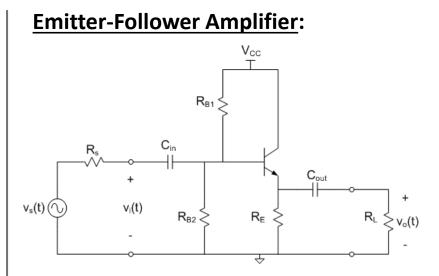

SECTION 3: BJT AMPLIFIERS

ECE 322 – Electronics I


² BJT Amplifier Circuits

Transistor Amplifier Circuits – Preview

- в
- In this section of the course, we will look at three BJT amplifiers, with a focus on the following two circuits:

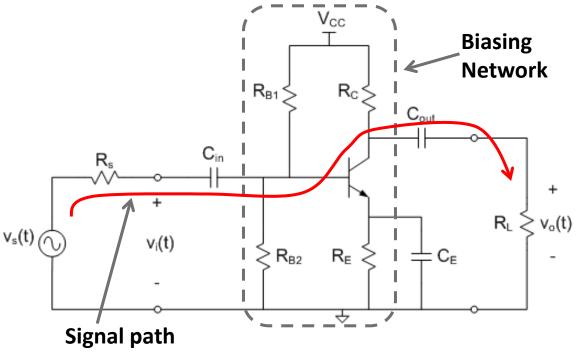
- High voltage gain
- □ An amplifier

Near unity gain

A buffer

BJT Amplifier Circuits

Recall the two functional pieces of a BJT amplifier:

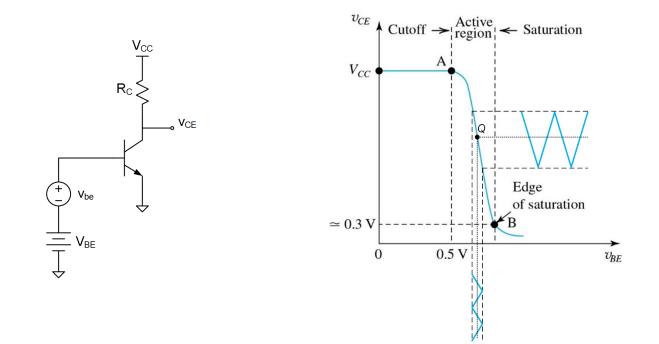

Bias network

- Sets the DC operating point of the transistor
- Ensures the BJT remains in the forward-active region

Signal path

Sets the gain of the amplifier circuit

Significant
 overlap
 between the
 two parts


⁵ BJT Amplifier Biasing

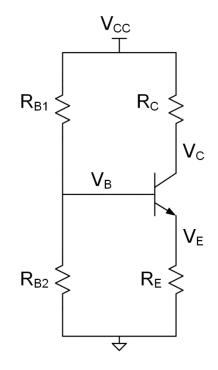
BJT Amplifier Biasing

- 5
- To function as an amplifier, a transistor must be biased in the *forward-active region*
- DC operating point set by the *bias network*
 - Resistors and power supply voltages
 - Sets the transistor's *DC terminal voltages and currents* its DC bias
- How a transistor is *biased* determines:
 - Small-signal characteristics
 - Small-signal model parameters
 - How it will behave as an amplifier

Voltage Transfer Characteristic

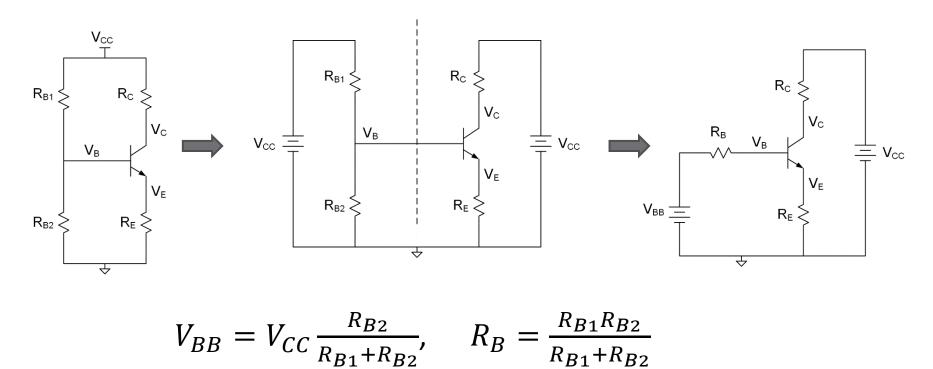
- 7
- BJT amplifier biased in the middle of its linear region
- □ Slope of the large-signal transfer characteristic gives the amplifier gain
 - Negative slope gain is inverting
 - Small input signals yield larger output signals
 - Slope is nearly linear in this region

BJT Biasing – Four-Resistor Bias Circuit


Four-resistor bias circuit:

 Commonly-used for both *common-emitter* amplifiers and *emitter-followers*

Single power supply or bipolar supply


Provides *nearly-\beta-independent biasing*

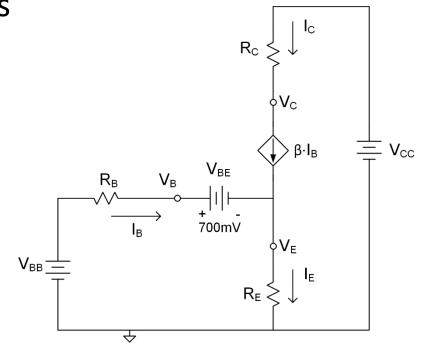
- $\square \beta$ is often unknown and may be variable
- DC operating point stays nearly constant as
 β changes
- Analyze the bias circuit by replacing the transistor with its large-signal model

Analysis of the Four-Resistor Bias Circuit

- 9
- To analyze the bias circuit, replace the transistor with its large-signal model
- First, simplify by replacing the base network with its Thevenin equivalent

