SECTION 1: DIODES

ECE 322 – Electronics I

Course Overview

- Your previous electrical engineering courses focused on circuits containing:
 - Sources
 - Voltage and current
 - Independent and dependent
 - Passive devices
 - Resistors, capacitors, inductors
 - Opamps
 - Integrated circuits (ICs)
 - Semiconductor devices
 - Comprised of transistors
- □ In this course, our focus will be on *semiconductor devices*:
 - Diodes
 - Transistors

Course Overview

- 4
- We will learn to analyze and design circuits using semiconductor devices – diodes and transistors
- Our primary focus will be *discrete, analog circuits*

Discrete circuits:

- Built using individual discrete components (transistors, diodes, Rs, Ls, Cs)
- Not integrated circuits (ICs), though we will be laying the foundation for IC design

Analog circuits:

- Voltages/currents can vary continuously
- As opposed to digital circuits, where quantities can only assume discrete values

Course Overview

- Section 1: Diodes
 - Introduction to semiconductors
 - Rectifier circuits
- Section 2: *Bipolar Junction Transistors* Device characteristics and models
- □ Section 3: *BJT Amplifiers*
 - Various amplifier circuits using BJTs
- □ Section 4: *MOSFETs*
 - Device characteristics and models
- Section 5: MOSFET Amplifiers
 - Various amplifier circuits using MOSFETs
- Section 6: Integrated Circuit Building Blocks
 - Intro to basic components of integrated circuits

Diodes

Two terminal electrical components that allow current to flow in one direction only

Current can flow from *anode to cathode*, but not from cathode to anode

Analogous to check valves

Fluid can flow in one direction only:

Diodes – PN Junctions

Diodes are *semiconductor* devices

- Formed from the junction of two dissimilar semiconductor materials
 - **P-type** and **N-type** semiconductors
- **P-N junctions**:

Semiconductors

- Semiconductors
 have *conductivities* between those of
 conductors and
 insulators
- Conductivity can be modified by adding impurities
 Doping

Semiconductors

Semiconductors have *four valence electrons*

- Valence bands are half full
- Atoms bond together in a crystalline lattice structure
- Each atom shares covalent bonds with four adjacent atoms
- Few free charge carriers poor conductivity

Semiconductors – Doping

- Intrinsic semiconductors are poor conductors
- Conductivity can be altered by adding *impurities* through a process called *doping*
- Doping: addition of a small amount of another element to the intrinsic semiconductor
 - Low concentration: 10 ppb 100 ppm
 - Free charge carriers are increased
 - Conductivity is increased
- Type of dopant determines type of semiconductor
 N-type or P-type

Semiconductors – N-Type

- 13
- N-type material created by doping with pentavalent dopant atoms
 - Five valence electrons
 - E.g., phosphorous (P) or antimony (Sb)
 - Bonding with four Si atoms creates a *free electron*
 - Dopants are called *donors* they donate free electrons

Semiconductors – N-Type

- 14
- Donor atoms lose an electron
 - These free electrons are majority carriers
- There will be some holes as well
 - Thermally-generated
 - Much lower concentration *minority carriers*

Semiconductors – P-Type

- 15
- **P-type** material created by doping with **trivalent** dopant atoms
 - Three valence electrons
 - E.g., Boron (B)
 - Bonding with four Si atoms creates a *hole*
 - Dopants are called *acceptors* they accept an electron from a Si atom

Semiconductors – P-Type

- 16
- Acceptor atoms introduce a hole
 These holes are *majority carriers*
- There will be some free electrons as well
 - Thermally-generated
 - Much lower concentration *minority carriers*

P-N Junctions

- 17
- P-N junctions diodes are formed by joining P-type and Ntype semiconductors

- P-type on one side of the junction
 - Majority carriers: *holes* mobile positive charge
- N-type on the other
 - Majority carriers: *electrons* mobile negative charge
- □ At the junction:
 - Holes want to *diffuse* across into the N-type material
 - Electrons want to *diffuse* across into the P-type material

P-N Junctions

- Mobile holes want to diffuse from p-type to n-type
- Mobile electrons want to diffuse from n-type to p-type
- Space-charge layer or depletion region is created
- Diffusion drives negative charge one way, positive charge the other

