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MOSFETSs

We now turn our attention to another type of transistor, the
MOSFET:

o Metal Oxide Semiconductor Field Effect Transistor

Many similarities to the BJT:
o Three terminals

o Voltage at one terminal controls current between the other two
A transconductance device

o Two polarities: N-channel and P-channel MOSFETS
Our focus will primarily be N-channel MOSFETs (NMOS devices)

N-Channel _ P-Channel
(NMOS): Drain (PMOS):

-

Source
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MOSFETSs

MOSFETs are actually four-terminal devices
o Fourth terminal is the body, substrate, or bulk

The body is often tied to the source, and we can mostly
ignore it
o Discrete devices

Other times we must account for the body potential effect
on device behavior

o Often the case in integrated circuits

NMOS: PMOS:
D S
] |
6 — le— Body G ~{ > B
(Substrate)
] ]
S D
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Physical Structure - NMOS

Source
region

p-type substrate
(Body)
Channel
region

Drain region

P-type substrate
N+ source and drain

Source (S) Gate (G) Drain (D)

Oxide (Si02) Metal
(thickness = t,,,) /

Channel +
region
| - .
p-type substrate
(Body)

I Sedra/Smith

Body
(B)

Metal gate electrode, and source/drain/body contacts
Thin oxide insulates the gate from the rest of the device
Region of substrate between the drain and source is the channel

o Channel dimensions: W and L

o We'll see later why this is called an n-channel (NMOS) device
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Terminal Voltages and Currents

Terminal voltages and currents named

as shown
o Again, lower-case v/i and upper-case .
subscript represents total (AC and DC) 'p
voltage and current D
For an NMOS device in typical \ +
operation: -0
=
Vgs >0 _>_ Vis
G
Vps = 0
DS < _
Gate oxide does not allow current to L | _
flow, so &y S l's
lg = 0 N
and
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MOSFET Operating Regions

Three MOSFET operating regions:
o Cut-off

o Triode

O Saturation

A MOSFET’s operating region is determined by its
terminal voltages

Next, we will look in detail at each of these three
regions, along with their i — v characteristics
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- Cut-Off Region



Cut-Off Region

Gate and source both

grounded ﬂ

Drain-to-source pathway looks e
like two back-to-back diodes substrate

o Very high drain-source
resistance (rpg = 00)

Even for vps > 0, no current S D
will flow
. e ]
lp = 0 N p N

Looks like an open switch
o Similar to BJT cut-off operation
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n Triode Region
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Triode Region — Inversion

N-type channel

P-type substrate

Now, v is increased, while v is kept small

o Electric field established across gate oxide

o Holes in p-type substrate repelled deeper into substrate

o Electrons from drain and source attracted to region below the gate

For large enough v, p-type material below the gate is inverted to n-type
o Aninversion layer

0 Induced n-type channel connects drain to source

o Now, current can flow in response to vy, ip > 0

K. Webb ECE 322



Threshold Voltage

N-type channel

P-type substrate

Channel is induced once Vs exceeds a certain voltage:
o The threshold voltage

Vgs 2 Vi

O A device parameter
o Typically, V., =300mV ...1V

As Vs increases beyond V;, the induced channel gets deeper
As long as vpg is small (vpg < V), channel depth is uniform
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Overdrive Voltage

N-type channel

P-type substrate

A channel is induced once v exceeds the threshold voltage

Vs in excess of the threshold voltage is called the overdrive voltage
or effective voltage:

Voy = Vgs — V¢

As we will soon see, vy plays an important role in determining
device behavior
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Triode Region

N-type channel

P-type substrate

As v increases:

o Voltage varies along the channel

Vs near the source, vy near the drain
o Gate-to-channel voltage decreases closer to the drain
o Channel depth decreases closer to the drain

Channel is tapered

More current flows with increasing vy, but channel
resistance increases as channel becomes more tapered
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Triode Region - i-v Relationship
-

Drain current in the triode region:

, WA T 1
ip = UpCox (T) (vgs — Vi) — EUDS] Ups

, W\ T 1
ip = UpCox (T) Vov — P vDS] Ups

where:
U, : electron mobility
C,,: oxide capacitance
W' channel width
L: channel length

We can also express the drain current as

, (W 1 (W 1,
ip =kn (T) [VOV — EUDS] Ups = kn (T) [VOVVDS - EUDS]

where:

k;, = u,C, is the process transconductance parameter
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Triode Region - i-v Relationship
-