Analysis of the Four-Resistor Bias Circuit

- L0
- Replace the transistor with its large-signal model
- Apply KVL around the B-E loop:


$$V_{BB} - I_B R_B - V_{BE} - I_E R_E = 0$$

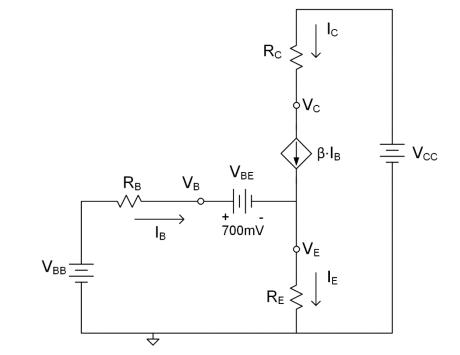
□ Express I_E in terms of I_B , then solve for I_B :

$$I_E = (\beta + 1)I_B$$

$$V_{BB} - I_B R_B - V_{BE} - (\beta + 1) I_B R_E = 0$$

$$I_B = \frac{V_{BB} - V_{BE}}{R_B + (\beta + 1)R_E}$$

Analysis of the Four-Resistor Bias Circuit


11

 \Box Get I_C and I_E from I_B

$$I_C = \beta I_B$$
$$I_E = (\beta + 1)I_B$$

Use currents to calculate terminal voltages:

 $V_C = V_{CC} - I_C R_C$ $V_E = I_E R_E = V_B - V_{BE}$ $V_B = V_{BB} - I_B R_B = V_E + V_{BE}$

Verify that the transistor is biased in the forward active region:

$$V_{BE} > 0$$

$$V_{BC} < 0$$

 Next, we'll use the DC operating point to determine small-signal model parameters and a small-signal equivalent circuit

K. Webb

Design of the Four-Resistor Bias Network

- 12
- Design the bias network for bias current that is *independent of* β and temperature variation

$\square \beta$ independence

- Changes in base current do not affect bias current
- Current in the base bias resistors (R_{B1} and R_{B2}) must be much larger than the base current

$$I_{R_{B1,2}} \gg I_B$$

Set resistive divider current in same order of magnitude as bias current

$$0.1I_E \leq I_{R_{B1,2}} \leq I_E$$

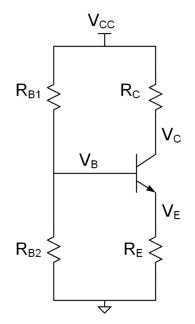
Temperature independence

- Changes in B-E voltage with temperature do not affect bias current
- Set base voltage much larger than B-E voltage

$$V_B \gg V_{BE}$$

Design of the Four-Resistor Bias Circuit

13


Rule of thumb for designing a bias network:

 Select R_{B1} and R_{B2} to conduct approximately 1/10 of the desired bias current

$$\frac{V_{CC}}{R_{B1} + R_{B2}} \approx 0.1 I_E$$

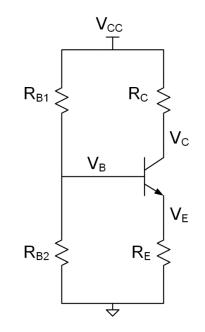
• Set V_{BB} to approximately 1/3 of the supply voltage

$$V_{BB} \approx \frac{V_{CC}}{3}$$
$$\frac{R_{B2}}{R_{B1} + R_{B2}} \approx \frac{1}{3}$$

Select R_C to drop approximately 1/3 of the supply voltage

$$R_C \approx \frac{V_{CC}/3}{I_C}$$

Design of the Four-Resistor Bias Circuit


Rule of thumb for designing a bias network (continued):

D Determine R_E to provide the desired bias current

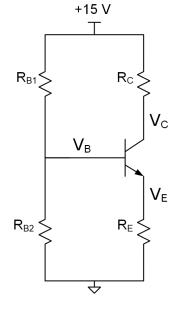
$$R_E = \frac{V_{BB} - V_{BE}}{I_E} - \frac{R_B}{\beta + 1}$$

□ This configuration provides approximately:

- **D** V_{CC} /3 across R_C
- $V_{CC}/3$ across the C-B junction
- $V_{CC}/3$ at the base (or, roughly, across R_E)
- $\Box v_o$ can swing approximately:
 - **\Box** V_{CC} /3 in the positive direction, before cutoff
 - $V_{CC}/3$ in the negative direction, before saturation

Bias Circuit Design - Example

15


- □ Design the bias network to provide $I_E = 1 mA$
- □ Set R_{B1} and R_{B2} to conduct approximately $0.1I_E$

$$\frac{V_{CC}}{R_{B1} + R_{B2}} = 0.1I_E = 100 \ \mu A$$
15 V

$$R_{B1} + R_{B2} = \frac{15 V}{100 \,\mu A} = 150 \,k\Omega$$

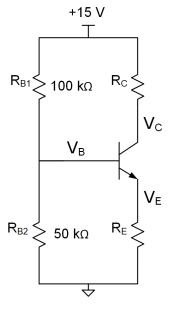
Determine
$$R_{B1}$$
 and R_{B2} to set $V_{BB} \approx V_{CC}/3$

$$\frac{R_{B2}}{R_{B1} + R_{B2}} = 1/3$$
$$R_{B1} = 2R_{B2}$$
$$R_{B1} = 100 \ k\Omega$$
$$R_{B2} = 50 \ k\Omega$$

 $\beta = 100$

Bias Circuit Design - Example

□ Select R_C to drop approximately 1/3 of the supply voltage

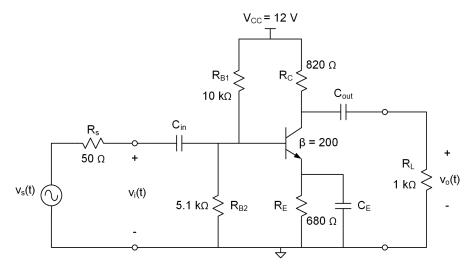

$$R_{C} = \frac{\frac{V_{CC}}{3}}{I_{E}} = \frac{5 V}{1 mA}$$
$$R_{C} = 5 k\Omega$$

