Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
What is the lambda calculus?

A very simple, but Turing complete, programming language

- created before concept of programming language existed!
- helped to define what Turing complete means!

Lambda calculus syntax

\[
\begin{align*}
 v \in \text{Var} & :\!::= & x \mid y \mid z \mid \ldots \\
 e \in \text{Exp} & :\!::= & v \quad \text{variable reference} \\
 & | & e\,e \quad \text{application} \\
 & | & \lambda v.\,e \quad \text{(lambda) abstraction}
\end{align*}
\]

Examples

\[
\begin{align*}
 x & \quad \lambda x.\,y & \quad x\,y & \quad (\lambda x.\,y)\,x \\
 \lambda f.\,(\lambda x.\,f\,(x\,x)) & \quad (\lambda x.\,f\,(x\,x))
\end{align*}
\]
Lambda calculus is the **theoretical foundation** for **functional programming**

<table>
<thead>
<tr>
<th>Lambda calculus</th>
<th>Haskell</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>f x</td>
<td>f x</td>
</tr>
<tr>
<td>λx.x</td>
<td>\x -> x</td>
</tr>
<tr>
<td>(λf. f x) (λy. y)</td>
<td>(\f -> f x) (\y -> y)</td>
</tr>
</tbody>
</table>

Similar to Haskell with only: variables, application, anonymous functions

- amazingly, we don’t lose anything by omitting all of the other features!
 (for a particular definition of “anything”)
Early history of the lambda calculus

Origin of the lambda calculus:

- **Alonzo Church** in 1936, to formalize “computable function”
- proves Hilbert’s *Entscheidungsproblem* undecidable
 - provide an algorithm to decide truth of arbitrary propositions

Meanwhile, in England …

- young **Alan Turing** invents the Turing machine
- devises *halting problem* and proves undecidable

Turing heads to Princeton, studies under Church

- prove lambda calculus, Turing machine, general recursion are equivalent
- **Church–Turing thesis**: these capture all that can be computed
Why lambda?

Evolution of notation for a **bound variable**:

- Whitehead and Russell, *Principia Mathematica*, 1910
 - \(2\hat{x} + 3\) – corresponds to \(f(x) = 2x + 3\)

- Church’s early handwritten papers
 - \(\hat{x}. 2x + 3\) – makes scope of variable explicit

- Typesetter #1
 - \(\&x. 2x + 3\) – couldn’t typeset the circumflex!

- Typesetter #2
 - \(\lambda x. 2x + 3\) – picked a prettier symbol

Impact of the lambda calculus

Turing machine: theoretical foundation for **imperative languages**
- Fortran, Pascal, C, C++, C#, Java, Python, Ruby, JavaScript, …

Lambda calculus: theoretical foundation for **functional languages**
- Lisp, ML, Haskell, OCaml, Scheme/Racket, Clojure, F#, Coq, …

In **programming languages research**:
- common language of discourse, formal foundation
- starting point for new features
 - extend syntax, type system, semantics
 - reveals precise impact and utility of feature
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Syntax

Lambda calculus syntax

\[v \in \text{Var} \quad ::= \quad x \mid y \mid z \mid \ldots \]

\[e \in \text{Exp} \quad ::= \quad v \quad \text{variable reference} \]

\| \quad e \; e \quad \text{application} \]

\| \quad \lambda v. \; e \quad \text{(lambda) abstraction} \]

Abstraction extend as far right as possible

so \ldots \lambda x. \; x \; y \equiv \lambda x. \; (x \; y) \]

NOT \quad (\lambda x. \; x) \; y

Syntactic sugar

Multi-parameter functions:

\[\lambda x. \; (\lambda y. \; e) \equiv \lambda x \; y. \; e \]

\[\lambda x. \; (\lambda y. \; (\lambda z. \; e)) \equiv \lambda x \; y \; z. \; e \]