P-N Junctions

- Diffusion causes a *charge gradient* across the junction
 Electric field established
- E-field drives mobile charge back in the opposite direction
 Drift opposes and limits diffusion

P-N Junction – Reverse Bias

- Reverse-bias voltage applied $-V_d < 0 V$
 - Applied voltage adds to depletion region E-field
 - Additional diffusion to balance larger E-field
 - Depletion region expands
 - Negligible reverse current flow due to *drift* of thermallygenerated *minority carriers*

P-N Junction – Forward Bias

- 21
- Forward-bias voltage applied V_d > 0 V
 - Applied voltage reduces depletion region E-field
 - Depletion region shrinks
- Significant forward current flows
 - Majority carriers diffuse across the junction
 - Carried to diode terminals by applied E-field

²² Diode I-V Characteristics

Diode I-V Characteristics

- Three operating regions:
 - Forward biased
 - V_d > 0 V
 - Current flows from anode to cathode
 - Reverse biased
 - V_d < 0 V
 - Negligible, nearlyconstant saturation current, I_s, flow from cathode to anode
 - Reverse breakdown
 - V_d < V_{BR}
 - Large reverse current flows

Shockley Equation

 In the forward- and reverse-biased regions, diode behavior can be approximated by the *Shockley Equation*:

$$I_d = I_s \left(e^{\frac{V_d}{V_{th}}} - 1 \right)$$

V_{th} is the thermal voltage

$$V_{th} = \frac{kT}{q}$$

- $k = 1.38 \times 10^{-23} J/K$ is **Boltzmann's constant**
- $q = 1.6 \times 10^{-19} C$ is the charge of an electron
- At T = 300 K, $V_{th} \approx 26 mV$
- **\square** I_s is the saturation current
 - Typically very small, e.g., $I_s \approx 35 \ pA$

Shockley Equation

$$I_d = I_s \left(\frac{V_d}{V_{th}} - 1 \right)$$

In forward bias, the -I_s term is negligible
 Exponential current-voltage relationship

$$I_d \approx I_s e^{\frac{V_d}{V_{th}}}$$

In reverse bias, the exponential term is negligible
 Nearly-constant, and small, reverse current

$$I_d \approx -I_s$$

Reverse Breakdown

- Shockley equation does not describe reversebreakdown behavior
- Typical Breakdown voltages are in the range of a few volts to hundreds of volts
- Typically, we want to avoid exceeding the breakdown voltage
- However, one class of diodes is designed to be used in breakdown: *Zener diodes*

Zener Diodes

- **Zener diodes** designed to have a very steep I-V characteristic in the breakdown region
 - V_d is almost constant, independent of current
 - Useful in voltage regulation or voltage reference circuits
 - Schematic symbol:

²⁸ Diode Models

Diode Models

- Need a *diode model* to enable circuit analysis
- Shockley equation is one model
 Simplified, but still complex for hand analysis
- Can trade off complexity and accuracy
 - Choose the simplest possible model that provides acceptable accuracy
- We'll look at three much simpler models
 - Appropriate for first-order type of analyses
 - Ideal diode model
 - Nearly-ideal diode model
 - Nearly-ideal model with resistance

Ideal Diode Model

Ideal diode model:

- Short circuit for forward-bias current
- Open circuit for reverse-bias voltage

V_d -

Reverse-bias circuit:

Nearly-Ideal Diode Model

31

Nearly-ideal diode model:
 Accounts for diode forward voltage
 Open circuit for V_d < V_{d,on}

Forward-bias equivalent circuit:

•
$$V_d = V_{d,on} \approx 700 \text{ mV}$$

• $I_d > 0 \text{ A}$

Reverse-bias circuit:

Nearly-Ideal Model with Resistance

32

- Add resistance to the nearly-ideal model
 Account for real parasitic resistance, or
 Provide a better fit to the diode's I-V curve
- Forward-bias circuit:

 $\overset{+ v_{d,on}}{\longrightarrow} \overset{- }{\longrightarrow} \overset{R_{on}}{\longrightarrow} \overset{i_{d}}{\longrightarrow}$

$$\bullet V_d = V_{d,on} + I_d \cdot R_{on}$$

Reverse-bias circuit:

Reverse breakdown:

K. Webb

³³ Load-Line Analysis

Diode Circuit Analysis

34

- Analyze the circuit to find the diode operating point: V_d and I_d
- Apply KVL around the circuit

$$V_s - I_d R - V_d = 0$$

One equation with two unknowns: V_d and I_d
 Shockley equation give I_d in terms of V_d

$$I_d = I_s \left(e^{\frac{V_d}{V_{th}}} - 1 \right) \approx I_s e^{\frac{V_d}{V_{th}}}$$
(2)

(1)

Substituting (2) into (1) yields a *transcendental equation*

$$I_s e^{\frac{V_d}{V_{th}}} \cdot R + V_d = V_s \tag{3}$$

- **D** Solve via iteration, or
- Solve graphically *load-line analysis*

Diode Circuit Analysis

35

$$I_s e^{\frac{V_d}{V_{th}}} \cdot R + V_d = V_s \tag{3}$$

 Solving (3) amounts to solving the system of two equations given by (1) and (2)

$$I_d = -\frac{V_d}{R} + \frac{V_s}{R}$$
$$I_d = I_s e^{\frac{V_d}{V_{th}}}$$

(2)

- Equation (1) is an equation for a line the load line
- **D** Equation (2) is the exponential forward-biased diode characteristic
- Solution is the values of V_d and I_d that satisfy both equations
 Point where the *two curves intersect* The *DC operating point*
- □ Finding this solution graphically is *load-line analysis*

K. Webb

Load-Line Analysis

³⁷ Analysis with Simple Diode Models

Simplified Analysis – Ideal Model

- Revisit the previous analysis using the ideal diode model
- Diode is forward biased
 - Replace with a short circuit
- Diode modeled as a short, so

$$V_d = 0 V$$

Ohm's law gives current

$$I_d = \frac{V_s}{R} = \frac{2 V}{250 \Omega} = 8 mA$$

- Current is in correct order of magnitude, but not very accurate
- Next, try the nearly-ideal model

Simplified Analysis – Nearly-Ideal Model

- Now, use the *nearly-ideal model*
- Diode is forward biased
 - Replace with a voltage source
 - In practice, would have some idea of the appropriate value for V_{d,on}

$$V_d = V_{d,on} \approx 700 \; mV$$

Ohm's law gives current

$$I_d = \frac{V_s - V_{d,on}}{R} = \frac{2 V - 0.7 V}{250 \Omega} = 5.2 mA$$

- Much more accurate result
- This is our go-to model for hand analysis

40 Rectifier Circuits

Rectifier Circuits

Rectifier circuits are circuits that convert AC signals into DC signals

AC-to-DC power converters:

Also used as *peak detectors*

- AM receivers
- Measurement instruments

Rectifiers rely on the unidirectional nature of diodes Eliminate negative voltages or make them positive

Half-Wave Rectifier

K. Webb

- Half-wave rectifier
 - Sinusoidal input, e.g., powerline voltage
 - Negative half-periods removed
 - Only positive voltages at rectifier output

■ For
$$v_s(t) \ge V_{d,on} \approx 700 \ mV$$
:
■ $i(t) > 0 \ A$
■ $v_o(t) = v_s(t) - V_{d,on}$

■ For
$$v_s(t) \le V_{d,on} \approx 700 \ mV$$
:
■ $i(t) = 0 \ A$
■ $v_o(t) = 0 \ V$

Half-Wave Rectifier

43

Full-Wave Rectifier

- Typical goal of a rectifier: extract power from an AC voltage, supply it to a load as a DC voltage
- Half-wave rectification is inefficient
 Half of the signal and its energy is discarded
- Full-wave rectification improves efficiency
 Negative voltages are not discarded they are made positive
- A diode bridge configuration
- Source must be *floating*
 - Neither side grounded
 - Typically the output of a transformer, so not a problem