Triode region: S ——
vGS>Vt

Ups < Voy

o Nearly a linear resistance

o Resistance linearly
proportional to v,y

1
I'ps = . W
n7 VYov

As vpg increases

o Channel taper increases
O 7pg increases

O ip-VUps Slope decreases
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Saturation Region
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Device Operation — Channel Pinch-Off

P-type substrate

Eventually, for large enough vy

O Gate-to-channel voltage near the drain no longer exceeds V;
o Channel pinch-off occurs

o Channel disappears at the edge of the drain

Pinch-off occurs when:
Vep = Vi = Vgs — Ups

Vps = Vgs — V¢

Ups = Doy
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Saturation Region

Once channel pinch-off
OCCurs:

o Voltage at the drain-end of
the channel remains vy,
even as Vpg increases

o Any increase in vps beyond
Voy IS dropped across the
depletion region surrounding
the drain

O Voltage across the length of the channel is fixed at vy

o Pinched-off channel shape does not change with vp¢

o Drain current saturates at a constant value for constant v,
o Analogous to the forward-active region for BJTs

P-type substrate
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Saturation - i-v Relationship
-

Drain current in the saturation region still given by

, (W 1 5
ip = kn (T) [VOVVDS — EUDS]

But now, the voltage from the drain-end to source-end of
the channel is v,y

Replacing vps with vyy, the drain current relationship
becomes

ip = lkvlz (y) VSV = lk;z (K) (Vgs — Vt)z
2 L 2 L

o Purely a function of v (or vy )
O Independent of vy
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Input |-V Characteristic

In saturation, drain current
has a quadratic dependence

on vgs (Voy)

GS
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Output |-V Characteristic

K. Webb

Triode
Region

/

VGs4 = Vas3

/5!

p Saturation Region >
] -
/
/
/ 4
/ Ves3 > Ves2
b -
/ RS
I
I
I & 4
= Vas2 = Vas1
Vest > Vi

VGS:S\A
|
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NMOS Operating Regions — Summary
e

Cutoff: liD
(m] Vgs < Vt \\(90 DI
| +
(m ] iD = O +
G_ Vbs
Triode: +

O Vgs > Vt %‘\9 Sl

(| vDS < vOV or vGD > Vt
w 1 2 . k W 1 2
o ip= .UnCox VovVps =5 Vbps) = Kn VovVps — 5 VUps

Saturation:

O vas>Vt

(m] vDS > vOV or vGD < Vt

O iD = k, W(UGS th) — kn L OV
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P-Channel MOSFETs

Voltage polarities and doping types reversed relative to NMOS
N-type substrate

P* drain and source

Negative threshold voltage: V;,, <0

Negative overdrive voltage: voy = vgs — Vi <0

Channel induced for vgs < V4,

O
O
O
O
O
o Substrate connected to source or most positive circuit voltage

N-type
substrate
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PMQOS — Operating Regions
-

CutOff: /
O vgs > Vip @& 2
¢ —

() iD = O X

Vbs
Triode: G

+
O Vs < thr lvgs| > |th| |

D

O vps > voy, |vpsl <|voyl
o ip= .UpCox (UOVUDS VDS) = kp 7 (vOVvDS - EUDS)

Saturation:

0 ves < Vip, |vgs| > |th|
o vps < Voy, |vpsl > |voyl
k’ v

o ip = (VGS th) = kp . vy
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CMOS

Complementary MOS or CMOS
o Both NMOS and PMOS fabricated on the same chip

P-type substrate
PMOS devices fabricated in n wells
Most modern MOS chips are fabricated using CMOS technology

Gate
i Polysilicon

\ y

SiO,

n well body

p-type body
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- Large-Signal MOSFET Model
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Equivalent Circuit Models

-~
As was the case for BJTs, we use two types of
equivalent-circuit models for MOSFETSs:

Large-signal model
o Models the transistor’s behavior to DC signals
o Used to determine the transistor’s DC operating point

Small-signal model
o Models the behavior in response to small sighals

o Describes the response to the AC signals to be
amplified

O Properties of the small-signal model determined by the
DC operating point
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Large-Sighal Model — Saturation
-

Large-signal behavior in the saturation region is modeled by the
following circuit:

O O O
+
Vgs -k (f) (vgs — Vi)?
S S
O O

Replace the transistor with the appropriate model to determine the
DC operating point (Q-point)

Saturation-region bias assumed

o If incorrect, model will say otherwise

Because i; = 0, we generally do not need to explicitly use the
equivalent circuit model for large-signal analysis for MOSFETs

o Often just use the I-V model
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DC Operating Point — Example 1

