define semantics in terms of machine transitions (this part is trivial)

Two styles of operational semantics

Natural semantics (a.k.a. big-step semantics)

- define transition relation (1) representing evaluation to a **final state**
- semantics is this relation directly

Structural operational semantics (a.k.a. small-step semantics)

- define transition relation (→) representing **one step** of evaluation
- semantics is the **reflexive, transitive closure** of this relation (\rightarrow^*)

Argument for structural operational semantics:

- + reason about intermediate steps
- + reason about incomplete derivations a bit more complicated
- + systematic type soundness proof

Natural semantics example

$$e \in Exp$$
 ::= true
| false
| not e
| if $e e e$

Define one-step evaluation relation Step 1. identify final states: {true,false} Step 2. define evaluation relation: $e \Downarrow e \subseteq Exp \times \{true, false\}$

Structural operational semantics example

Define one-step evaluation relation Step 1. identify machine state: ExpStep 2. define transition relation: $e \mapsto e' \subseteq Exp \times Exp$

Definition: $e \mapsto e' \subseteq Exp \times Exp$ not true \mapsto falsenot false \mapsto trueif true $e_2 \ e_3 \mapsto e_2$ if false $e_2 \ e_3 \mapsto e_3$ Not $\frac{e \mapsto e'}{\mathsf{not} \ e \mapsto \mathsf{not} \ e'}$ If $\frac{e \mapsto e'}{\mathsf{if} \ e \ e_2 \ e_3 \mapsto \mathsf{if} \ e' \ e_2 \ e_3}$ Not $\frac{e \mapsto e'}{\mathsf{not} \ e \mapsto \mathsf{not} \ e'}$ If $\frac{e \mapsto e'}{\mathsf{if} \ e \ e_2 \ e_3 \mapsto \mathsf{if} \ e' \ e_2 \ e_3}$

Defining the one-step transition

Terminology:

- reduction rule: replaces an expression by a "simpler" expression
- redex (reducible expression): an expression that matches a reduction rule
- congruence rule: describes where to find the next redex
- value: a final state, has no more redexes (e.g. true or false)

Observations:

- No rules for values nothing left to do!
- Congruence rules define the order of evaluation
- The meaning of a term is the sequence of steps that reduce it to a final state

Completion of the semantics

Semantics: the reflexive, transitive closure of the one-step transition judgment

Step 3. Define the judgment (\mapsto^*) as follows

- just replace *state* by your machine state
- this last step is the same for any structural operational semantics!

Definition:
$$s \mapsto^* s' \subseteq state \times state$$

Refl $\frac{s \mapsto^* s}{s \mapsto^* s'}$ Trans $\frac{s \mapsto s' \quad s' \mapsto^* s''}{s \mapsto^* s''}$

Full definition of the Boolean language

Definition: $e \mapsto e' \subset Exp \times Exp$ **not** true \mapsto false **not** false \mapsto true if true $e_2 \ e_3 \mapsto e_2$ if false $e_2 \ e_3 \mapsto e_3$ Not $\frac{e \mapsto e'}{\operatorname{\mathsf{not}} e \mapsto \operatorname{\mathsf{not}} e'}$ If $\frac{e \mapsto e'}{\operatorname{\mathsf{if}} e \ e_2 \ e_3 \mapsto \operatorname{\mathsf{if}} e' \ e_2 \ e_3}$ Definition: $e \mapsto^* e' \subseteq Exp \times Exp$ Refl $\frac{e \mapsto e' \quad e' \mapsto e''}{e \mapsto e' \quad e' \mapsto e''}$

Reduction sequences

Reduction sequence

Shows the sequence of states after each application of a reduction rule

- congruence rules indicate where to find next redex (underline)
- reduction rules indicate how to reduce it

Example reduction sequence

- if (not true) (not false) (if true (not true) false)
- \mapsto if false (not false) (if true (not true) false)
- \mapsto **if true (not true) false**
- \mapsto **not true**
- $\mapsto \ \textbf{false}$