 \Box Finally, determine R_E to provide the desired bias current

$$R_{E} = \frac{V_{BB} - V_{BE}}{I_{E}} - \frac{R_{B}}{\beta + 1}$$

$$R_{E} = \frac{(5 V - 700 mV)}{1 mA} - \frac{(100 k\Omega)|50 k\Omega)}{101}$$

$$R_{E} = 4.3 k\Omega - 330 \Omega$$

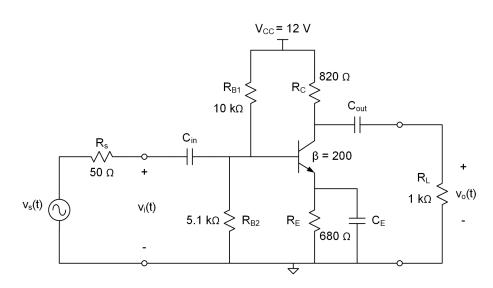

 $\beta = 100$

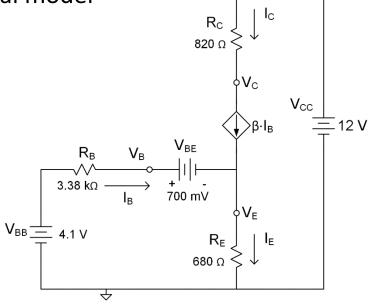
$$R_E = 3.97 \ k\Omega$$

¹⁷ Common-Emitter Amplifier

Common-Emitter Amplifier

- 18
- Common-emitter amplifier
- All capacitors are ACcoupling/DC blocking capacitors
 - Open at DC
 - Shorts at signal frequencies
 - Isolate transistor bias from source/load
- Called *common*-emitter, because emitter is connected to common – i.e., ground or a power supply
 - \square C_E is a small-signal short to ground
 - Emitter is at small-signal ground




Common-Emitter Amplifier

- □ Analyze the amplifier to find:
 - DC operating point
 - Small-signal voltage gain

Large-signal (DC) equivalent circuit:

- Replace all capacitors with open circuits
- Simplify the base bias network
- Replace the transistor with its large-signal model

C-E Amplifier – Large-Signal Analysis

20

□ As we have seen, base current is given by

$$I_B = \frac{V_{BB} - V_{BE}}{R_B + (\beta + 1)R_E} = \frac{4.1 V - 700 mV}{3.38 k\Omega + 201 \cdot 680 \Omega} = 24.3 \mu A$$

 $\Box \quad \text{Use } I_B \text{ to get } I_C \text{ and } I_E$

$$I_C = \beta I_B = 200 \cdot 24.3 \ \mu A = 4.9 \ m A$$
$$I_E = (\beta + 1)I_B = 201 \cdot 24.3 \ \mu A = 4.9 \ m A$$

□ Next, use currents to determine terminal voltages

$$V_B = V_{BB} - I_B R_B = 4.1 V - 24.3 \mu A \cdot 3.38 k\Omega = 4.02 V$$
$$V_C = V_{CC} - I_C R_C = 12 V - 4.9 m A \cdot 820 \Omega = 7.98 V$$
$$V_E = I_E R_E = 4.9 m A \cdot 680 \Omega = 3.33 V$$

K. Webb

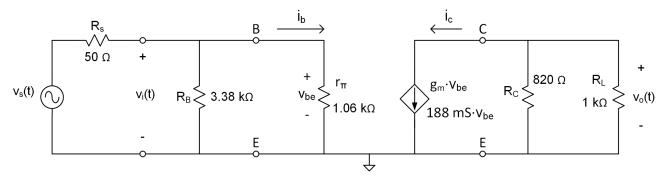

C-E Amplifier – Large-Signal Analysis

□ The complete DC operating point:

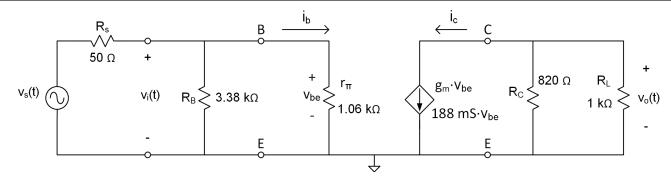
$I = 2A 2 \mu A$	$V_{R} = 4.02 V$
$I_B = 24.3 \mu A$	D
$I_{C} = 4.9 \ mA$	$V_{C} = 7.98 V$
$I_E = 4.9 \ mA$	$V_E = 3.33 V$

 Use the operating point to determine small-signal model parameters

$$g_m = \frac{I_C}{V_{th}} = \frac{4.9 \ mA}{26 \ mV} = 188 \ mS$$
$$r_\pi = \frac{\beta}{g_m} = 200 \cdot \frac{V_{th}}{I_C} = 1.06 \ k\Omega$$
$$r_e = \frac{r_\pi}{\beta + 1} = 5.28 \ \Omega$$



- 22
- The DC operating point allowed us to determine the small-signal model for the transistor
- Next, create the *small-signal equivalent circuit* for the amplifier and perform a *small-signal analysis*


Small signal analysis:

- 1. Replace all AC coupling capacitors with shorts
 - Large enough to look like shorts at signal frequencies
- 2. Connect all DC supply voltages to ground
 - From a small-signal perspective these are all constant voltages
 - Small-signal ground
- 3. Replace the transistor with its small-signal model

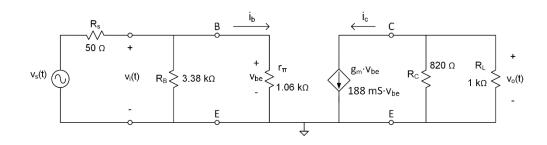
- 23
- Small-signal equivalent circuit
 - Use to determine small-signal voltage gain

- Emitter connected to ground
 Emitter capacitor, C_E, is a small-signal short
- \square R_B is in parallel with r_{π} , and both connect to ground
- \square R_C is in parallel with R_L , and both connect to ground
- □ Input voltage, $v_i(t)$, appears across r_{π} and is the same as v_{be}
- The transistor is a *transconductance* device
 Input voltage, v_{be}, creates output current, i_c

Determine the small-signal voltage gain:

$$A_{v} = \frac{v_{o}}{v_{i}} \tag{1}$$

□ The input is applied across the B-E junction, so


$$v_{be} = v_i \tag{2}$$

The output is the collector current applied across the output resistance

$$v_o = -i_c R_o = -g_m v_{be} R_o \tag{3}$$

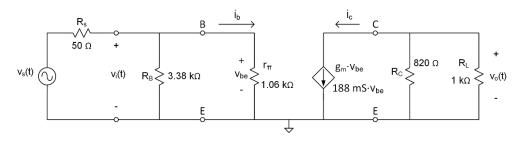
where R_o is the total resistance seen by the collector:

$$R_o = R_C ||R_L = \frac{R_C R_L}{R_C + R_L} \tag{4}$$

□ Substituting (4) and (2) into (3), we have

$$v_o = -g_m v_i R_o = -v_i \cdot g_m(R_C ||R_L)$$
(5)

□ The amplifier gain:

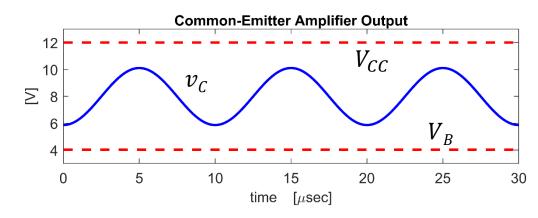

$$A_{v} = \frac{v_{o}}{v_{i}} = -g_{m}(R_{C}||R_{L}) = -g_{m}R_{o}$$
(6)

□ This is the gain for *any* common-emitter amplifier

$$A_{v} = -g_{m}R_{o}$$

□ The negative sign indicates that the amplifier has *inverting* gain

25

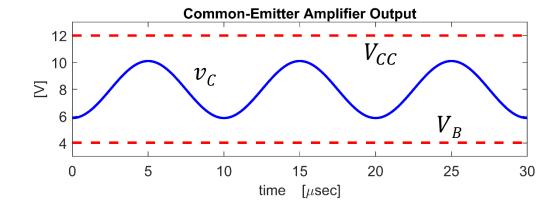

□ For this circuit, the output resistance is

$$R_o = R_C ||R_L = 820 \ \Omega ||1 \ \mathrm{k}\Omega = 451 \ \Omega$$

□ The gain is

$$A_v = -188 \ mS \cdot 451 \ \Omega = -84.7$$

□ The output for a 50 mV_{pp} , 100 kHz input:



26

C-E Amplifier – Dynamic Range

Dynamic range

- Range of input or output signal for which the transistor remains in the *forward-active region*
- The amplifier's *linear* range

For forward-active bias:

B-C junction must remain reverse biased

 $v_{BC} < 0$

Total collector voltage must remain above the base voltage

$$v_C > v_B$$

Collector cannot enter the cutoff region

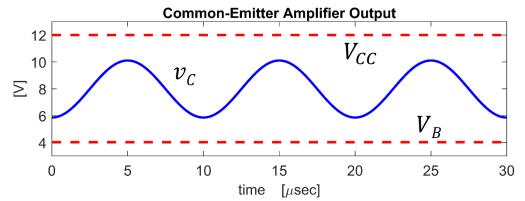
$$I_C > 0, \ v_C < V_{CC}$$

C-E Amplifier – Dynamic Range

- Optimal collector bias
 - DC collector voltage halfway between the base voltage and supply

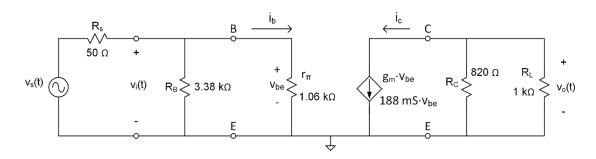
$$V_C = \frac{(V_{CC} + V_B)}{2}$$

- Output can swing positive and negative equal amounts
- Then, the output dynamic range is


$$v_{o_{pp}} < (V_{CC} - V_B)$$

□ The input is smaller than the output by the gain factor, so

$$v_{i_{pp}} < \frac{(V_{CC} - V_B)}{A_v}$$


Here,

$$v_{o_{pp}} < 8 V$$
 and $v_{i_{pp}} < 94.5 mV$

28

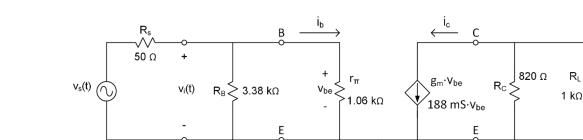
C-E Amplifier – Gain from $v_s(t)$

□ If, instead, we want gain from other side of source resistance, v_s to v_o , we must account for source loading

\Box Cascade of gain from v_s to v_i with gain from v_i to v_o

$$A_{v} = \frac{v_{o}}{v_{s}} = \frac{v_{i}}{v_{s}} \cdot \frac{v_{o}}{v_{i}}$$

 \Box Voltage division from v_s to v_i


$$\frac{v_i}{v_s} = \frac{R_B || r_\pi}{R_s + R_B || r_\pi} = \frac{R_i}{R_s + R_i}$$

Overall gain is now

$$A_{\nu} = -\frac{R_i}{R_s + R_i} g_m R_o$$

29

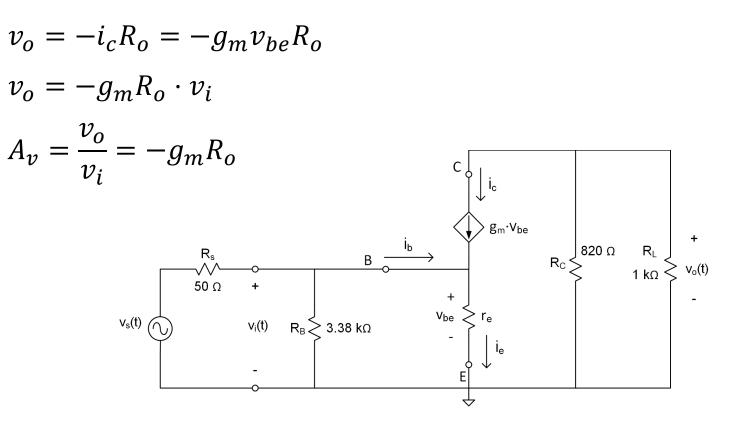
C-E Amplifier – Input Resistance

Input resistance is an important property of any amplifier
 For the C-E amplifier,

+

$$R_{i} = R_{B} || r_{\pi}$$
$$R_{i} = R_{B} || \frac{\beta}{g_{m}}$$
$$R_{i} = R_{B} || \frac{\beta V_{th}}{I_{C}}$$

Dependent on β and I_C


K. Webb

30

v_o(t)

C-E Amplifier – Analysis with T-Model

- 31
- We used the hybrid-π model for small-signal analysis
 Could also use the T-model
- Result is the same:

C-E Amplifier – Gain

$$A_v = -g_m R_o$$

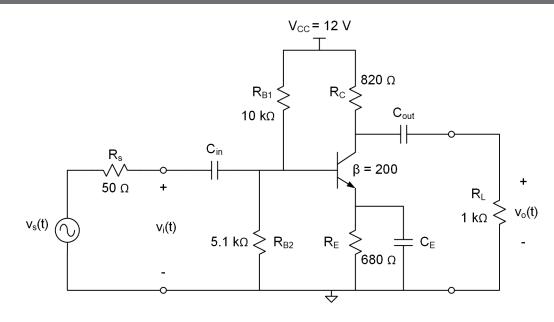
${}_{\Box}$ C-E gain is **determined by {m g}_{m} and {m R}_{o}**