Application is left-associative:

\[(e_1 \; e_2) \; e_3 \equiv e_1 \; e_2 \; e_3 \]

\[((e_1 \; e_2) \; e_3) \; e_4 \equiv e_1 \; e_2 \; e_3 \; e_4 \]

\[e_1 \; (e_2 \; e_3) \equiv e_1 \; (e_2 \; e_3) \]
β-reduction: basic idea

A **redex** is an expression of the form: \((\lambda v . e_1) e_2\)

(an application with an abstraction on left)

Reduce by **substituting** \(e_2\) for every reference to \(v\) in \(e_1\)

write this as: \([e_2/v]e_1\)

lots of different notations for this!

Simple example

\((\lambda x . x \ y \ x) \ z \mapsto z \ y \ z\)

\[\begin{align*}
 e \in \text{Exp} & ::= \, v \mid e \, e \mid \lambda v . e \\
 [v/e_2]e_1 & \quad e_1[v/e_2] \\
 e_1[v := e_2] & \quad [v \mapsto e_2]e_1
\end{align*}\]
Operational semantics

Reduction semantics

\[(\lambda v. e_1) e_2 \mapsto [e_2/v]e_1 \]

\[e \mapsto e' \]

\[\lambda v. e \mapsto \lambda v. e' \]

\[e_1 \mapsto e'_1 \]

\[e_2 \mapsto e'_2 \]

\[e_1 e_2 \mapsto e'_1 e'_2 \]

Note: Reduction order is ambiguous!
Exercise

Apply β-reduction in the following expressions

Round 1:
- $(\lambda x. x) \ z$
- $(\lambda x y. x) \ z$
- $(\lambda x y. x) \ z \ u$

Round 2:
- $(\lambda x. x \ x) \ (\lambda y. y)$
- $(\lambda x. (\lambda y. y) \ z)$
- $(\lambda x. (x \ (\lambda y. x)))) \ z$

Definition of lambda calculus

$$e \in Exp ::= v \mid e \ e \mid \lambda v. e$$

$$(\lambda v. e_1) \ e_2 \mapsto [e_2/v]e_1$$
$$\lambda v. e \mapsto \lambda v. e'$$

$$e_1 \mapsto e'_1$$
$$e_2 \mapsto e'_2$$

$$e_1 \ e_2 \mapsto e'_1 \ e_2$$
$$e_1 \ e_2 \mapsto e_1 \ e'_2$$
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Variable scoping

An abstraction consists of:

1. a **variable declaration**
2. a **function body** – the variable can be **referenced** in here

Terminology:

- **scope**: where in a program a variable can be referenced
- **binding**: the variable declaration associated with a reference

A reference is bound by its **innermost** declaration

Mini-exercise: $(\lambda x. e_1 (\lambda y. e_2 (\lambda x. e_3))) (\lambda z. e_4)$

- What is the scope of each variable declaration?
Free and bound variables

A variable v is **free** in e if:

- v is referenced in e
- the reference is *not* enclosed in an abstraction declaring v (within e)

If v is referenced and enclosed in such an abstraction, it is **bound**

Closed expression: an expression with no free variables

- equivalently, an expression where all variables are bound
Exercise

1. Define the abstract syntax of lambda calculus as a Haskell data type

2. Define a function: \texttt{free :: Exp -> Set Var} \\
the set of free variables in an expression

3. Define a function: \texttt{closed :: Exp -> Bool} \\
no free variables in an expression
Potential problem: variable capture

Principles of variable bindings:

1. variables should be bound according to their static scope
 - \(\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \mapsto \lambda x. \lambda x. x \ x \)

2. how we name bound variables doesn’t really matter
 - \(\lambda x. x \equiv \lambda y. y \equiv \lambda z. z \) (\(\alpha\)-equivalence)

If violated, we can’t reason about functions separately from their use!

Example with naive substitution

A function that always returns its first argument: \(\lambda x. y. x \) ... or does it?

