SECTION 4: MOSFETS

ECE 322 – Electronics I

² MOSFET Device Introduction

MOSFETS

We now turn our attention to another type of transistor, the **MOSFET**:

Metal **O**xide **S**emiconductor **F**ield **E**ffect **T**ransistor

- Many similarities to the BJT:
	- \Box Three terminals
	- Voltage at one terminal controls current between the other two
		- A transconductance device
	- Two polarities: N-channel and P-channel MOSFETS
		- Our focus will primarily be N-channel MOSFETs (NMOS devices)

MOSFETs

- MOSFETs are actually *four-terminal* devices Fourth terminal is the *body*, *substrate*, or *bulk*
- The body is often tied to the source, and we can mostly ignore it
	- \blacksquare Discrete devices
- \Box Other times we must account for the body potential effect on device behavior
	- Often the case in integrated circuits

Physical Structure - NMOS

5

- \Box P-type substrate
- N+ source and drain
- *Metal gate electrode*, and source/drain/body contacts
- □ Thin *oxide* insulates the gate from the rest of the device
- □ Region of substrate between the drain and source is the *channel* Channel dimensions: W and L
	- We'll see later why this is called an n-channel (NMOS) device

Terminal Voltages and Currents

6

 \Box Terminal voltages and currents named as shown

- \Box Again, lower-case v/i and upper-case subscript represents *total* (AC and DC) voltage and current
- \Box For an NMOS device in typical operation:

$$
v_{GS} \geq 0
$$

$$
v_{DS} \geq 0
$$

 Gate oxide does not allow current to flow, so

$$
i_G=0
$$

and

$$
i_D = i_S
$$

MOSFET Operating Regions

- □ Three MOSFET operating regions:
	- Cut-off
	- \blacksquare Triode
	- **□** Saturation
- A MOSFET's operating region is determined by its terminal voltages
- \Box Next, we will look in detail at each of these three regions, along with their $i - v$ characteristics

⁸ Cut-Off Region

Cut -Off Region

 Gate and source both grounded

$$
v_{GS}=0
$$

- □ Drain-to-source pathway looks like two back -to -back diodes
	- Very high drain-source resistance ($r_{DS}=\infty$)
- \Box Even for $v_{DS}>0$, no current will flow

$$
i_D=0
$$

- \Box Looks like an open switch
	- Similar to BJT cut-off operation

Triode Region – Inversion

- \Box Now, v_{GS} is increased, while v_{DS} is kept small
	- Electric field established across gate oxide
	- \blacksquare Holes in p-type substrate repelled deeper into substrate
	- **Electrons from drain and source attracted to region below the gate**
- \Box For large enough v_{GS} , p-type material below the gate is *inverted* to n-type An *inversion layer*
	- *Induced n-type channel connects drain to source*
	- Now, current can flow in response to v_{DS} , $i_D > 0$

Threshold Voltage

 \Box Channel is induced once v_{GS} exceeds a certain voltage: The *threshold voltage*

$$
v_{GS} \ge V_t
$$

 \blacksquare A device parameter

u Typically, $V_t = 300 \ mV ... 1 V$

- \Box As v_{GS} increases beyond V_t , the induced channel gets deeper
- \Box As long as v_{DS} is small ($v_{DS} \ll V_t$), channel depth is uniform

Overdrive Voltage

- \Box A channel is induced once v_{GS} exceeds the threshold voltage
- v_{GS} in excess of the threshold voltage is called the **overdrive voltage** or *effective voltage*:

$$
v_{OV} = v_{GS} - V_t
$$

As we will soon see, v_{OV} plays an important role in determining device behavior

13

Triode Region

- \square As v_{DS} increases:
	- Voltage varies along the channel
		- \bullet v_s near the source, v_p near the drain
	- Gate-to-channel voltage decreases closer to the drain
	- Channel depth decreases closer to the drain
		- Channel is tapered
- More current flows with increasing v_{DS} , but channel resistance increases as channel becomes more tapered

