Domain Theory II

October 29, 2015
Outline

Meaning of recursive definitions
- Compositionality and well-definedness
- Extensionality of recursive functions
- Least fixed-point construction
- Internal structure of domains
Recall: a **denotational semantics** must be **compositional**

- a term’s denotation is built from the denotations of its parts

Example: integer expressions

\[
i \in \text{Int} ::= \text{(any integer)}\\
e \in \text{Exp} ::= i \mid \text{add } e \ e \mid \text{mul } e \ e
\]

\[
\begin{align*}
[\text{Exp}] & : \text{Int} \\
[i] & = i \\
[\text{add } e_1 \ e_2] & = [e_1] + [e_2] \\
[\text{mul } e_1 \ e_2] & = [e_1] \times [e_2]
\end{align*}
\]

Compositionality ensures the semantics is **well-defined** by **structural induction**

Each AST has **exactly one** meaning
A non-compositional (and ill-defined) semantics

Anti-example: while statement

\[t \in \text{Test} ::= \ldots \]
\[c \in \text{Cmd} ::= \ldots \mid \text{while } t \ c \]

\[T[\text{Test}] : S \rightarrow \text{Bool} \]
\[C[\text{Cmd}] : S \rightarrow S \]
\[C[\text{while } t \ c] = \lambda s. \text{if } T[t](s) \text{ then } C[\text{while } t \ c](C[c](s)) \text{ else } s \]

Meaning of \texttt{while } t \ c \ in \ state \ s:

1. evaluate \(t \) in state \(s \)
2. if true:
 a. run \(c \) to get updated state \(s' \)
 b. re-evaluate \texttt{while} in state \(s' \)
 (not compositional)
3. otherwise return \(s \) unchanged

A particular \texttt{while} statement may have \texttt{infinitely many} meanings!
Outline

Meaning of recursive definitions
 Compositionality and well-definedness
 Extensionality of recursive functions
 Least fixed-point construction
 Internal structure of domains
Extensional vs. operational definitions of a function

Mathematical function
Defined *extensionally*:
- a relation between inputs and outputs

Computational function (e.g. Haskell)
Usually defined *operationally*:
- compute output by sequence of reductions

Example (intensional definition)
\[
fac(n) = \begin{cases}
 1 & n = 0 \\
 n \cdot fac(n - 1) & \text{otherwise}
\end{cases}
\]

Extensional meaning
\{..., (2, 2), (3, 6), (4, 24), ...\}

Operational meaning
\[
\begin{align*}
fac(3) & \leadsto 3 \cdot fac(2) \\
& \leadsto 3 \cdot 2 \cdot fac(1) \\
& \leadsto 3 \cdot 2 \cdot 1 \cdot fac(0) \\
& \leadsto 3 \cdot 2 \cdot 1 \cdot 1 \\
& \leadsto 6
\end{align*}
\]
Extensional meaning of recursive functions

\[\text{grow}(n) = \begin{cases} 1 & n = 0 \\ \text{grow}(n + 1) - 2 & \text{otherwise} \end{cases} \]

Best extension (use \(\bot \) if undefined):
- \(\{(0, 1), (1, \bot), (2, \bot), (3, \bot), (4, \bot), \ldots \} \)

Other valid extensions:
- \(\{(0, 1), (1, 2), (2, 4), (3, 6), (4, 8), \ldots \} \)
- \(\{(0, 1), (1, 5), (2, 7), (3, 9), (4, 11), \ldots \} \)
- \(\ldots \)

Goal: best extension = only extension
A **function space domain** is a set of **mathematical functions**

Anti-example: while statement

\[
\begin{align*}
 t & \in \text{Test} \quad ::= \quad \ldots \\
 c & \in \text{Cmd} \quad ::= \quad \ldots \quad | \quad \textbf{while} \quad t \quad c
\end{align*}
\]

\[
\begin{align*}
 T[\text{Test}] & : S \rightarrow \text{Bool} \\
 C[\text{Cmd}] & : S \rightarrow S \\
 C[\textbf{while} \ t \ c] & = \lambda s. \text{if } T[t](s) \text{ then } \\
 & \quad C[\textbf{while} \ t \ c](C[c](s)) \quad \text{else } s
\end{align*}
\]

Ideal semantics of Cmd:

- semantic domain: \(S \rightarrow S_\bot \)
- contains \((s, s')\) if \(c\) terminates
- contains \((s, \bot)\) if \(c\) diverges
Outline