Determine I and Vp for Voo 233V em?
he following circuit tn =07
the 1o g RD21.8 kQ 7
o Is the device operating in v Cox= 3-8#
the saturation region? 'Dl —°
V: =500 mV
50 pm
i[ 0.5 pm L=0.5um
The process 800 mv = I W = 50 um
transconductance
parameter:
, _,m?* 38x107'°F uA
kn = pnCox = 500 X 1074 — - —— = = 1905

Use the saturation region large-signal model

o I-V model, not necessarily the equivalent-circuit model

o Analysis will indicate if saturation assumption is incorrect
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DC Operating Point — Example 1
e

Drain current in saturation: Voo =33V
1 w
Ip =S ki () (s = Vo)? 2 ek

1 A (50 um
Ip==-1 : - 2
D=7 90 72 <0.5 p ) (800 mV — 500 mV)

I, = 855 uA 800 my —

Voltage at the drain:
Vp =Vpp —IpRp

Vp, = 3.3V — 855 ud - 1.8 kQ

The device is operating in the saturation region
o The drain-to-source voltage exceeds the overdrive voltage

VDS = VD =176V > VOV = VGS_Vt = 300 mV
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DC Operating Point — Example 2

For the same circuit, determine

VGS for VD =1V Vop =33V _ c00 cm?
o Is the device still operating in the Ro 9. 18K e =200y
saturation region? ° 27 F
IJ/ Vp=1V C0x=3.8m
_ D o
ForVp, =1V o V, = 500 my
[ Voo =Vo _33V-1V — 1l %S im L o5um
R, 1.8 kQ) Ves — il W = 50 um
Ip = £3V 1.28 mA v
DT1gka °™
Assuming saturation-region operation
1 w 1 A (50 um
— / 2 _ 2 _
Iy = Ek" (T) Voy = > 190 i (O.S .le> -Voy = 1.28 mA

Solving for the overdrive voltage

VOV = 367 mV
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DC Operating Point — Example 2
.
The required gate-to-source voltage is

VDD =_§.3 vV

VGS - Vt T VOV RD%'].B kQ

Ves = 500 mV + 367 mV of [emy

Ves = 867 mV ——[ o5
VGSE

The drain-to-source voltage exceeds
the overdrive voltage

o The transistor is operating in the
saturation region

VDS =1V > VOV = 367 mV
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DC Operating Point — Example 3

Find Rp and R; for

VDD=1V
= o
Ip = 200 pA and Vp = 200 mV s fn = 400 77
. . V., =500 mV
First, determine R, | "
L=05um
o Voo =Vp _ 1V —200my ﬁ 5
= = Ww=1
D I, 200 pA : .
R, = 4 kQ
Vss=—1V
Drain current in saturation is given by
1 Wy, 2Ip L
Io =5k () Yoy = Vor = (575
= 182.6 mV

_|2-200 pA 0.5um
OV 1400 uA/V215 um
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DC Operating Point — Example 3

-
The gate-to-source voltage is

Vop = 1V

VGS = Vt + VOV =500 mV + 182.6 mV RD%

VGS = 683 ml/ IDJ/ _XD
The gate is grounded, so the source ﬁ
voltage is Re

VS = VG — VGS = —683mV

Vss=-1V

The source resistance is given by

VS — VSS _ —683 mV — (—1 V)
Iy 200 uA

RS=

Rg = 1.59 kQ
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DC Operating Point — Example 4

Find Ip and Ry for I/ = 100 mV

(W mA
o What is the drain-to-source kn(L) =297
' ? Vop=2V

resistance, 1pg” 00 = V. = 500my
The device is in the triode region: Ro %

V0V=VGS—Vt=2V—500mV=15V IJ/ Vp=100 mV

D o)
LQ)S =100mV < bQ)V

Drain current in triode is given by

W 1 Y
Ip = ky (T) Vov — EVDS Vbs

Ip = 2 (1 5V —-50mV)100 mV

Ip =290 pA

K. Webb
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DC Operating Point — Example 4
e

The required drain resistance:

Vpop =V, 19V Vop=2V
DD D DD—l-

R = —
b Ip 290 uA

Ry, = 6.55 kQ

Vp =100 mV
IDl

The drain-to-source resistance in the triode

region is given by: 4{

o
ey,
_ 1
rDS_Z?}—;ll.SV
rps = 333 Q
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DC Operating Point — Example 5
-

Find Ip, V¢, Vp, and Vs for the Voo;wv

following circuit
an 6 kQ
.. 2 10 MQ
The gate voltage is simply set by the " (W) _ mA
voltage divider | n\L)” " vE
v — 10y LOMO . Vi=1v
G~ 10 MQ + 10 MQ < 10M0 S ko
VG —_ 5 V Tz