\((\lambda x. y. x) \ y \ u \mapsto (\lambda y. y) u \mapsto u \)
Solution: capture-avoiding substitution

Capture-avoiding (safe) substitution: \([e/v]e'\)

\[
\begin{align*}
[e/v]v &= e \\
[e/v]w &= w & v \neq w \\
[e/v](e_1 e_2) &= [e/v]e_1 [e/v]e_2 \\
[e/v](\lambda u. e') &= \lambda w. [e/v]([w/u]e') & w \notin \{v\} \cup FV(\lambda u. e') \cup FV(e)
\end{align*}
\]

\(FV(e)\) is the set of all free variables in \(e\)

Example with safe substitution

\((\lambda x y. x) y u\)

\(\mapsto \ [y/x](\lambda y. x) u = (\lambda z. [y/x][z/y]x) u = (\lambda z. [y/x]x) u = (\lambda z. y) u\)

\(\mapsto [u/z]y = y\)
Example

Recall example: \(\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \mapsto \lambda x. \lambda x. x \ x \)

Reduction with safe substitution

\[
\begin{align*}
\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \\
\mapsto & \lambda x. [x/y](\lambda x. y \ x) = \lambda x. \lambda z. [x/y]([z/x](y \ x)) = \lambda x. \lambda z. [x/y](y \ z) \\
= & \lambda x. \lambda z. x \ z
\end{align*}
\]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Question: what is a **value** in the lambda calculus?

- how do we know when we’re done reducing?

One answer: a value is an expression that **contains no redexes**

- called **β-normal form**

Not all expressions can be reduced to a value!

\[
(\lambda x. xx) (\lambda x. xx) \leftrightarrow (\lambda x. xx) (\lambda x. xx) \leftrightarrow (\lambda x. xx) (\lambda x. xx) \leftrightarrow \ldots
\]
Does reduction order matter?

Recall: operational semantics is ambiguous
- in what order should we β-reduce redexes?
- does it matter?

\[
\begin{align*}
e & \mapsto e' \subseteq \text{Exp} \times \text{Exp} \\
(\lambda v. e_1) e_2 & \mapsto [e_2/v]e_1 \\
\lambda v. e & \mapsto \lambda v. e' \\
e_1 & \mapsto e'_1 \\
e_2 & \mapsto e'_2 \\
e_1 e_2 & \mapsto e'_1 e_2 \\
e_1 e_2 & \mapsto e'_1 e'_2
\end{align*}
\]

\[
\begin{align*}
e & \mapsto^* e' \subseteq \text{Exp} \times \text{Exp} \\
s & \mapsto^* s \\
s & \mapsto s' \\
s' & \mapsto^* s'' \\
s & \mapsto^* s''
\end{align*}
\]
Church–Rosser Theorem

Reduction is **confluent**

If \(e \leftrightarrow^* e_1 \) and \(e \leftrightarrow^* e_2 \), then
\[\exists e' \text{ such that } e_1 \leftrightarrow^* e' \text{ and } e_2 \leftrightarrow^* e' \]

Corollary: any expression has **at most one normal form**
- if it exists, we can still reach it after any sequence of reductions
- … but if we pick badly, we might never get there!

Example: \((\lambda x. y) ((\lambda x. x x) (\lambda x. x x)) \)
Reduction strategies

Redex positions

- **leftmost redex**: the redex with the leftmost \(\lambda \)
- **outermost redex**: any redex that is not part of another redex
- **innermost redex**: any redex that does not contain another redex

Label redexes

\[
\begin{align*}
(\lambda x. & (\lambda y. x) z \\
& ((\lambda y. y) z)) \\
& (\lambda y. z)
\end{align*}
\]

Reduction strategies

- **normal order reduction**: reduce the leftmost redex
- **applicative order reduction**: reduce the leftmost of the innermost redexes

Compare reductions: \((\lambda x. y) ((\lambda x. x x) (\lambda x. x x))\)
Exercises

Write **two reduction sequences** for each of the following expressions

- one corresponding to a normal order reduction
- one corresponding to an applicative order reduction

1. \((\lambda x.x x)((\lambda x.y.x)\ z\ (\lambda x.x))\)
2. \((\lambda x y z.x z)(\lambda z.z)((\lambda y.y)(\lambda z.z))\ x\)
Comparison of reduction strategies

Theorem
If a normal form exists, normal order reduction will find it!