• Select R_o (R_c) for desired gain

Transconductance is proportional to bias current

$$g_m = \frac{I_C}{V_{th}}$$

Therefore, gain is proportional to bias current

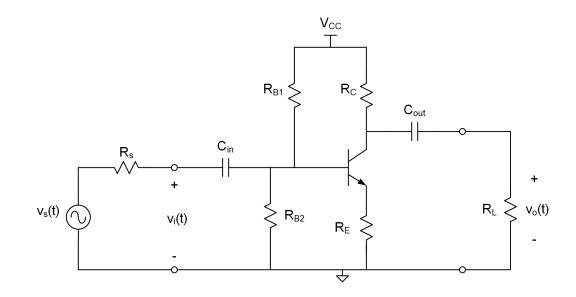

Transconductance is inversely proportional to temperature

$$g_m = \frac{I_C q}{kT}$$

Therefore, gain is inversely proportional to temperature

³³ Emitter Degeneration

C-E Amplifier – Emitter Degeneration


 The C-E amplifier we have looked at so far had its emitter grounded (small-signal ground)

D Due to bypass capacitor, C_E , around R_E

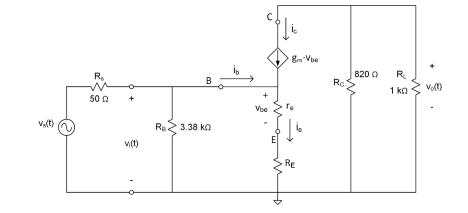
- □ What if we remove C_E ?
 - Or add another emitter resistor not by passed by C_E
 - Emitter degeneration

34

C-E Amplifier – Emitter Degeneration

- Now, R_E is included in the small signal equivalent circuit
 Emitter is no longer connected to small-signal ground
- Analysis will be simplified if we use the T-model
 Usually the case whenever we have emitter resistance
 R_E will be in series with r_e from the model

C-E Amplifier – Emitter Degeneration


36

□ The output is still given by

$$v_o = -i_C R_o = -g_m v_{be} R_o$$

But, now, v_{be} is the portion of v_i that appears across r_e

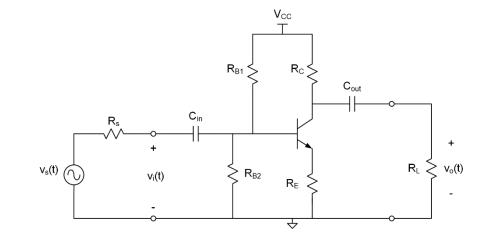
$$v_{be} = v_i \frac{r_e}{r_e + R_E}$$

$$v_{be} = v_i \frac{\frac{\alpha}{g_m}}{\frac{\alpha}{g_m} + R_E} = v_i \frac{\alpha}{\alpha + g_m R_E}$$

□ The output is

$$v_o = v_i \left(-g_m R_o \frac{\alpha}{\alpha + g_m R_E} \right)$$

Emitter Degeneration – Gain


37

 Rearranging the expression for the output gives the gain

$$A_{\nu} = -g_m R_o \frac{\alpha}{\alpha + g_m R_E}$$

□ Recognizing that $\alpha \approx 1$, we can simplify

$$A_{v} \approx -\frac{g_m R_o}{1 + g_m R_E}$$

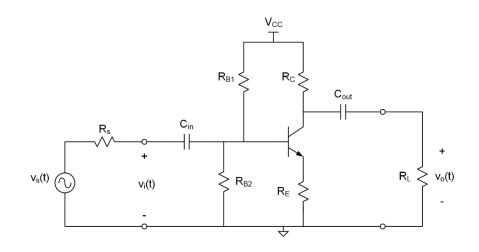
- \Box Emitter degeneration reduces the gain by a factor of $(1 + g_m R_E)$
- $\Box \quad \text{If } R_E \gg r_e \text{, then } g_m R_E \gg 1 \text{, and}$

$$A_{\nu} \approx -\frac{R_o}{R_E}$$

Emitter Degeneration – Transconductance

38

$$A_{v} \approx -\frac{g_{m}R_{o}}{1+g_{m}R_{E}}$$


We can rewrite the gain as

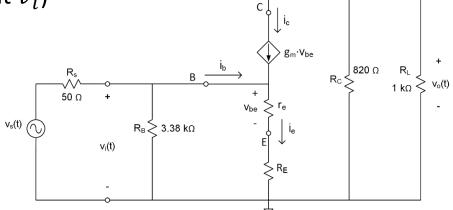
$$A_{v} = -G_{m}R_{o}$$

G_m is the effective transconductance of the amplifier

$$G_m = \frac{g_m}{1 + g_m R_E}$$

- **Emitter degeneration reduces the transconductance by a** factor of $(1 + g_m R_E)$
 - This is why we see a reduction in gain by the same factor

Emitter Degeneration – Input Resistance


39

□ By definition, the input resistance (at v_i) is given by

$$R_i = \frac{v_i}{i_h}$$

 Base current is related to emitter current

$$i_b = \frac{i_e}{\beta + 1}$$

Emitter current is

$$k_e = v_i / (r_e + R_E)$$

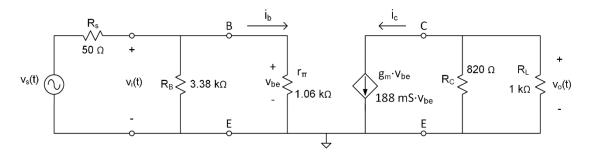
Substituting into the previous expressions gives

$$R_i = \frac{v_i}{i_b} = \frac{v_i}{\frac{v_i}{(\beta + 1)(r_e + R_E)}}$$
$$R_i = (\beta + 1)(r_e + R_E)$$

Resistance Reflection Rule

$$R_i = (\beta + 1)(r_e + R_E)$$

Resistance reflection rule:

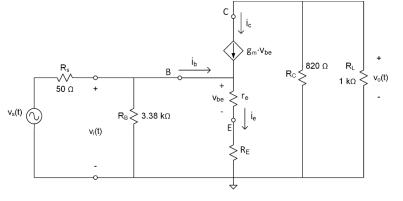

The resistance seen looking into the base is $(\beta + 1)$ times the total resistance at the emitter