Assuming operation in the saturation region, drain current is
1 (W 1 (W
Ip = Ek" (T) (Vs — Vt)z = ikn (T) (Vg — IpRs — Vt)z

mA 5
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DC Operating Point — Example 5

Ip = 05 (4V—ID 6 k)2 Voo Z 10V
This is a quadratic equation for I 2 10m0 o2 sk
Ip =18E315— 241, +8E —3 |[

Two possible solutions:

I, =889 uA or I =500 uA
For I = 889 uA
Vo =Vpp —IpRp =10V — 889 uA - 6 kL = 4.67V
V¢ =1Ip-Rs =889 uAd -6kl =533V
Ves =V; — Vs =-=333mlV
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DC Operating Point — Example 5

-~
For I, = 889 uA
O VGS <0
0 The transistor is in the cut-off region S womn R > 6ka

The valid solution to the quadratic equation

must be —|[

I, = 500 uA

The drain and source voltages are

VDZVDD_IDRD=10V_500HA6kQ

Vy =7V

Ve=3V
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Channel-Length Modulation
-

So far, our MOSFET model in the saturation region models drain
current as independent of vy

. 1 ! w 2
lp = Ek" (T) Doy

o Flat I-V characteristic in the saturation region
In reality, current increases as vpg increases

Vps

Increase in ip due to channel-length modulation
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Channel-Length Modulation

Justification for constant saturation current was:
o Channel shape does not change after pinch-off occurs

o Any additional vy is dropped across the depletion region
surrounding the drain

But, as vy increases, the drain depletion region increases,
and the channel length decreases

«—— 1D

Ve =
GS I (o] o E VDS
S G D I
—
n L-AL AL n
4 A

Depletion region
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Channel-Length Modulation
-

Drain current is inversely proportional to channel length

_ 1
o —
lp 7

So, as Vps increases, L decreases, and ip increases

o Non-zero slope in the saturation region of the ip-vps curve:
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Channel-Length Modulation

This effect is accounted for by the channel-length
modulation parameter, A

1w
lp = Eknf (vgs — Ve)*(1 + Avpg)

o Aisinversely proportional to channel length, L

o A related to the Early voltage: A = Vi
A
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Output Resistance

Slope of the ip-vps characteristic is the inverse of the
transistor’s output resistance

o Resistance seen looking into the drain

Constant saturation current implies infinite output
resistance

Saturation ]
- —_— G D
Region | o— 0o o
+
Vgs =k (T) (Vas - Vt)z
slope=0—>r,= ] S S
0 O
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Output Resistance
-

Output resistance given by

dip 17"
Y, =
° aUDS
o The inverse of the slope of the ip-vps characteristic
Channel-length modulation results in finite output resistance

T
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Output Resistance
-

Model the finite output resistance due to channel-length modulation
by adding a resistor to our large-signal model

G D
Oo———O O
+
1 ! w 2
vGS GD Ekn (T) (vgs — Vi) % ro
S - S
o, O

Output resistance given by

. 1-1 ~1
To = [ Ot ] = [ ? (1 W(vGS Ve?(1 + AUDS)>]

avDS 617DS 2 L

AW !
To = [_ kwlﬂaf(vas — Vt)zl

2
1,
AT
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The Body Effect

So far, we have largely ignored the connection to the
substrate

o Equivalently, we have assumed it to be tied to the source:

NMOS: PMOS:

] i
H H
<«— B <—! g

Seo De

This a valid assumption for discrete devices
o Not so for MOSFETs on integrated circuits (ICs)
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The Body Effect

For integrated circuits, the substrate is typically tied
to the most negative supply voltage for NMOS
devices

o PMOS n-wells tied to the most positive supply voltage

Substrate for a given device may well be biased
below its source voltage (above for PMQOS)

o This is the bias voltage for the channel region
ForV¢g > 0 (Vsp < 0 for PMOS), the threshold
voltage is effectively increased

o This is the body effect

K. Webb ECE 322
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MOSFETs as Switches
-0V
Our focus is on the use of MOSFETSs for linear
amplifiers in analog circuits
o Operation in the saturation region
MOSFETs are also useful as switches in digital
circuits

o0 Microprocessors contain billions of MOSFETs used as
switches on a single chip

When operating as a switch, MOSFETs alternate
between the triode (on, closed) and cutoff (off,
open) regions
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Triode/Cutoff Region Models

MOSFETs used as switches operate alternately in the triode (closed)

and cutoff (open) regions
Equivalent circuit models:

Triode Region (ON):

O Ve >V,

Ves = Vpp

o Switch is on
olp=0 5

0O Vps = Iprps < Voy

K. Webb

Cutoff Region (OFF):

O Ve < V4 D
Ves =0 I

o Switch is off l
O I[) - () 5

o Vps = Vpp

ECE 322



Inverters
X

The inverter is a fundamental building block of digital
logic circuits

Output is the inverse of the input

o When the input is a logic high (1/T) the output is low (0/F)
o When the input is low (0/F) the output is high (1/T)

1/T/Vop D 0/F/OV
0/F/0V D 1/T/Voo
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CMOS Inverter

CMOS inverters make use of
NMOS and PMOS devices
acting as switches

VDD
o Input applied to gate of each
device 4|

o Output taken from their drain V| o
terminals

o When one switch is on, the _| a

Vo

other is off

o Output connected to either
Vpp Or ground
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CMOS Inverter

Input is high:

oV =Vpp

a|Ves,| =0V <|v |
PMOS device is off

O VGSn = Vpp > th
NMOS device is on

aV,~0V

K. Webb

Vi=Vpp

\/0 =0V

'bs,n
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CMOS Inverter

Input is low:

VDD
O VI — O V
. ‘VGSP‘ = Vbp > ‘th‘ B oo
PMOS device is on Vi :%V Vo = Voo
I:IVGSn=OV<th -
NMOS device is off 47

oVo = Vpp
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- Small-Signal Models
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MOSFET Small-Signal Hybrid-r Model
-

Just as with BJTs, we use the large-signal model to determine
the MOSFET’s DC operating point

o DC terminal voltages and drain

ink
current
Need a small-signal model to Analmostlinear , gjope — g,
describes the MOSFETs f_/:/u_
response to small signals P . y \//\ o
. . . L -Si It fi
O To describe its behavior as an Cﬁ;?jj;?{;?icra\”ji e
ifi ! L Vs
amplifier e .
0 ¥ : : UGs
Small-signal model parameters = E\>;
. |
determined by the DC <N
. . | >l vgs
operating point [ T
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MOSFET Small-Signal Hybrid-r Model

-
Similar to the BJT hybrid-m model

O But, input resistance at the gate is infinite: G oo — oD
ig =0 Vg: <l> B Vgs
Transconductance, g,,,, defined as o I
_ Oig 5
Jm = 0vys

o Where iz and v, are the small-signal components of the drain current
and gate-source voltage , respectively

Transconductance determined by the DC operating point:
W
Im = UnCox (T) (VGS - Vt)

, %4
Im = kn (T) Vov
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MOSFET Small-Signal Hybrid-r Model

(W
Im = kn (T) Vov

G o— o - oD
Recall that DC drain current is given by N
1 (W Vs O
Ip =5 kn () Vv :
Solving for V- S
21,
Vov = W
knT

Substituting the V,; expression into the g,,, expression:

S wy [2I (W
o =1.(F) [ = [ ()

k;’T
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MOSFET Small-Signal T-Model

An alternative small-signal
MOSFET model is the T-model

o As with the BJT T-model, useful

oD
when there is source resistance
Though not immediately <, BmVgs
obvious, note thati; = 0 .
O

lg = 1g = ImVUgs * 1
Resistance seen looking into &m
the source: R 5

1
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MOSFET Small-Signal Models
-

In summary: ’
. G oD
o Transconductance in terms o0 —
of overdrive voltage: *
g Vgs <¢> gm'Vg
, (W ]
Im = kn T Vov 2
o Transconductance in terms oD
of drain current:
<l 8m-Vags

/ 4 ' 1
Im = Zk’n (T) ID Vgs g
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Small-Signal Models — Finite 7,

We have seen that we can add output resistance to the

large-signal model to account for channel-length

modulation

o Can do the same for the small-signal model

o Will rarely, if ever, do this for the large signal model, but often will
for the small-signal model

iq oD
G oo A
+ gV
Vgs E8m'Vgs <l> % o " <l>
: l To = 111—2 ¢ + 2 fo
S 1
1 Vos % gm
Vy = i )
©s
Ip =5k (T) Vér
ECE 322
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Using the MOSFET Models

-0V
In the next section of the course, we will look at the
analysis and design of MOSFET amplifiers
o Bias network and DC operating point
o Signal-path

As was the case for BJT amplifiers, our general
procedure will be:
o Large-signal analysis

DC operating point

Small-signal model parameters

o Small-signal analysis
Circuit gain

K. Webb ECE 322
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