Triode Region - i - ν Relationship

15

 \Box Drain current in the triode region:

$$
i_D = \mu_n C_{ox} \left(\frac{W}{L}\right) \left[(v_{GS} - V_t) - \frac{1}{2} v_{DS} \right] v_{DS}
$$

$$
i_D = \mu_n C_{ox} \left(\frac{W}{L}\right) \left[v_{OV} - \frac{1}{2} v_{DS} \right] v_{DS}
$$

where:

- \blacksquare μ_n : electron mobility
- \blacksquare C_{ox} : oxide capacitance
- \blacksquare W: channel width
- \blacksquare L: channel length
- \Box We can also express the drain current as

$$
i_D = k'_n \left(\frac{W}{L}\right) \left[v_{OV} - \frac{1}{2} v_{DS}\right] v_{DS} = k'_n \left(\frac{W}{L}\right) \left[v_{OV} v_{DS} - \frac{1}{2} v_{DS}^2\right]
$$

where:

$$
k'_n = \mu_n C_{ox}
$$
 is the **process transconductance parameter**

Triode Region - i - ν Relationship

 \Box Triode region:

$$
\nu_{GS} > V_t
$$

$$
\nu_{DS} < \nu_{OV}
$$

- \Box For $v_{DS} \ll v_{ov}$ ■ Nearly a linear resistance
	- Resistance linearly proportional to v_{0V}

$$
r_{DS} = \frac{1}{k'_n \frac{W}{L} v_{OV}}
$$

- \Box As v_{DS} increases
	- Channel taper increases
	- r_{DS} increases
	- \blacksquare $i_D \text{-} v_{DS}$ slope decreases

17 Saturation Region

Device Operation – Channel Pinch-Off

- \square Eventually, for large enough v_{DS}
	- \blacksquare Gate-to-channel voltage near the drain no longer exceeds V_t
	- Channel *pinch-off* occurs
	- Channel disappears at the edge of the drain
- Pinch-off occurs when:

$$
v_{GD} = V_t = v_{GS} - v_{DS}
$$

$$
v_{DS} = v_{GS} - V_t
$$

$$
v_{DS} = v_{OV}
$$

Saturation Region

- Once channel pinch-off occurs:
	- Voltage at the drain-end of the channel remains $v_{\alpha V}$, even as v_{DS} increases
	- \blacksquare Any increase in v_{DS} beyond v_{0V} is dropped across the depletion region surrounding the drain

- \blacksquare Voltage across the length of the channel is fixed at v_{OV}
- \blacksquare Pinched-off channel shape does not change with v_{DS}
- \blacksquare Drain current *saturates* at a constant value for constant v_{GS}
- Analogous to the forward-active region for BJTs

Saturation - i - ν Relationship

20

Drain current in the saturation region still given by

$$
i_D = k'_n \left(\frac{W}{L}\right) \left[v_{OV} v_{DS} - \frac{1}{2} v_{DS}^2\right]
$$

- But now, the voltage from the drain-end to source-end of the channel is v_{0V}
- \Box Replacing v_{DS} with v_{OV} , the drain current relationship becomes

$$
i_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) v_{OV}^2 = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (v_{GS} - V_t)^2
$$

 \blacksquare Purely a function of v_{GS} (or v_{OV}) \blacksquare Independent of v_{DS}

Input I-V Characteristic

 \Box In saturation, drain current has a *quadratic* dependence on v_{GS} (v_{OV})

$$
i_D = \frac{1}{2} k'_n \frac{W}{L} (v_{GS} - V_t)^2
$$

$$
i_D = \frac{1}{2} k'_n \frac{W}{L} v_{OV}^2
$$

Output I-V Characteristic

NMOS Operating Regions – Summary

23

Cutoff:

- $v_{GS} < V_t$
- $i_D = 0$

Triode:

 $v_{GS} > V_t$ v_{DS} v_{OV} or v_{GD} $> V_t$ $i_D = \mu_n C_{ox} \frac{W}{I}$ $\frac{W}{L}\Big(v_{OV}v_{DS} - \frac{1}{2}\Big)$ $\left(\frac{1}{2}v_{DS}^2\right) = k_n'\frac{W}{L}$ $\frac{W}{L}\Big(v_{OV}v_{DS} - \frac{1}{2}\Big)$ $\frac{1}{2}v_{DS}^2$

