
What is FP? and How to Do It!
(an expedited refresher w/ bonus goodies)

 1
Sidney Harris, 1977

Outline

 2

• The essence of functional programming

• FP workflow and type-directed programming

• A closer look at types – parametricity

Functions are pure!

 3

input(s) outputf

In Haskell, all functions are pure:
• always return the same output for the same inputs
• don’t do anything else – no “side effects”

Java
method

input output

Procedures/methods aren’t functions

 4

throw an
exception

✘

• output depends on environment
• may perform arbitrary side effects

system clock

member
variables

other objects

file system

global  
variables

environment
variables

random number
generator

Guiding principles of FP

 5

Safety
• referential transparency
• strong static typing
• explicitly managed effects

Abstraction
• higher-order functions
• advanced typing features

Decomposition
• lazy evaluation
• well-defined interfaces

makes  
possible

supports

increases
expressiveness

supports

Referential transparency

 6

An expression can be replaced by its value
without changing the overall program behavior

a.k.a. referent

\x -> crunch [5,6,7] + x
⇒ \x -> 3 + x

Corollary: an expression can be replaced by any expression
with the same value without changing program behavior

what if crunch was
a Python function?

Supports decomposing a problem into parts
and “equational reasoning”

Equational reasoning

 7

⇒ sum (2:(3:(4:[])))
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [2,3,4]

Computation is just substitution!

equations

⇒ 2 + sum (3:(4:[]))
⇒ 2 + 3 + sum (4:[])
⇒ 2 + 3 + 4 + sum []
⇒ 2 + 3 + 4 + 0
⇒ 9

Very useful when refactoring (later)

Higher-order functions

 8

f

g

Examples:

filter :: (a -> Bool) -> [a] -> [a]
map :: (a -> b) -> [a] -> [b]
(.) :: (b -> c) -> (a -> b) -> a -> c

Currying / partial application

 9

In Haskell, functions that take multiple arguments  
are technically implicitly higher-order

Haskell Curryplus :: Int -> Int -> Int

plusInt Int Int

increment :: Int -> Int
increment = plus 1

plus :: (Int,Int) -> Int
Uncurried version: “cannot” be partially applied!

Lazy evaluation

 10

Expressions are reduced:

• only when needed
• at most once

Supports:
• infinite data structures
• efficient and simple separation of concerns  

(decomposition)

(Lazy.hs, NQueens.hs)

I know what to do.  
Wake me up when

you need it.

Efficiently implemented using graph-reduction (later)

John Hughes, Why Functional Programming Matters,1989

Outline

 11

• The essence of functional programming

• FP workflow and type-directed programming

• A closer look at types – parametricity

Striving for elegance

 12

the quality of being pleasingly ingenious
and simple; neatness

— New Oxford American Dictionary

the beauty of an idea characterized by
minimalism and intuitiveness while
preserving exactness and precision

— Wiktionary

“obsessive compulsive refactoring disorder”

Striving for elegance

 13

don’t stop here!

FP workflow (simple)

 14

Identify/define types

Define functions

Refactor

FP workflow (detailed)

 15
Ramsey, On Teaching How to Design Programs, ICFP'14

Anatomy of a data type

 16

data Tree a = Leaf a
 | Node (Tree a) (Tree a)

type name

data constructor

cases

arguments

exTree :: Tree Int
exTree = Node (Leaf 2) (Node (Leaf 3) (Leaf 4))

type parameter

refers to self = “recursive type”
multiple arguments = “product type”

multiple cases = “sum type”

not decomposable = “atomic type”

Tools for defining functions

 17

sum :: [Int] -> Int
sum xs = if null xs then 0
 else head xs + sum (tail xs)

Recursion and other functions:

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

Pattern matching:

sum :: [Int] -> Int  
sum = foldr (+) 0

Higher-order functions

(1) case analysis

(2) decomposition

no recursion or variables needed!

What is type-directed programming?

 18

Use the type of a function
to help write its body

If your argument is . . .

 19

atomic type apply functions to it

function type apply it

sum type use case analysis on it

product type decompose it

. . . and repeat as necessary

often pattern matching

sometimes match
against literals

Atomic type: apply functions to it

 20

or pattern match against literals

Examples: Int, Bool, Float

isZero :: Int -> Bool

isZero n = f n
isZero n = (== 0) n
isZero n = n == 0

isZero 0 = True
isZero _ = False

Sum type: use case analysis on it

 21

often by pattern matching

Example: data Maybe a = Nothing | Just a

maybe :: b -> (a -> b) -> Maybe a -> b
Option 2: case analysis function

showValue val = maybe "ERROR" show val

showValue :: Maybe Int -> String

Option 1: pattern matching
showValue Nothing = "ERROR"
showValue (Just i) = show i

Product type: decompose it

 22

often by pattern matching

Example: type Point = (Float,Float)

moveR :: Float -> Point -> Point

moveR s p = (fst p + s, snd p)

Option 2: destructor functions

moveR s (x,y) = (x+s, y)

Option 1: pattern matching return type is a product,
so we must construct it

Function type: apply it

 23

pipe :: (a -> b) -> (b -> c) -> a -> c

pipe f g a = ...
pipe f g a = ... f a ...
pipe f g a = g (f a)

Example: a -> b

Outline

 24

• The essence of functional programming

• FP workflow and type-directed programming

• A closer look at types – parametricity

Parametricity – what’s in a type?

 25

If I give you only the type of a function …
• can you implement it?
• what else can you say about it?

Exercise: implement each of the following functions

 f1 :: a -> b -> a
 f2 :: a -> (a -> b) -> b
 f3 :: a -> a -> (a -> b) -> b
 f4 :: a -> b

Theorems for free!

 26
Phil Wadler, Theorems for free! ICFP'89

What can it potentially do? 
What can it definitely not do?

Consider this function:

 glob :: [a] -> [a]

rearrange, copy, delete

anything that depends on
the values in list!

Which of the following theorems are true?

 sum . glob <=> glob . sum
 map f . glob <=> glob . map f
 filter f . glob <=> glob . filter f

sum :: [Int] -> Int
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]

✘
✓
✘

Deliver some free theorems!

 27

head :: [a] -> a
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]

 head . map f <=>

filter p . map f <=>

 map g . map f <=>

f . head

map f . filter (p . f)

map (g . f)

Theorems
+ map is structure-preserving