□ Equally applicable when $R_E = 0$:

$$R_i = (\beta + 1)r_e = r_\pi$$

Base input resistance, r_{π} , is the reflected emitter resistance

$$r_{\pi} = (\beta + 1)r_e$$


K. Webb

40

Emitter Degeneration – Negative Feedback

41

- Without emitter degeneration, any increase in v_i appears as v_{be}
- □ Think through what happens when v_i increases with emitter degeneration:
 - v_{be} does increase
 - **\Box** i_c and i_e increase

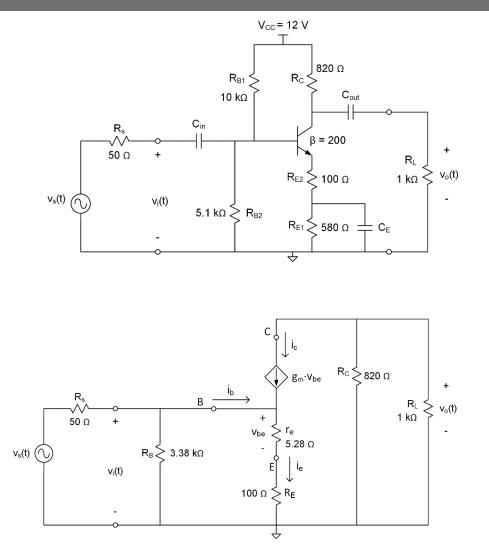
- Voltage drop across R_E increases, driving v_e up
- Increasing v_e reduces the amount of the v_i increase that appears as v_{be}
- This is *negative feedback*
 - **\square** Increasing output, i_c or i_e , subtracted from the input:

$$v_{be} = v_i - i_e R_E$$

- Similar to negative feedback in opamp circuits
 - Feedback reduces gain
 - In the limit, gain is set by a resistor ratio

Emitter Degeneration – Example

42


- Determine the gain of the C-E amplifier with emitter degeneration
 - DC circuit is the same as before, but now only part of R_E is bypassed

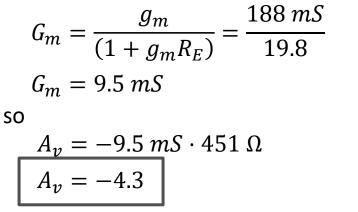
DC operating point unchanged:

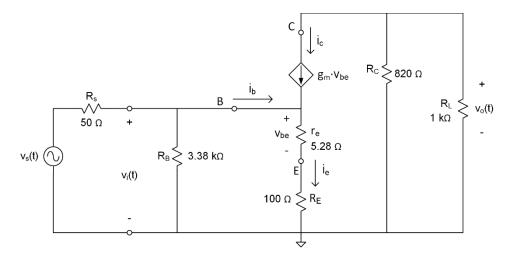
$I_B = 24.3 \ \mu A$	$V_B = 4.02 V$
$I_{C} = 4.9 mA$	$V_{C} = 7.98 V$
$I_E = 4. mA$	$V_E = 3.33 V$

Small-signal model parameters unchanged:

$$g_m = 188 mS$$

 $r_\pi = 1.06 k\Omega$
 $r_e = 5.28 \Omega$


Emitter Degeneration – Example


43

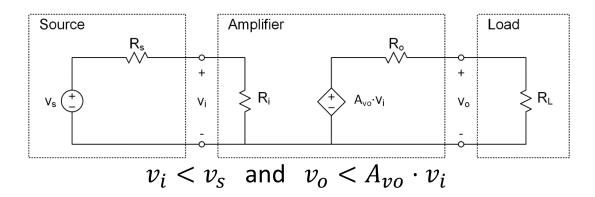
Gain is given by

$$A_{v} = -G_{m}R_{c}$$

where

Note the reduction in gain due to the emitter degeneration

$$A_{\nu} = -\frac{g_m R_o}{(1 + g_m R_E)} = -\frac{84.7}{19.8} = -4.3$$


Also note that we can roughly approximate the gain as

$$A_v \approx -\frac{R_o}{R_E} = -\frac{451 \ \Omega}{100 \ \Omega} = -4.5$$

44 Emitter Follower

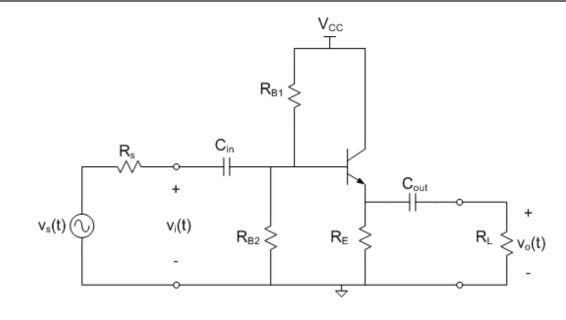
Buffering

In previous classes, you have learned about *loading effects* Signal attenuation between output/input resistances of cascaded stages

- Inter-stage *buffers* can reduce attenuation due to loading
 High input resistance, low output resistance
 Unity gain
- We can use BJTs as buffers
 Emitter follower

Emitter-Follower

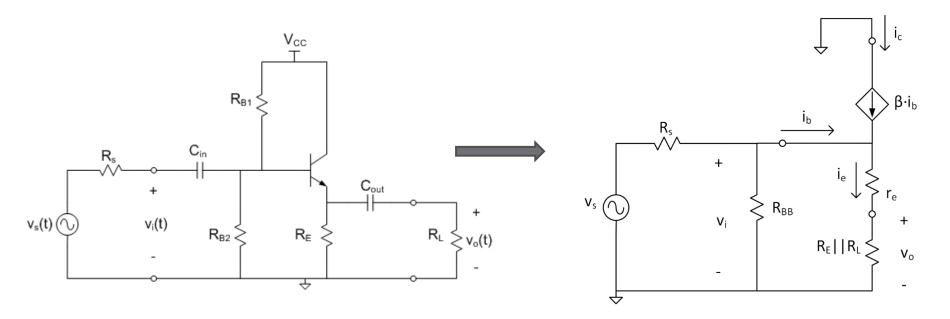
Emitter-follower amplifier


- Input applied to the base
- Output at the emitter
- Emitter follows the base

Also called a *common-collector* amplifier (CC)

Collector is connected to small-signal ground

Emitter-Follower


- Similar to opamp unity-gain buffer
 - Near-unity gain
 - **\square** High R_i , low R_o
 - Buffers source impedance
 - Reduces attenuation due to loading