Saturation:

■
$$
v_{GS} > V_t
$$

\n■ $v_{DS} > v_{OV}$ or $v_{GD} < V_t$
\n■ $i_D = \frac{1}{2} k'_n \frac{W}{L} (v_{GS} - V_{tp})^2 = \frac{1}{2} k'_n \frac{W}{L} v_{OV}^2$

²⁴ P-Channel MOSFETs

P-Channel MOSFETs

- \Box Voltage polarities and doping types reversed relative to NMOS \blacksquare N-type substrate
	- \blacksquare P⁺ drain and source
	- Negative threshold voltage: $V_{tp} < 0$
	- Negative overdrive voltage: $v_{0V} = v_{GS} V_{tp} < 0$
	- Channel induced for $v_{GS} \leq V_{tp}$
	- Substrate connected to source or most positive circuit voltage

PMOS – Operating Regions

26

Cutoff:

- $v_{GS} > V_{tp}$
- $i_D = 0$

Triode:

■
$$
v_{GS} < V_{tp}
$$
, $|v_{GS}| > |V_{tp}|$
\n■ $v_{DS} > v_{OV}$, $|v_{DS}| < |v_{OV}|$
\n■ $i_D = \mu_p C_{ox} \frac{W}{L} (v_{OV} v_{DS} - \frac{1}{2} v_{DS}^2) = k'_p \frac{W}{L} (v_{OV} v_{DS} - \frac{1}{2} v_{DS}^2)$

Saturation:

■
$$
v_{GS} < V_{tp}
$$
, $|v_{GS}| > |V_{tp}|$
\n■ $v_{DS} < v_{OV}$, $|v_{DS}| > |v_{OV}|$
\n■ $i_D = \frac{1}{2} k'_p \frac{W}{L} (v_{GS} - V_{tp})^2 = \frac{1}{2} k'_p \frac{W}{L} v_{OV}^2$

CMOS

- Complementary MOS or *CMOS* ■ Both NMOS and PMOS fabricated on the same chip
- \Box P-type substrate
- PMOS devices fabricated in *n wells*
- □ Most modern MOS chips are fabricated using CMOS technology

Equivalent Circuit Models

- **29**
- As was the case for BJTs, we use two types of equivalent-circuit models for MOSFETs:

Large-signal model

■ Models the transistor's behavior to DC signals ■ Used to determine the transistor's DC operating point

Small-signal model

- Models the behavior in response to small signals
- **□** Describes the response to the AC signals to be amplified
- **Properties of the small-signal model determined by the** DC operating point

Large-Signal Model – Saturation

- **30**
- Large-signal behavior in the saturation region is modeled by the following circuit:

- \Box Replace the transistor with the appropriate model to determine the DC operating point (Q-point)
- \square Saturation-region bias assumed If incorrect, model will say otherwise
- Because $i_G = 0$, we generally do not need to explicitly use the *equivalent circuit model for large-signal analysis for MOSFETs* ■ Often just use the I-V model

Determine I_D and V_D for $V_{DD} = 3.3 V$ $cm²$ $\mu_n = 500$ the following circuit $V\cdot s$ R_D 1.8 $k\Omega$ $\int\! F$ \blacksquare Is the device operating in $C_{ox} = 3.8$ μm^2 the saturation region? I_D $V_t = 500 \ mV$ $50 \mu m$ 0.5 µm $L = 0.5 \ \mu m$ The process 800 mV \equiv $W = 50 \ \mu m$ transconductance parameter:

$$
k'_n = \mu_n C_{ox} = 500 \times 10^{-4} \frac{m^2}{V \cdot s} \cdot \frac{3.8 \times 10^{-15} F}{1 \times 10^{-12} m^2} = 190 \frac{\mu A}{V^2}
$$