Applicative order: reduces arguments first
- evaluates every argument exactly once, even if it’s not needed
- corresponds to “call by value” parameter passing scheme

Normal order: copies arguments first
- doesn’t evaluate unused arguments, but may re-evaluate each one many times
- guaranteed to reduce to normal form, if possible
- corresponds to “call by name” parameter passing scheme
Lazy evaluation: reduces arguments only if used, but **at most once**
- essentially, an efficient implementation of normal order reduction
- only evaluates to “weak head normal form”
- corresponds to “call by need” parameter passing scheme

Expression e is in **weak head normal form** if:
- e is a variable or lambda abstraction
- e is an application with a variable in the left position

… in other words, e does not start with a redex
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Church Booleans

Data and operations are encoded as **functions** in the lambda calculus.

For Booleans, need lambda calculus terms for *true*, *false*, and *if*, where:

- \[\text{if true } e_1 e_2 \mapsto^* e_1 \]
- \[\text{if false } e_1 e_2 \mapsto^* e_2 \]

<table>
<thead>
<tr>
<th>Church Booleans</th>
<th>More Boolean operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{true} : \lambda x y. x</td>
<td>\textit{and} : \lambda p q. if p q p</td>
</tr>
<tr>
<td>\textit{false} : \lambda x y. y</td>
<td>\textit{or} : \lambda p q. if p p q</td>
</tr>
<tr>
<td>\textit{if} : \lambda b t e. b t e</td>
<td>\textit{not} : \lambda p. if p false true</td>
</tr>
</tbody>
</table>
A natural number \(n \) is encoded as a function that applies \(f \) to \(x \) \(n \) times.
Encoding values of more complicated data types

At a minimum, need **functions** that encode how to:

- **construct** new values of the data type
- **destruct and use** values of the data type in a general way

Can encode values of many data types as **sums** of **products**

Recall from domain theory

\[
\text{data } \text{Val} = \text{N Nat} \mid \text{B Bool} \mid \text{P (Nat,Bool)} \\
\equiv \\
\text{Nat} \oplus \text{Bool} \oplus (\text{Nat} \otimes \text{Bool})
\]
A tuple is defined by:
- a tupling function; last argument \textit{selects} an earlier argument (constructor)
- a set of selecting functions (destructors)

Church pairs

\[
\begin{align*}
\text{pair} &= \lambda x y s. \, s \, x \, y \\
\text{fst} &= \lambda t. \, t \, (\lambda x y. \, x) \\
\text{snd} &= \lambda t. \, t \, (\lambda x y. \, y)
\end{align*}
\]

Church triples

\[
\begin{align*}
\text{tuple}_3 &= \lambda x y z s. \, s \, x \, y \, z \\
\text{sel}_{1/3} &= \lambda t. \, t \, (\lambda x y z. \, x) \\
\text{sel}_{2/3} &= \lambda t. \, t \, (\lambda x y z. \, y) \\
\text{sel}_{3/3} &= \lambda t. \, t \, (\lambda x y z. \, z)
\end{align*}
\]
Sums (a.k.a. tagged unions)

A tagged union is defined by:

- a case function: a tuple of functions (destructor)
- a set of tags that select the correct function and apply it (constructors)

Church either

\[
either = \lambda f \, g \, u. \, u \, f \, g
\]

\[
in_L = \lambda x. \, f \, g. \, f \, x
\]

\[
in_R = \lambda y. \, f \, g. \, g \, y
\]

