Graph Reduction
How to interpret Haskell

1. Translate Haskell into a small core language
 • lambda calculus + literals + recursive let + case + ...

2. Represent core expressions as DAGs
 • references are edges in the graph
 • supports sharing during evaluation

3. Evaluate by “graph reduction”
 • set of graph transformation rules
 • implements lazy evaluation
Core language

data Literal = ...

data Expr
 = Lit Literal
 | Ref Var
 | App Expr Expr
 | Lam Var Expr
 | Let Var Expr Expr
 | Case Expr [(Pat,Expr)]

} lambda calculus

data Pat
 = Default
 | Alt Literal [Var]
Example translation

```haskell
data Literal = ...  

data Expr
 = Lit Literal
 | Ref Var
 | App Expr Expr
 | Lam Var Expr
 | Let Var Expr Expr
 | Case Expr [(Pat,Expr)]

data Pat
 = Default
 | Alt Literal [Var]
```

Haskell:

```haskell
map f [] = []
map f (x:xs) = f x : map f xs
```

Core (concrete):

```haskell
let map = \f.\l.  
    case l of  
    [ ]   -> []  
    (x:xs) -> f x : map f xs  
    in ...
```

Core (abstract):

Let "map" (Abs "f" (Abs "l"
 (Case (Ref "l")
 [(Alt "[]" [], Lit "[]")
 ,(Alt ":" ["x","xs"],
 App (Lit ":")
 (App (Ref "f") (Ref "x"))
 (App (App (Ref "map") (Ref "f"))
 (Ref "xs")))]
 ...

Recall: can translate type classes to dictionaries!
Encoding core expressions as graphs

literals & primitives leaves

function application apply node: @

abstraction lambda node: λ

let-expression lambda + apply

references back/cross edges

\[
\text{let } x = b \text{ in } e \equiv (\lambda x.e) \ b
\]
Lazy evaluation

Goal: evaluate as few *application nodes* as possible

*an unevaluated application node is called a *thunk***

How do we know when we’re done?

An expression e is in *weak head normal form* (WHNF) if it is:

- a *literal* or a *variable*
- an *abstraction*
- a partially applied *primitive function* or constructor

{**In other words, e has no top-level redex!**}

= *nothing left to reduce in call-by-need (lazy) evaluation*
Graph reduction

Repeat until graph is in WHNF:
- start from root, *find redex*
- if LHS is primitive function, reduce arguments
- perform reduction

Finding a redex:
first @ on left spine whose
whose LHS is not an @
If G is constructor of arity $k < n$

1. (reduce arguments)
2. substitute @ nodes w/ constructor node

If G is primitive of arity $k < n$

1. (reduce arguments)
2. apply function
β-reduction

If G is a λ node

1. copy lambda body
2. redirect references to argument
3. overwrite root

If G is a λ node

- Copy the lambda body
- Redirect references to the argument
- Overwrite the root node

Diagram:

- Node G as the root
- Path of left spine: $G \rightarrow e_1 \rightarrow \cdots \rightarrow e_{n-1} \rightarrow e_n$

Diagram:

- Node G as the root
- Path of left spine: $G \rightarrow e_1 \rightarrow \cdots \rightarrow e_{n-1} \rightarrow e_n$