What is FP? and How to Do It!

(an expedited refresher w/ bonus goodies)

“I think you should be more
explicit here in step two.”

Sidney Harris, 1977

Outline

¢ The essence of functional programming
* FP workflow and type-directed programming

* A closer look at types — parametricity

Functions are pure!

input(s) output

In Haskell, all functions are pure:
* always return the same output for the same inputs
* don’t do anything else — no “side effects”

Procedures/methods aren’t functions

environment Other objects

member variables
variables throw an
exception
file system \ xeept
. Java
input g output
p method P

random number / glgbal
variables

generator
system clock

/\

* output depends on environment

* may perform arbitrary side effects

Guiding principles of FP

i Safety

increases * referential transparency
expressiveness

makes

* strong static typing possible

* explicitly managed effects

/s'upports

4 N\
Abstraction Decompositio
* higher-order functions * lazy evaluation
e advanced typing features * well-defined interfaces
- AN

supports

Referential transparency
< a.k.a. referent

An expression can be replaced by its value
without changing the overall program behavior

\X => crunch [5,6,7] + X
= \ X => 3 + X

Corollary: an expression can be replaced by any expression
with the same value without changing program behavior

Supports decomposing a problem into parts
and “equational reasoning™

Equational reasoning

Computation is just substitution!

4)
sum :: [Int] -> Int
sum [] =0
sum (xX:Xs) = X + sum Xs
. A
equations A

Very useful when refactoring (later)

L 4 4 4 4 1

sum [2,3,4]

sum (2:(3:(4:[])))

2 + sum (3:(4:[1))
+ 3 + sum (4:[])
+ 3 + 4 + sum []

2
2
2 + 3 + 4+ 0
9

/%/
_>?§

Higher-order functions Z\

=7

_ % © Functional Programmers
do it at a higher orderl

Examples:

filter :: (a -> Bool) -> [a] -> [a]
map :: (@ => b) —> [a] —> [b]
(.) :: (b-—>c¢c) > (a->b) >a ->c

Currying / partial application r 1

In Haskell, functions that take multiple arguments
are technically implicitly higher-order

plus :: Int —> Int —> Int Haskell Curry
Int —}ﬂ—} [Int"."IntJ
increment :: Int -> Int

increment = plus 1

Uncurried version:
plus :: (Int,Int) —> Int

Lazy evaluation | know what to do.

Wake me up when
you need it.

Expressions are reduced:
* only when needed
® at most once

Supports:
* infinite data structures
* efficient and simple separation of concerns
(decomposition)

Efficiently implemented using graph-reduction (later)

(Lazy.hs, NQueens.hs)
10

John Hughes,Why Functional Programming Matters, | 989

Outline

* The essence of functional programming
e FP workflow and type-directed programming

* A closer look at types — parametricity

Striving for elegance

the quality of being pleasingly ingenious
and simple; neatness
— New Oxford American Dictionary

the beauty of an idea characterized by
minimalism and intuitiveness while

breserving exactness and precision
— Wiktionary

“obsessive compulsive refactoring disorder”

Striving for elegance

THE LIFE OF A SOFTWARE MUCH LA’TER...I

ENGINEER .
OH MY. TI’VE
DONE iT AGAIN,
HAVEN'T T 7

. e R W N

CLEAN) SLATE. SoLuiD
FOUNDATIONS. THIS TiME
T wWill BUILD THINGS THE

don’t stop here! A

FP workflow (simple)

[Refactor]

Nl
~Q
“0
.0
’0
¢ @
* 0
’0.
]
¢
n
n
l

""" ‘[Define functions]

/

»[|dentify/define types j

FP workflow (detailed)

7. Review & Refactor

6. Tests

|

5. Code

are
also

4. Function Template write body

A

A

signature .
guides demands guide
template more writing

2. Function Description
(Signature/Purpose/Header)

1 3. Functional Examples

A

7'y
names .
used in Ovzll(s):;(ed Inputs
signature
1A. Data Description valdated | | g oty Examples

by

Ramsey, On Teaching How to Design Programs, ICFP'14

Anatomy of a data type

type name type parameter
N '
data Tree a = Leaf a \

cases
| Node (Tree a) (Tree a) -

/ A\,

data constructor arguments

exTree :: Tree Int
exTree = Node (Leaf 2) (Node (Leaf 3) (Leaf 4))

Tools for defining functions

Recursion and other functions:

sum :: [Int] -> Int
sum xs = 1f null xs then 0
else head xs + sum (tail xs)

Pattern matching:

sum :: [Int] -> Int
sum [] 0
sum (X:Xs) X + sum Xs

Higher-order functions

sum :: [Int] -> Int
sum = foldr (+) O

What is type-directed programming?

Use the type of a function
to help write its body

2. Function Description
(Signature/Purpose/Header)

1 A

If your argumentis...

atomic type
function type
sum type

product type

— | apply functions to it

— apply it

— | use case analysis on it
— | decompose it

often pattern matching

... and repeat as necessary

Atomic type: apply functions to it

or pattern match against literals

Examples: Int, Bool, Float

isZero :: Int -> Bool
isZero n = f n

isZero n = (== 0) n
isZero n = n ==
isZero 0 True

isZero False

Sum type: use case analysis on it
often by pattern matching

Example: data Maybe a = Nothing | Just a

showValue :: Maybe Int -> String

Option |: pattern matching

showValue Nothing = "ERROR"
showValue (Just 1) = show 1

Option 2: case analysis function

showValue val = maybe "ERROR" show val

21

Product type: decompose it
often by pattern matching

Example: type Point

(Float,Float)

moveR :: Float -> Point -> Point

Option |: pattern matching

moveR s (X,y) = (x+s, Yy)

Option 2: destructor functions

moveR s p = (fst p + s, snd p)

22

Function type: apply it

Example: a -> b

pipe :: (a > b) —=> (b —>c) —> a —> C
pipe f g a = :

pipe f g a = . fa...

pipe f g a =g (f a)

23

Outline

* The essence of functional programming
* FP workflow and type-directed programming

e A closer look at types — parametricity

24

Parametricity — what’s in a type?

If | give you only the type of a function ...
* can you implement it!
* what else can you say about it?

Exercise: implement each of the following functions

fi1 :: a->b -> a

f2 a-> (a->b) >0b

fz ::a->a->(a->b) >0b
fa4 a->>b

25

Theorems for free! s :: (10t —> Int

map it (@ —> b) —> [a] —> [b]
filter :: (a -> Bool) -> [a] -> [a]
Consider this function:

glob :: [a] — [a]
What can it potentially do?

What can it definitely not do?

Which of the following theorems are true!?

sum . glob <=> glob . sum "
map f . glob <=> glob . map f V/
filter f . glob <=> glob . filter f X

Phil Wadler, Theorems for free! ICFP'89

26

Deliver some free theorems!

head :: [a] -> a
map :: (a —> b) —> [a] —> [b]
filter :: (a -> Bool) -> [a] -> [a]

%___jl‘“"

. Theo

4l
: o A
we

+ map is structure-preserving

head . map f <=> f . head
filter p . map f <=> map f . filter (p . f)

map g . map f <=> map (g . f)

27