- We will now analyze the emitter-follower
 - Large-signal analysis is the same as for the CE amplifier
 - Perform a small-signal analysis to determine voltage gain

Emitter Follower – Small-Signal Analysis

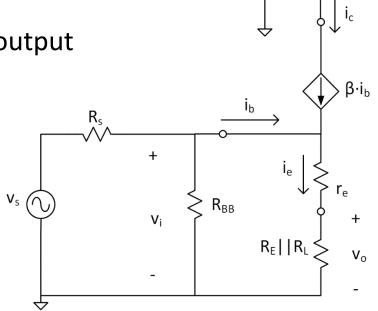
- Replace the BJT with small-signal model
 - Emitter resistance, so use T-model
 - Short coupling caps
 - DC voltages connect to ground
 - Simplify parallel resistances

Emitter Follower – Small-Signal Analysis

49

First, determine gain from v_i to v_o

$$A_{v} = \frac{v_{o}}{v_{i}}$$


Applying voltage division gives the output

$$v_o = v_i \frac{R_E ||R_L}{(R_E ||R_L + r_e)}$$

Rearrange to get the gain

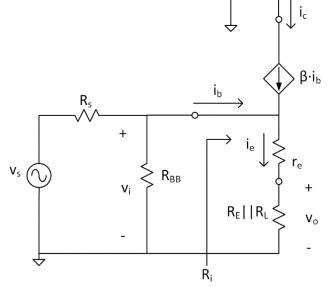
$$A_{v} = \frac{R_E ||R_L}{(R_E ||R_L + r_e)}$$

■ Clearly,
$$A_v < 1$$

■ But, for $R_E ||R_L \gg r_e$, $A_v \approx 1$

Emitter Follower – Input Resistance

- 50
- The emitter follower's input resistance is defined as


 $R_i = \frac{v_i}{i_b}$

where

$$i_b = \frac{i_e}{\beta + 1} = \frac{v_i}{(\beta + 1)(r_e + R_E ||R_L)}$$

The input resistance is

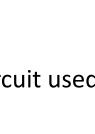
$$R_i = (\beta + 1)(r_e + R_E || R_L)$$

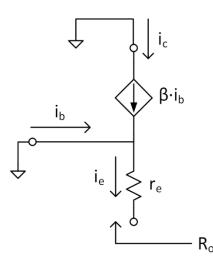
- $(\beta + 1)$ times larger than the total resistance at the emitter
 - The *reflected* emitter resistance
- Typically a very large input resistance, as we would expect from a circuit used as a buffer
- Note that this is the resistance *at the base*
 - In parallel with R_{BB}

Emitter Follower – Output Resistance

- 51
- To determine output resistance, set the input to zero
 - First, consider the case where the input is applied directly to the base (i.e., $R_s = 0$)
 - Set v_i to zero ground the base
- \Box For now, ignore R_E

\square In parallel with what we will calculate as R_o


 \Box The output resistance is simply r_e


$$R_o = r_e$$

 \Box Recall the expression for r_e

$$r_e = \frac{V_{th}}{I_E} = \frac{\alpha}{g_m} \approx \frac{1}{g_m}$$

Typically a *small resistance*, as expected from a circuit used as a buffer
 Increasing bias current decreases r_e and R_o

Emitter Follower – Output Resistance

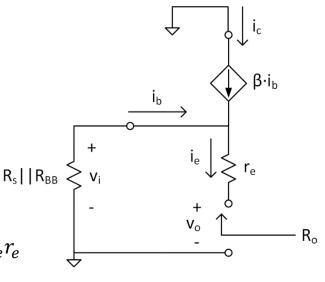
52

- □ Next, determine R_o for non-zero source resistance, $R_s \neq 0$
 - Set v_s to zero ground the source
- By definition

$$R_o = -\frac{v_o}{i_e}$$

Emitter current is

$$i_e = (\beta + 1)i_b$$


■ KVL around the B-E loop

$$v_o = -i_b(R_s||R_{BB}) - i_e r_e = -\frac{i_e}{\beta + 1}(R_s||R_{BB}) - i_e r_e$$

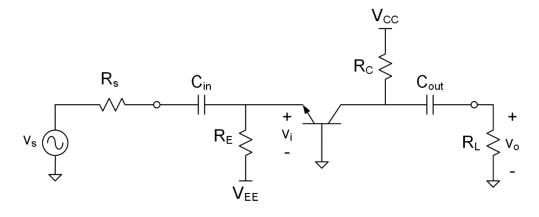
$$v_o = -i_e \left(\frac{(R_s || R_{BB})}{\beta + 1} + r_e \right)$$

■ *R*_o now includes all resistance at the base, *reflected* to the emitter:

$$R_o = \frac{(R_s||R_{BB})}{\beta + 1} + r_e = \frac{(R_s||R_{BB})}{\beta + 1} + \frac{r_{\pi}}{\beta + 1}$$

Resistance Reflection Rule

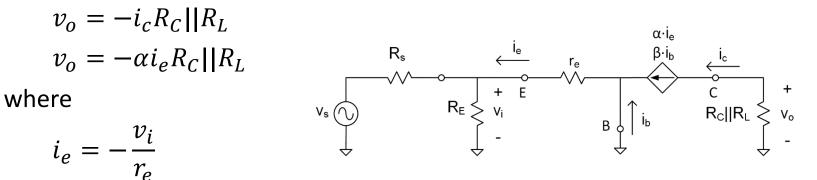
- 53
- The input and output resistance of the emitter follower illustrate two versions of the *resistance reflection rule*
- Version 1:
 - **\square** Resistance seen at the base is the total resistance at the emitter increased by a factor of $(\beta + 1)$


$$R_b = (\beta + 1)(r_e + R_E)$$

- Version 2:
 - **\square** Resistance seen at the emitter is the total resistance at the base reduced by a factor of $(\beta + 1)$

$$R_e = \frac{(r_\pi + R_B)}{(\beta + 1)}$$

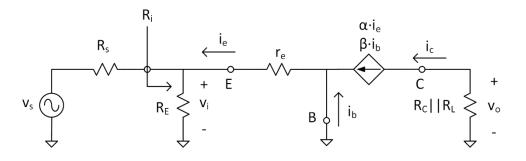
⁵⁴ Common-Base Amplifier


Common-Base Amplifier

- The third BJT amplifier configuration we will look at is the common-base amplifier
 - Input applied to the emitter
 - Output taken from the collector
 - Base is connected to small-signal ground
 - By far the least common of the three amplifiers

