Type Classes

Haskell
A pure functional language with Class!
Outline

• Introduction to type classes
• Tradeoffs and extensibility
• Relationship to dictionary pattern
• Kinds and type constructor classes
• Multi-parameter type classes
• Laws
What is a type class?

An interface that is supported by many different types

A set of types that have a common behavior

```
class Eq a where
  (==) :: a -> a -> Bool
```

```
class Show a where
  show :: a -> String
```

```
class Num a where
  (+) :: a -> a -> a
  (*) :: a -> a -> a
  negate :: a -> a
  ...
```

types whose values can be compared for equality

types whose values can be shown as strings

types whose values can be manipulated like numbers

... similar to a Java interface
Constraining types

List elements can be of any type

```
length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs
```

List elements must be of a type that supports equality!

```
elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem y (x:xs) = x == y || elem y xs
```

use method ⇒ add constraint
Anatomy of a type class definition

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

x == y = not (x /= y)
x /= y = not (x == y)

not like Java methods!

methods

default implementations
must define either
(==) or (/=)
Anatomy of a type class instance

instance Eq Bool where
 True == True = True
 False == False = True
 _ == _ = False

class name

type we're implementing the interface for

regular function definition

don't need to define (/=)
Constraints on instances

if we can check equality of a then we can check equality of [a]

```
instance Eq a => Eq [a] where
  []      == []      = True
  (x:xs) == (y:ys) = x == y && xs == ys
```

(==) for element type a

(==) for type [a]

```
instance (Eq a, Eq b) => Eq (a,b) where
  (a1,b1) == (a2,b2) = a1 == a2 && b1 == b2
```

(==) for type a

(==) for type b
Deriving type class instances

Generate a “standard” instance for your own data type

• derived from the structure of your type
• possible only for some built-in type classes
 \((\text{Eq}, \text{Ord}, \text{Enum}, \text{Show}, \ldots)\)

```haskell
data Set a = Empty
  | Elem a (Set a)
deriving (Eq, Show)\)
```

if this isn't what you want, write a custom instance!

```haskell
instance Eq a => Eq (Set a) where
  Empty      == Empty      = True
  Elem a1 s1 == Elem a2 s2 = a1 == a2 && s1 == s2
_          == _          = False
instance Show a => Show (Set a) where
  show Empty      = "Empty"
  show (Elem a s) = "(Elem " ++ show a ++ \
                      " " ++ show s ++ ")"
```
Class extension

any instance of `Ord` must also be an instance of `Eq`

```
class Eq a => Ord a where
  compare :: a -> a -> Ordering
  (<=), (>=), (>) :: a -> a -> Bool
  max, min :: a -> a -> a
```

data Ordering = LT | EQ | GT

```
find :: Ord a => a -> Tree a -> Bool
find _ Leaf                     = False
find x (Node y l r) | x == y    = True
                    | x < y    = find x l
                    | otherwise = find y r
```

why don't we need a constraint for `Eq`?
Outline

• Introduction to type classes
• Tradeoffs and extensibility
• Relationship to dictionary pattern
• Kinds and type constructor classes
• Multi-parameter type classes
• Laws
Type classes vs. explicit parameters

Compare via type class

\[
\text{qsort} :: \text{Ord} \; a \Rightarrow [a] \rightarrow [a] \\
\text{qsort} \; [] = [] \\
\text{qsort} \; (x:xs) = \text{qsort} \; [y \mid y \leftarrow xs, y < x] \\
\quad ++ \quad [x] \\
\quad ++ \quad \text{qsort} \; [y \mid y \leftarrow xs, y \geq x]
\]

Compare via higher-order comparison function

\[
\text{qsort} :: (a \rightarrow a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a] \\
\text{qsort} \; \text{lt} \; [] = [] \\
\text{qsort} \; \text{lt} \; (x:xs) = \text{qsort} \; \text{lt} \; [y \mid y \leftarrow xs, \text{lt} \; y \; x] \\
\quad ++ \quad [x] \\
\quad ++ \quad \text{qsort} \; \text{lt} \; [y \mid y \leftarrow xs, \text{not} \; (\text{lt} \; y \; x)]
\]

What are the tradeoffs of these approaches?
Type classes vs. explicit parameters

Rely on type class:
 • do the same thing for each type
 • don’t need to pass around function parameter

Pass explicit parameter:
 • can do different things for the same type
 • must thread parameters through functions

In Data.List see *By functions for passing equivalence predicate rather than relying on Eq
Type classes and extensibility

Consider a shape library:

- easy to add new operations
- hard to add new shapes

“hard” = not modular

```haskell
type Radius = Float
type Length = Float
type Width  = Float

data Shape = Circle Radius
            | Rectangle Length Width
            | Triangle Length

area :: Shape -> Float
area (Circle r)      = pi * r * r
area (Rectangle l w) = l * w
area (Triangle l)    = ...  -- Using type classes, we can invert this extensibility problem!

perim :: Shape -> Float
perim (Circle r)      = 2 * pi * r
perim (Rectangle l w) = 2*l + 2*w
perim (Triangle l)    = l + l + l
```

(ShapeData.hs, ShapeClass.hs)
Type classes and extensibility

<table>
<thead>
<tr>
<th></th>
<th>data-type encoding</th>
<th>type-class encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>concept</td>
<td>data type</td>
<td>type class</td>
</tr>
<tr>
<td>cases</td>
<td>data constructors</td>
<td>data types</td>
</tr>
<tr>
<td>operations</td>
<td>functions</td>
<td>methods</td>
</tr>
<tr>
<td></td>
<td>• easy to add ops</td>
<td>• hard to add ops</td>
</tr>
<tr>
<td></td>
<td>• hard to add cases</td>
<td>• easy to add cases</td>
</tr>
</tbody>
</table>

What are some other tradeoffs of these approaches?

Later we’ll see encodings that support extension in both dimensions!
Outline

• Introduction to type classes
• Tradeoffs and extensibility
• Relationship to dictionary pattern
• Kinds and type constructor classes
• Multi-parameter type classes
• Laws
Type classes and the dictionary pattern

```haskell
class Num a where
  (+) :: a -> a -> a

instance Num Int where
  (+) = primIntAdd

instance Num Float where
  (+) = primFloatAdd

double :: Num a => a -> a
  double x = x + x

data NumD a = ND (a -> a -> a)

add :: NumD a -> a -> a -> a
  add (ND f) = f

intD :: NumD Int
  intD = ND primIntAdd

floatD :: NumD Float
  floatD = ND primFloatAdd

double :: NumD a -> a -> a
  double d x = add d x x

explicitly pass dictionary
```

Phil Wadler, How to make ad-hoc polymorphism less ad hoc
POPL 1989
Multiple constraints and super classes

Multiple class constraints:

```haskell
doubles :: (Num a, Num b) => a -> b -> (a,b)
doubles x y = (x + x, y + y)
```

Lead to multiple dictionaries:

```haskell
doubles :: (NumD a, NumD b) -> a -> b -> (a,b)
doubles (da,db) x y = (add da x x, add db y y)
```

Super classes:

```haskell
class Eq a where
    (==) :: a -> a -> Bool

class Eq a => Ord a where
    (<) :: a -> a -> Bool
    ...
```

Lead to nested dictionaries:

```haskell
data EqD a =
    ED (a -> a -> Bool)

data OrdD a =
    OD (EqD a) (a -> a -> Bool)
    ...
```
Translating to the dictionary pattern

Type classes are *implemented* in Haskell by dictionaries:

• translate type classes to dictionary data types
• translate instances to dictionary values
• translate constraints to function arguments
• *use type system to automatically insert dictionary values*

Phil Wadler, How to make *ad-hoc* polymorphism less *ad hoc*
POPL 1989
Outline

• Introduction to type classes
• Tradeoffs and extensibility
• Relationship to dictionary pattern
• Kinds and type constructor classes
• Multi-parameter type classes
• Laws
Kinds

Like a super-simple type system for types (only keeps track of arity)

A regular type has kind *

String Int [Bool] Maybe Int
Tree a Map k v Int -> Int a -> a -> Bool

A type constructor takes one or more types as arguments and produces a type

Maybe :: * -> * Tree :: * -> * [] :: * -> *
Map :: * -> * -> * (->) :: * -> * -> *

Haskell functions and values always have regular types!
Functor class of data structures that can be mapped over

class Functor t where
 fmap :: (a -> b) -> t a -> t b

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

tmap :: (a -> b) -> Tree a -> Tree b
tmap _ Leaf = Leaf
tmap f (Node x l r) = Node (f x) (tmap f l) (tmap f r)

mmap :: (a -> b) -> Maybe a -> Maybe b
mmap _ Nothing = Nothing
mmap f (Just x) = Just (f x)
Functor

class of data structures that can be mapped over

class Functor t where
 fmap :: (a -> b) -> t a -> t b

data structures that can be mapped over

instance Functor [] where
 fmap _ [] = []
 fmap f (x:xs) = f x : fmap f xs

instance Functor Tree where
 fmap _ Leaf = Leaf
 fmap f (Node x l r) = Node (f x) (fmap f l) (fmap f r)

instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap f (Just x) = Just (f x)
Foldable class of data structures that can be accumulated over