 Use the saturation region large-signal model **□** I-V model, not necessarily the equivalent-circuit model Analysis will indicate if saturation assumption is incorrect

32

 \Box Drain current in saturation:

$$
I_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (V_{GS} - V_t)^2
$$

\n
$$
I_D = \frac{1}{2} \cdot 190 \frac{\mu A}{V^2} \cdot \left(\frac{50 \mu m}{0.5 \mu m}\right) (800 mV - 500 mV)^2
$$

\n
$$
I_D = 855 \mu A
$$

 \Box Voltage at the drain:

$$
V_D = V_{DD} - I_D R_D
$$

$$
V_D = 3.3 V - 855 \mu A \cdot 1.8 k\Omega
$$

$$
V_D = 1.76 V
$$

 \Box The device is operating in the saturation region

■ The drain-to-source voltage exceeds the overdrive voltage

$$
V_{DS} = V_D = 1.76 V > V_{OV} = V_{GS} - V_t = 300 mV
$$

33

- \Box For the same circuit, determine V_{GS} for $V_D = 1 V$
	- \blacksquare Is the device still operating in the saturation region?

For
$$
V_D = 1 V
$$

$$
I_D = \frac{V_{DD} - V_D}{R_D} = \frac{3.3 V - 1 V}{1.8 k\Omega}
$$

$$
I_D = \frac{2.3 V}{1.8 k\Omega} = 1.28 mA
$$

$$
\mu_n = 500 \frac{cm^2}{V \cdot s}
$$

$$
C_{ox} = 3.8 \frac{fF}{\mu m^2}
$$

$$
V_t = 500 \text{ mV}
$$

$$
L = 0.5 \text{ }\mu\text{m}
$$

$$
W = 50 \text{ }\mu\text{m}
$$

 \Box Assuming saturation-region operation

$$
I_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) V_{OV}^2 = \frac{1}{2} \cdot 190 \frac{\mu A}{V^2} \cdot \left(\frac{50 \ \mu m}{0.5 \ \mu m}\right) \cdot V_{OV}^2 = 1.28 \ mA
$$

 V_{GS} .

 \Box Solving for the overdrive voltage

$$
V_{OV}=367\ mV
$$

34

The required gate-to-source voltage is

$$
V_{GS} = V_t + V_{OV}
$$

$$
V_{GS} = 500 \ mV + 367 \ mV
$$

 $V_{GS} = 867$ mV

- The drain-to-source voltage exceeds the overdrive voltage
	- \blacksquare The transistor is operating in the saturation region

$$
V_{DS} = 1V > V_{OV} = 367 \ mV
$$

35

 \Box Find R_D and R_S for

$$
I_D = 200 \ \mu A \text{ and } V_D = 200 \ mV
$$

First, determine R_D

$$
R_D = \frac{V_{DD} - V_D}{I_D} = \frac{1 V - 200 mV}{200 \mu A}
$$

$$
R_D = 4 k\Omega
$$

 \Box Drain current in saturation is given by

$$
I_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) V_{OV}^2 \rightarrow V_{OV} = \sqrt{\frac{2I_D}{k'_n} \frac{L}{W}}
$$

$$
V_{OV} = \sqrt{\frac{2 \cdot 200 \,\mu A}{400 \,\mu A/V^2} \frac{0.5 \mu m}{15 \,\mu m}} = 182.6 \, mV
$$

36

The gate-to-source voltage is

$$
V_{GS} = V_t + V_{OV} = 500 \, mV + 182.6 \, mV
$$

$$
V_{GS} = 683 \ mV
$$

 \Box The gate is grounded, so the source voltage is

$$
V_S = V_G - V_{GS} = -683 \ mV
$$

 \Box The source resistance is given by

$$
R_S = \frac{V_S - V_{SS}}{I_D} = \frac{-683 \, \text{mV} - (-1 \, \text{V})}{200 \, \mu A}
$$
\n
$$
R_S = 1.59 \, k\Omega
$$

