Purely Functional Data Structures
Outline

• Persistence

• Functional vs. imperative data structures

• Example: red-black trees

• Amortized complexity analysis

• Amortization for persistent data structures
Immutability/persistence of data in FP

Persistence: updates do not affect existing references

Haskell:

```haskell
xs = [1,2,3]
y = [7,8]
z = xs ++ ys

> z
[1,2,3,7,8]
> x
[1,2,3]
```

Ruby:

```ruby
xs = [1,2,3]
y = [7,8]
z = xs.concat(y)

> z
[1,2,3,7,8]
> x
[1,2,3,7,8]
```

data is persistent
data is ephemeral
Persistent data structures

Ephemeral (i.e. traditional) data structures:
• updates destroy old versions

Persistent data structures:
• old versions are unchanged by updates

Applications independent of pure FP:
• editors (undo), version control, etc.
• backtracking search
• thread-safe data sharing
• computational geometry algorithms
Degrees of persistence

- **no persistence**
 - one version

- **partial persistence**
 - update only last version

- **full persistence**
 - update all versions

Purely functional = all data structures are fully persistent
Outline

• Persistence

• **Functional vs. imperative data structures**

• Example: red-black trees

• Amortized complexity analysis

• Amortization for persistent data structures
Example: imperative list concatenation

\[xs = [1, 2, 3] \]
\[ys = [7, 8] \]
\[zs = xs.concat(ys) \]

- efficient: \(O(1) \) time and space
- side-effects (error prone!)
- not persistent
Example: functional list concatenation

\[\begin{align*}
xs &= [1,2,3] \\
ys &= [7,8] \\
zs &= xs ++ ys
\end{align*}\]

- \(O(|xs|)\) time and space requirement
- no side-effects (safe!)
- fully persistent
Model of functional data structures

\[
data \mathcal{T} = C \ldots \mid D \ldots
\]

\[
x :: \mathcal{T}
\]

\[
x = D \left(C \ldots \right) \ldots
\]

\[\text{x is represented as a pointer data structure (tree/graph) in the heap}\]

To update the subterm \(y\):
- *update a copy* of the corresponding cell \(y\) in the heap
- *copy* all nodes on the *path* from the root to \(y\)
- *(rest of the data structure is *shared* between \(x\) and \(y)\)*
Example: insert in binary search tree

```haskell
insert :: Ord a => a -> Tree a -> Tree a
insert x Leaf = Node x Leaf Leaf
insert x (Node y l r) | x < y = Node y (insert x l) r
| otherwise = Node y l (insert x r)
```

```
t = Node 4 (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
       (Node 7 (Node 6 Leaf Leaf) (Node 8 Leaf (Node 9 Leaf Leaf)))[/itex]
```

```
u = insert 5 t
```

Challenges

How to implement functional data structures efficiently?

• Optimize data type representation for common operations
• Goals: minimize traversal and copying

 • e.g. Haskell lists are optimized for stack operations but inefficient as queues
 • these goals are the rationale for the zipper pattern

How to analyze their time and space complexity?

• Worst-case analysis is basically the same
• Amortized analysis is much harder!
 • Lazy evaluation is crucial for amortizing w/ persistence

(Queue.hs)
Outline

• Persistence
• Functional vs. imperative data structures
• Example: red-black trees
• Amortized complexity analysis
• Amortization for persistent data structures
Red-black trees

A **self-balancing** binary search tree:
- every node is **red** or **black**
- leaves are valueless and **black**

Invariants:
- usual binary search tree invariant
- same # of **black** nodes on every root-to-leaf path
- every **red** node has two **black** children

Guarantee: longest path \(\leq 2 \times \) shortest path
Examples

Valid red-black trees:

Invalid red-black trees:
Insertion

Balance invariants

1. same # of black nodes on every root-to-leaf path
2. every red node has two black children

Strategy:

- always insert a red node
- if added after a black node, we’re done!
- else, “rebalance” to eliminate the red-red violation
 (may cause a new red-red violation, so recurse up the tree)
- set root to black
Rebalancing

After insert, four possible invalid cases:

If y’s parent is red, must rebalance again!
Outline

• Persistence
• Functional vs. imperative data structures
• Example: red-black trees
• Amortized complexity analysis
• Amortization for persistent data structures
Amortized vs. worst-case analysis

“worst” worst case: always assume maximal cost

\[n \text{ ops} \times O(n) \text{ cost} \]
\[\in O(n^2) \text{ total cost} \]

ammortized worst case: costs can be distributed over ops

\[n \text{ ops} \times O(1) \text{ ammortized cost} \]
\[\in O(n) \text{ total cost} \]
Tradeoffs of amortized analysis

• more accurate over lifetime of data structure

• opens up new design space
 e.g. self-adjusting data structures
 • can lead to overall faster data structures
 (in practice, or asymptotically over lifetime)
 e.g. splay trees, union-find

• weaker guarantees about individual operations
 • not suitable for real-time applications
Banker’s method

For each operation i, define:

• a_i: amortized cost
• t_i: actual cost

Each operation gets a_i credits

<table>
<thead>
<tr>
<th>Op is ...</th>
<th>if ...</th>
<th>then ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>cheap</td>
<td>$t_i < a_i$</td>
<td>save $a_i - t_i$ credits</td>
</tr>
<tr>
<td>neutral</td>
<td>$t_i = a_i$</td>
<td></td>
</tr>
<tr>
<td>expensive</td>
<td>$t_i > a_i$</td>
<td>spend $a_i - t_i$ previously saved credits</td>
</tr>
</tbody>
</table>

To show that a_i is the amortized cost:
Show that we never run out of credits
Banker’s analysis of “two-stack” queue
(L and R)

Credits given (a_i):
- **enqueue**: 2 credits
- **dequeue**: 1 credit

Actual cost (t_i):
- **enqueue**: 1 credit – *save 1 credit to R*
- **dequeue**:
 - $|L| > 0$: 1 credit
 - $|L| = 0$: 1 + $|R|$ credits – *spend the credits saved on R*

So, both operations have ammortized $O(1)$ cost
Outline

• Persistence
• Functional vs. imperative data structures
• Example: red-black trees
• Amortized complexity analysis
• **Amortization for persistent data structures**
Amortization and persistence

Bad news: if data structure is persistent, we can go into debt!

\[
\begin{align*}
q &= \text{foldr enqueue empty } [1..5] & \text{– save 5 credits on } R \\
r_1 &= \text{dequeue } q & \text{– spend all credits on } R \\
r_2 &= \text{dequeue } q & \text{– spend all credits on } R \text{ again!}
\end{align*}
\]

Problem: lazy evaluation is working *against* us

Solution: make lazy evaluation work *for* us :-)

Keys: structure data type and functions so that:

- expensive operations are *memoized*
 buy them “on layaway”
- expensive operations can be “locally” paid for