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

tfold :: (a -> b -> b -> b) -> b -> Tree a -> b
tfold _ b Leaf = b
tfold f b (Node x l r) = f x (tfold f b l) (tfold f b r)

Accumulator functions have different types
... can we refactor tfold to make them the same?
Foldable class of data structures that can be accumulated over

class Foldable t where
 foldr :: (a -> b -> b) -> b -> [a] -> b
 foldr _ b [] = b
 foldr f b (x:xs) = f x (foldr f b xs)

tfold :: (a -> b -> b -> b) -> b -> Tree a -> b
 tfold _ b Leaf = b
 tfold f b (Node x l r) = f x (tfold f b l) (tfold f b r)

tfoldr :: (a -> b -> b) -> b -> Tree a -> b
 tfoldr _ b Leaf = b
 tfoldr f b (Node x l r) = tfoldr f (f x (tfoldr f b r)) l
Foldable

class of data structures that can be accumulated over

class Foldable t where
foldr :: (a -> b -> b) -> b -> t a -> b

instance Foldable [] where
foldr _ b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

tfold :: (a -> b -> b -> b) -> b -> Tree a -> b
tfold _ b Leaf = b
tfold f b (Node x l r) = f x (tfold f b l) (tfold f b r)

instance Foldable Tree where
foldr _ b Leaf = b
foldr f b (Node x l r) = foldr f (f x (foldr f b r)) l
Type classes as an abstraction mechanism

abstraction: to separate a concept from its specific instances and make it reusable

- **higher-order functions**
 names and makes reusable the implementation of high-level programming patterns for working with a *single data structure*

- **type classes**
 names and makes reusable the interface of high-level programming patterns for working with a *variety of data structures*
Why abstract these shared interfaces?

• *reuse functions over classes of data types* by instantiating Foldable or (especially) Monad you have access to tons of *library functions*

• *write code that is extensible with new data types* describe the *interface* of a data type you expect then program against that interface

• *describe precisely the properties of your data type* type classes induce a *classification scheme* for data types
Outline

• Introduction to type classes
• Tradeoffs and extensibility
• Relationship to dictionary pattern
• Kinds and type constructor classes
• Multi-parameter type classes
• Laws
Multi-parameter type classes

Defines a relation between types

Can convert from \(a\) to \(b\)

\[
\text{class } \text{Cast } a \ b \ \text{where}
\text{cast} :: a \to b
\]

Defines an interface for intersection of types

Implement collection interface for pair of:
- \(c\) – container type
- \(a\) – element type

\[
\text{class } \text{Collection } c \ a \ \text{where}
\text{empty} :: c\ a
\text{insert} :: a \to c\ a \to c\ a
\text{member} :: a \to c\ a \to \text{Bool}
\]
Outline

• Introduction to type classes
• Tradeoffs and extensibility
• Relationship to dictionary pattern
• Kinds and type constructor classes
• Multi-parameter type classes
• Laws
Functors (review)

Types that can be mapped over

```haskell
class Functor t where
    fmap :: (a -> b) -> t a -> t b
```

instance Functor [] where
 fmap _ [] = []
 fmap f (x:xs) = f x : fmap f xs

instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap f (Just x) = Just (f x)
```
Functor laws

Equations that every Functor instance should satisfy:

\[
\begin{align*}
\text{fmap id} & \iff \text{id} \\
\text{fmap } (f \cdot g) & \iff \text{fmap } f \cdot \text{fmap } g
\end{align*}
\]

Means that \text{fmap} preserves the \textit{structure} of values

\ldots code written against the Functor interface can assume this
Applicative functors

functors that support application

class Functor f => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

instance Applicative [] where
  pure x = [x]
  (f:fs) <*> xs = fmap f xs ++ (fs <*> xs)
  [] <*> _ = []

instance Applicative Maybe where
  pure x = Just x
  Just f <*> mx = fmap f mx
  Nothing <*> _ = Nothing
Applicative functor laws

Equations that every Applicative instance should satisfy:

- **identity**
  \[
  \text{pure id <*> v} \iff v
  \]

- **homomorphism**
  \[
  \text{pure f <*> pure x} \iff \text{pure (f x)}
  \]
class Functor f => Applicative f where
pure :: a -> f a
(<*>): f (a -> b) -> f a -> f b

Equations that every Applicative instance should satisfy:

**composition**

pure (.) <*> u <*> v <*> w

===>

u <*> (v <*> w)

**interchange**

u <*> pure y

===>

pure ($ y) <*> u
Relationship to Functor

class Functor t where
  fmap :: (a -> b) -> t a -> t b

class Functor f => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

fmap f x  <=>  pure f <*> x