Meaning of recursive definitions
- Compositionality and well-definedness
- Extensionality of recursive functions
- Least fixed-point construction
- Internal structure of domains
Least fixed points

Basic idea:

1. a **recursive** function defines a **set** of **non-recursive, finite** subfunctions
2. its meaning is the “**union**” of the meanings of its subfunctions

Iteratively grow the extension until we reach a **fixed point**

- essentially encodes computational functions as mathematical functions
Example: unfolding a recursive definition

Recursive definition

\[
\text{fac}(n) = \begin{cases}
 1 & n = 0 \\
 n \cdot \text{fac}(n - 1) & \text{otherwise}
\end{cases}
\]

Non-recursive, finite subfunctions

\[
\begin{align*}
\text{fac}_0(n) &= \bot \\
\text{fac}_1(n) &= \begin{cases}
 1 & n = 0 \\
 n \cdot \text{fac}_0(n - 1) & \text{otherwise}
\end{cases} \\
\text{fac}_2(n) &= \begin{cases}
 1 & n = 0 \\
 n \cdot \text{fac}_1(n - 1) & \text{otherwise}
\end{cases} \\
&\ldots \\
\end{align*}
\]

\[
\text{fac} = \bigcup_{i=0}^{\infty} \text{fac}_i
\]

Fine print:
- each \(\text{fac}_i \) maps all other values to \(\bot \)
- \(\bigcup \) operation prefers non-\(\bot \) mappings
Computing the fixed point

In general

\[\text{fac}_0(n) = \bot \]

\[\text{fac}_i(n) = \begin{cases} 1 & n = 0 \\ n \cdot \text{fac}_{i-1}(n-1) & \text{otherwise} \end{cases} \]

A template to represent all \(\text{fac}_i \) functions:

\[
F = \lambda f. \lambda n. \begin{cases} 1 & n = 0 \\ n \cdot f(n - 1) & \text{otherwise} \end{cases}
\]

\(F \) takes \(\text{fac}_{i-1} \) as input

Fixpoint operator

\[
\text{fix} : (A \to A) \to A \\
\text{fix}(g) = \text{let } x := g(x) \text{ in } x
\]

\[
\text{fix}(h) = h(h(h(h(...))))
\]

Factorial as a fixed point

\[
\text{fac} = \text{fix}(F)
\]
Outline

Meaning of recursive definitions
 - Compositionality and well-definedness
 - Extensionality of recursive functions
 - Least fixed-point construction

Internal structure of domains
Internal structure of domains supports the least fixed-point construction

Recall fine print from factorial example:

- each fac_i maps all other values to \perp
- \cup operation prefers non-\perp mappings

How can we generalize and formalize this idea?
Partial orderings and joins

Partial ordering: \(\sqsubseteq : D \times D \to \mathbb{B} \)

- reflexive: \(\forall x \in D. \quad x \sqsubseteq x \)
- antisymmetric: \(\forall x, y \in D. \quad x \sqsubseteq y \land y \sqsubseteq x \implies x = y \)
- transitive: \(\forall x, y, z \in D. \quad x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z \)

Join: \(\sqcup : D \times D \to D \)

\(\forall a, b \in D, \) the element \(c = a \sqcup b \in D, \) if it exists,

is the smallest element that is larger than both \(a \) and \(b \)

i.e. \(a \sqsubseteq c \) and \(b \sqsubseteq c, \) and there is no \(d = a \sqcup b \in D \) where \(d \sqsubseteq c \)
Directed-complete partial orderings

A **directed subset** of domain is a subset of elements related by the ordering relation \sqsubseteq

Every domain is a **directed-complete partial ordering** (dcpo):
- every directed subset D has a **least element**

A function is **continuous** if it preserves the least element

Finally, the meaning of a continuous recursive function f is:

$$\bigcap_{i=0}^{\infty} f_i$$

where f_i are the finite approximations of f

whew!
Well-defined semantics for the while statement

Syntax

\[t \in \text{Test} ::= \ldots \]
\[c \in \text{Cmd} ::= \ldots \mid \text{while } t \ c \]

Semantics

\[T [\text{Test}] : S \rightarrow \text{Bool} \]
\[C [\text{Cmd}] : S \rightarrow S \]
\[C [\text{while } t \ c] = \text{fix}(\lambda f. \lambda s. \text{if } T[t](s) \ \text{then } f(C[c](s)) \ \text{else } s) \]