Full-Wave Rectifier

■ For
$$v_s(t) \ge 2 \cdot V_{d,on}$$
:
■ D₂ and D₃ are forward-biased
■ D₁ and D₄ are reverse-biased
■ $v_o(t) = v_s(t) - 1.4 V$

■ For
$$v_s(t) \le -2 \cdot V_{d,on}$$
:
■ D₁ and D₄ are forward-biased
■ D₂ and D₃ are reverse-biased
■ $v_o(t) = -v_s(t) - 1.4 V$

Full-Wave Rectifier

Full-Wave Rectifier – Differential Source

- 47
- If we have a *differential source*, full-wave rectifier requires only two diodes
- Now, only a single diode drop between input and output

 $v_o(t) = |v_s(t)| - V_{d,on}$

 Differential source may come from a transformer with a grounded center tap on the secondary winding

R

Precision Half-Wave Rectifier

8

- A *precision rectifier* or *super diode* encloses a diode in an opamp feedback loop
 - Feedback forces the output equal to the input
 - Input-to-output diode drop is eliminated
 - Negative feedback only for positive inputs

- $\Box \quad \text{For } v_s(t) \ge 0 \ V:$
 - Negative feedback path exists
 - Unity-gain buffer

$$v_o(t) = v_s(t)$$

□ For $v_s(t) \le 0 V$:

- No feedback output saturates
- $v_o(t)$ pulled to ground by resistor

$$\bullet v_o(t) = 0 V$$

Smoothing Capacitors

- 50
- If our goal is AC-to-DC conversion, rectification is only the first step

Rectified output is positive, but far from DC

- A capacitor in parallel with the rectifier's load resistor will smooth out the output
 - A smoothing capacitor
 - A *low pass filter* to average out the rectified signal
- The same circuit can be used for *peak detection* Demodulation of an AM radio signal, for example

Smoothing Capacitors

- 51
- Add a *smoothing capacitor* to half-wave rectifier
 Input is 60 Hz powerline voltage

- □ When v_o ≤ v_s V_{d,on}:
 □ Current flows through the diode
 □ Capacitor charges
- □ When $v_s \leq v_o + V_{d,on}$:
 - Diode is off
 - Capacitor discharges at a rate determined by the RC time constant

Smoothing Capacitors

- Capacitor helps filter or smooth the output
 - Nearly DC
 - Remaining AC component is referred to as *ripple*
- Ripple magnitude determined by how far the capacitor can discharge before charging again

-50

О

5

10

15

20

time

25

[msec]

30

35

40

45

50

- Determined by RC time constant
- To reduce ripple
 - Increase the RC time constant
 - Larger resistor and/or capacitor

52

Calculating Ripple – Half Wave Rectifier

- \Box V_r : pk-pk ripple voltage
- \Box V_p : peak input voltage
- $\Box t_p$: time at input peak

- \Box *T*: input period
- \Box t_d : capacitor discharge time
- Diode modeled as ideal

Calculating Ripple – Half Wave Rectifier

 \Box V_r is the difference between the output voltage at $t = t_p$ and at $t = t_p + t_d$

$$V_r = v_o(t_p) - v_o(t_p + t_d)$$

where

$$v_o(t_p) = V_p$$
 and $v_o(t_p + t_d) = V_p e^{-\frac{t_d}{RC}}$

SO

$$V_r = V_p - V_p e^{-\frac{t_d}{RC}} = V_p (1 - e^{-\frac{t_d}{RC}})$$

- Problem is, we do not know t_d
 - Could calculate it, but, instead, assume the following:

$$\tau = RC \gg T$$

- From which it follows that
 - $\Box V_r \ll V_p$
 - $\bullet \quad t_d \approx T$
 - Discharge current is approximately constant:

$$i(t) \approx \frac{V_p}{R} \quad \left(t_p \le t \le t_p + t_d\right)$$

Approximating Ripple – Half Wave Rectifier

55

 Recall that the change in voltage across a capacitor discharged at a constant current is

$$V = \frac{I \cdot t}{C}$$

 Using our approximations for current and discharge time gives an approximation for the ripple voltage:

$$V_r \approx \frac{V_p \cdot T}{RC} = \frac{V_p}{fRC}$$