Common-Base Amplifier – Gain

- 56
- There is emitter resistance, so use the T-model for smallsignal analysis
- The output is given by


SO

$$v_o = v_i \frac{\alpha}{r_e} R_C ||R_L = v_i g_m R_C ||R_L$$

Common-base voltage gain is

$$A_{v} = g_{m}R_{C}||R_{L}|$$

Common-Base – Input Resistance

R_i is the parallel combination of the resistance connected to the emitter and the resistance looking into the emitter


$$R_i = R_E ||r_e = R_E ||\frac{\alpha}{g_m}$$

 \Box Note that typically, r_e is quite small, so

$$R_i \approx r_e \approx \frac{1}{g_m}$$

57

Common-Base – Output Resistance

If we neglect the transistor's output resistance, r_o, the common-base output resistance is

$$R_o = R_C$$

Entirely determined by the collector resistor

Common-Base Amplifier

59

Low input resistance

$$R_i = r_e \approx \frac{1}{g_m}$$

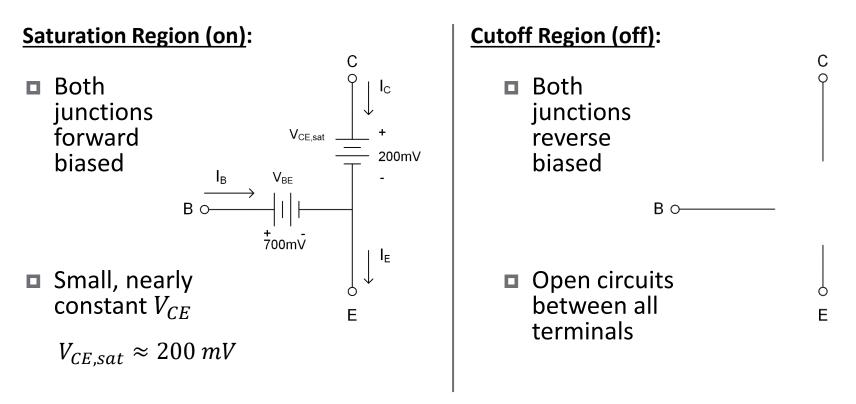
• For $R_s \gg r_e$, there will be significant attenuation from v_s to v_i

 $v_i \ll v_s$

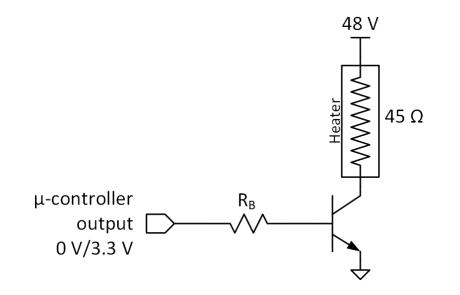
\square The overall gain from v_s to v_o may be small

Typically only useful in certain applications:

- Low source resistance
 - E.g., amplifiers driven by cables
 - **R**_i matched to Z_0 (e.g. 50 Ω or 75 Ω) to avoid reflections
- Current buffers
 - E.g., in *cascode* amplifiers

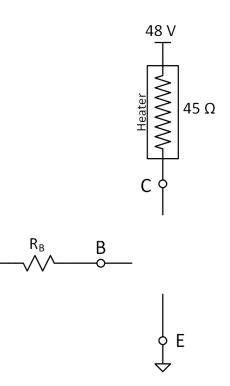


Transistors as Switches


- Our focus in this course is the use of transistors for designing *linear amplifiers*
 - Output is a scaled version of the input
- Transistors can be used also be used as *nonlinear switches*
 - Either on or off (closed or open)
 - Fundamental building block of *digital integrated circuits*
 - Microprocessors have *billions* of transistors (MOSFETS) used as switches
 - Useful for switching large amounts of current, e.g.,
 - Controlling a mechanical device (e.g., pump, heater, motor) with a microcontroller
 - Power inverters

Saturation/Cutoff Region Models

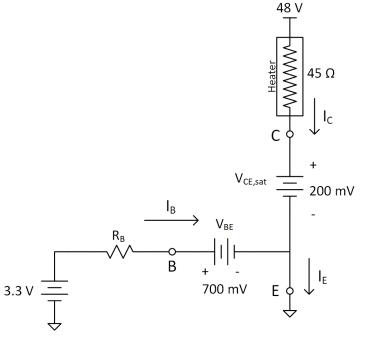
- Transistors used as *amplifiers* must stay in the *forward active* region
- Transistors used as *switches* operate alternately in the *saturation* (closed) and *cutoff* (open) regions
- Equivalent circuit models:


- Let's say we want to turn resistance heater on and off using a microcontroller
 - Heater may require amperes of current
 - Microcontroller output may be limited to tens of mA
- Control a BJT switch with the microcontroller output
 - Low-current control signal from the microcontroller
 - Base resistor limits output current
 - BJT switches the large current required by the heater

When the μ-controller's output is low (0 V)

$$\Box V_{BE} = 0 V$$

- Transistor is in the cutoff region
- Switch is off
- No current flows
- The heater is off



- □ When the μ -controller's output is high (3.3 V)
 - $\square V_{BE} \approx 700 mV$
 - $\square V_{CE} = V_{CE,sat} \approx 200 \ mV$
 - Transistor is saturated
 - Switch and heater are on
- Collector/heater current:

$$I_C = \frac{48 \, V - 200 \, mV}{45 \, \Omega} = 1.1 \, A$$

□ Heater power:

$$P_h = I_C^2 \cdot R_h$$
$$P_h = (1.1 A)^2 \cdot 45 \Omega$$
$$P_h = 50.8 W$$

- 66
- Microcontroller output current (base current) :

$$I_B = \frac{3.3 V - V_{BE}}{R_B}$$

■ Select R_B to limit base current ■ Let's say $I_{B,max} = 20 \ mA$ $R_B \ge \frac{3.3 \ V - 700 \ mV}{I_{B,max}} = \frac{2.6 \ V}{20 \ mA}$ $R_B \ge 130 \ \Omega$

□ Typically choose R_B to keep I_B well below $I_{B,max}$

48 V

 \sim

 $V_{CE,sat}$

 V_{BE}

700 mV

45 Ω

200 mV