Church union

\[
case_3 = \lambda f \, g \, h \, u. \, u \, f \, g \, h
\]

\[
in_{1/3} = \lambda x. \, f \, g \, h. \, f \, x
\]

\[
in_{2/3} = \lambda y. \, f \, g \, h. \, g \, y
\]

\[
in_{3/3} = \lambda z. \, f \, g \, h. \, h \, z
\]
Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Observation: can use abstractions to define names

\[
\text{let succ = } \lambda n \rightarrow n+1 \\
\text{in } ... \text{ succ 3 } ... \text{ succ 7 } ...
\]

\[
(\lambda \text{succ.} \\
\text{... succ 3 } ... \text{ succ 7 } ... \\
) (\lambda n f x. f (n f x))
\]

But this pattern doesn’t work for recursive functions!

\[
\text{let fac = } \lambda n \rightarrow \\
\text{... n } \times \text{ fac } (n-1) \\
\text{in } ... \text{ fac 5 } ... \text{ fac 8 } ...
\]

\[
(\lambda \text{fac.} \\
\text{... fac 5 } ... \text{ fac 8 } ... \\
) (\lambda n f x.\text{... mult } n (???) (\text{pred } n))
\]
Recursion via fixpoints

Solution: Fixpoint function

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

\[Y \ g \mapsto \ (\lambda x. g (x x)) (\lambda x. g (x x)) \]
\[\mapsto g \ ((\lambda x. g (x x)) (\lambda x. g (x x))) \]
\[\mapsto g \ (g \ ((\lambda x. g (x x)) (\lambda x. g (x x)))) \]
\[\mapsto g \ (g \ (g \ ((\lambda x. g (x x)) (\lambda x. g (x x))))) \]
\[\mapsto \ldots \]

Example recursive function (factorial)

\[Y \ (\lambda \text{fac n. if (isZero n) one (mult n (fac (pred n))))} \]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
The role of names in lambda calculus

Variable names are a convenience for readability (mnemonics) … but they’re annoying in implementations and proofs

Annoyances related to names

- safe substitution is complicated, requires generating fresh names (minor)
- checking and maintaining α-equivalence is complicated and expensive (major)

Recall: α-equivalence

Expressions are the same up to variable renaming

- $\lambda x. x \equiv \lambda y. y \equiv \lambda z. z$
- $\lambda x y. x \equiv \lambda y x. y$
A nameless representation of lambda calculus

Basic idea: de Bruijn indices

- an abstraction implicitly declares its input (no variable name)
- a variable reference is a number n, called a **de Bruijn index**, that refers to the nth abstraction up the AST

Nameless lambda calculus

\[
\begin{align*}
n &\in \text{Nat} &::= & \text{(any natural number)} \\
e &\in \text{Exp} &::= & e \ e & \text{application} \\
& & | & \lambda \ e & \text{lambda abstraction} \\
& & | & n & \text{de Bruijn index}
\end{align*}
\]

Named \rightsquigarrow nameless

- $\lambda x. \ x \rightsquigarrow \lambda \ 0$
- $\lambda x y. \ x \rightsquigarrow \lambda \ \lambda \ 1$
- $\lambda x y. \ y \rightsquigarrow \lambda \ \lambda \ 0$
- $\lambda x. (\lambda y. \ y) \ x \rightsquigarrow \lambda (\lambda \ 0) \ 0$

Main advantage: α-equivalence is just syntactic equality!
Deciphering de Bruijn indices

De Bruijn index: the number of λs you have to *skip* when moving up the AST

\[
\lambda \theta \left(\lambda 1 \left(\lambda 0 1 2 \right) 0 \right)
\]

Gotchas:

- the same variable will be a different number in different contexts
- scopes work the same as before; references respect the AST
 - e.g. the blue θ refers to the blue λ since it is not in scope of the green λ, and the green λ does not count as a *skip*
Free variable in e: a de Bruijn index that skips over all of the λs in e
- the same free variables will have the same number of λs left to skip