Purely Functional Data Structures
Outline

- **Persistence**
- Functional vs. imperative data structures
- Example: red-black trees
- Amortized complexity analysis
- Amortization for persistent data structures
Immutability/persistence of data in FP

Persistence: updates do not affect existing references

Haskell:
```
xs = [1,2,3]
y = [7,8]
zs = xs ++ ys

> zs
[1,2,3,7,8]
> xs
[1,2,3]
```

Ruby:
```
xs = [1,2,3]
y = [7,8]
zs = xs.concat(y)

> zs
[1,2,3,7,8]
> xs
[1,2,3,7,8]
```

data is persistent *data is ephemeral*
Persistent data structures

Ephemeral (i.e. traditional) data structures:
• updates destroy old versions

Persistent data structures:
• old versions are unchanged by updates

Applications independent of pure FP:
• editors (undo), version control, etc.
• backtracking search
• thread-safe data sharing
• computational geometry algorithms
Degrees of persistence

- **no persistence**
 - one version

- **partial persistence**
 - update only last version

- **full persistence**
 - update all versions

Purely functional = all data structures are fully persistent
Outline

• Persistence

• **Functional vs. imperative data structures**
 • Example: red-black trees

• Amortized complexity analysis

• Amortization for persistent data structures
Example: imperative list concatenation

\[xs = [1,2,3] \]
\[ys = [7,8] \]
\[zs = xs.concat(ys) \]

- efficient: O(1) time and space
- side-effects (error prone!)
- not persistent
Example: functional list concatenation

xs = [1,2,3]
ys = [7,8]
zs = xs ++ ys

- O(|xs|) time and space requirement
- no side-effects (safe!)
- fully persistent
Model of functional data structures

data \(T = C \ldots | D \ldots \)

\(x :: T \)

\(x = D (C \ldots) \ldots \)

\(x \) is represented as a pointer data structure (tree/graph) in the heap

To update the subterm \(y \):

• *update a copy* of the corresponding cell \(y \) in the heap

• *copy* all nodes on the *path* from the root to \(y \)

• (rest of the data structure is *shared* between \(x \) and \(y \))
Example: insert in binary search tree

\[
\begin{align*}
\text{insert} & : \text{Ord } a \Rightarrow a \rightarrow \text{Tree } a \rightarrow \text{Tree } a \\
\text{insert } x \text{ Leaf} & = \text{Node } x \text{ Leaf Leaf} \\
\text{insert } x \text{ (Node } y \text{ l r)} & | x < y = \text{Node } y \text{ (insert } x \text{ l) r} \\
& | \text{ otherwise } = \text{Node } y \text{ l (insert } x \text{ r)}
\end{align*}
\]

\[
\begin{array}{c}
t = \text{Node 4 (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))} \\
& (\text{Node 7 (Node 6 Leaf Leaf) (Node 8 Leaf (Node 9 Leaf Leaf))})
\end{array}
\]

\[
\begin{array}{c}
u = \text{insert 5 } t
\end{array}
\]

\[
\begin{array}{c}
t = \text{Node 4 (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))} \\
& (\text{Node 7 (Node 6 Leaf Leaf) (Node 8 Leaf (Node 9 Leaf Leaf))})
\end{array}
\]
Challenges

How to *implement* functional data structures *efficiently*?

- Optimize data type representation for common operations
- Goals: *minimize traversal* and *copying*

 - e.g. Haskell lists are optimized for *stack* operations
 but inefficient as *queues*

 - these goals are the rationale for the *zipper* pattern

How to *analyze* their time and space complexity?

- *Worst-case analysis* is basically the same
- *Amortized analysis* is much harder!

 - Lazy evaluation is crucial for amortizing w/ persistence

(Queue.hs)
Outline

• Persistence

• Functional vs. imperative data structures

• **Example: red-black trees**

• Amortized complexity analysis

• Amortization for persistent data structures
Red-black trees

A **self-balancing** binary search tree:
- every node is **red** or **black**
- leaves are valueless and **black**

Invariants:
- usual binary search tree invariant
- same # of **black** nodes on every root-to-leaf path
- every **red** node has two **black** children

Guarantee: longest path $\leq 2 \times$ shortest path
Examples

Valid red-black trees:

Invalid red-black trees:
Insertion

Balance invariants

(1) same # of **black** nodes on every root-to-leaf path
(2) every **red** node has two **black** children

Strategy:

• always insert a **red** node
• if added after a **black** node, we’re done!
• else, “rebalance” to eliminate the **red-red** violation
 (may cause a new **red-red** violation, so recurse up the tree)
• set root to **black**
Rebalancing

After insert, four possible invalid cases:

If y’s parent is red, must rebalance again!
Outline

- Persistence
- Functional vs. imperative data structures
- Example: red-black trees
- **Amortized complexity analysis**
- Amortization for persistent data structures
Amortized vs. worst-case analysis

“worst” worst case:
always assume maximal cost

\[n \text{ ops} \times O(n) \text{ cost} \]
\[\in O(n^2) \text{ total cost} \]

amortized worst case:
costs can be distributed over ops

\[n \text{ ops} \times O(1) \text{ amortized cost} \]
\[\in O(n) \text{ total cost} \]
Tradeoffs of amortized analysis

- more accurate over lifetime of data structure

- opens up new design space e.g. self-adjusting data structures
 - can lead to overall faster data structures
 - (in practice, or asymptotically over lifetime)
 e.g. splay trees, union-find

- weaker guarantees about individual operations
- not suitable for real-time applications
Banker’s method

For each operation i, define:

- a_i: amortized cost
- t_i: actual cost

Each operation gets a_i credits

<table>
<thead>
<tr>
<th>Op is ...</th>
<th>if ...</th>
<th>then ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>cheap</td>
<td>$t_i < a_i$</td>
<td>save $a_i - t_i$ credits</td>
</tr>
<tr>
<td>neutral</td>
<td>$t_i = a_i$</td>
<td></td>
</tr>
<tr>
<td>expensive</td>
<td>$t_i > a_i$</td>
<td>spend $a_i - t_i$ previously saved credits</td>
</tr>
</tbody>
</table>

To show that a_i is the amortized cost:
Show that we never run out of credits
Banker’s analysis of “two-stack” queue

(C L and R)

Credits given (aᵢ):

• enqueue: 2 credits
• dequeue: 1 credit

Actual cost (tᵢ):

• enqueue: 1 credit — save 1 credit to R
• dequeue:
 • |L| > 0: 1 credit
 • |L| = 0: 1 + |R| credits — spend the credits saved on R

So, both operations have amortized O(1) cost
Outline

• Persistence
• Functional vs. imperative data structures
• Example: red-black trees
• Amortized complexity analysis
• Amortization for persistent data structures
Amortization and persistence

Bad news: if data structure is persistent, we can go into debt!

\[
q = \text{foldr enqueue empty } [1..5] \quad – \text{save 5 credits on } R
\]
\[
r1 = \text{dequeue } q \quad – \text{spend all credits on } R
\]
\[
r2 = \text{dequeue } q \quad – \text{spend all credits on } R \text{ again!}
\]

Problem: persistence is working against us

Solution: make lazy evaluation work for us :-)

Keys: structure data type and functions so that:

- expensive operations are memoized \textit{buy them “on layaway”}
- expensive operations can be “locally” paid for