- \Box Find I_D and R_D for $V_D = 100$ mV ■ What is the drain-to-source resistance, r_{DS} ?
- \Box The device is in the triode region:

$$
V_{OV} = V_{GS} - V_t = 2 V - 500 mV = 1.5 V
$$

$$
V_{DS}=100\ mV
$$

 \Box Drain current in triode is given by

$$
I_D = k'_n \left(\frac{W}{L}\right) \left(V_{OV} - \frac{1}{2}V_{DS}\right) V_{DS}
$$

$$
I_D = 2 \frac{mA}{V^2} (1.5 V - 50 mV) 100 mV
$$

$$
I_D = 290 \ \mu A
$$

38

 \Box The required drain resistance:

$$
R_D = \frac{V_{DD} - V_D}{I_D} = \frac{1.9 \text{ V}}{290 \text{ }\mu\text{A}}
$$

$$
R_D = 6.55 \text{ k}\Omega
$$

 \Box The drain-to-source resistance in the triode region is given by:

$$
r_{DS} = \frac{1}{k'_n \frac{W}{L} V_{OV}}
$$

$$
r_{DS} = \frac{1}{2 \frac{mA}{V^2} 1.5 V}
$$

$$
r_{DS} = 333 \Omega
$$

39

- \Box Find I_D , V_G , V_D , and V_S for the following circuit
- \Box The gate voltage is simply set by the voltage divider

$$
V_G = 10 V \frac{10 M\Omega}{10 M\Omega + 10 M\Omega}
$$

$$
V_G = 5 V
$$

 \Box Assuming operation in the saturation region, drain current is

$$
I_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (V_{GS} - V_t)^2 = \frac{1}{2} k'_n \left(\frac{W}{L}\right) (V_G - I_D R_S - V_t)^2
$$

$$
I_D = 0.5 \frac{mA}{V^2} (5 V - I_D R_S - 1 V)^2
$$

40

$$
I_D = 0.5 \frac{mA}{V^2} (4 V - I_D \cdot 6 k\Omega)^2
$$

 \Box This is a quadratic equation for I_D $I_D = 18E3 I_D^2 - 24 I_D + 8E - 3$

 \Box Two possible solutions:

$$
I_D = 889 \ \mu A \text{ or } I_D = 500 \ \mu A
$$

 \Box For $I_D = 889 \mu A$

$$
V_D = V_{DD} - I_D R_D = 10 V - 889 \mu A \cdot 6 k\Omega = 4.67 V
$$

$$
V_S = I_D \cdot R_S = 889 \mu A \cdot 6 k\Omega = 5.33 V
$$

$$
V_{GS} = V_G - V_S = -333 \ mV
$$

$$
\Box \ \text{For } I_D = 889 \ \mu A
$$

$$
V_{GS} < 0
$$

 \blacksquare The transistor is in the cut-off region

 \Box The valid solution to the quadratic equation must be

$$
I_D = 500 \ \mu A
$$

 \Box The drain and source voltages are

$$
V_D = V_{DD} - I_D R_D = 10 V - 500 \mu A \cdot 6 k\Omega
$$

$$
V_S = I_D \cdot R_S = 500 \mu A \cdot 6 k\Omega
$$

$$
V_S = 3 V
$$

- **43**
- \Box So far, our MOSFET model in the saturation region models drain current as independent of v_{DS}

$$
i_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) v_{OV}^2
$$

 \blacksquare Flat I-V characteristic in the saturation region

 \Box In reality, current increases as v_{DS} increases

 \Box Increase in i_D due to *channel-length modulation*

- **44**
- Justification for constant saturation current was:
	- Channel shape does not change after pinch-off occurs
	- Any additional v_{DS} is dropped across the depletion region surrounding the drain
- *But, as increases, the drain depletion region increases, and the channel length decreases*

45

 Drain current is inversely proportional to channel length $i_D \propto$ 1 \overline{L}

So, as v_{DS} increases, L decreases, and i_D increases \blacksquare Non-zero slope in the saturation region of the $i_D \text{-} v_{DS}$ curve:

46

 This effect is accounted for by the *channel-length modulation parameter*,

$$
i_D = \frac{1}{2} k'_n \frac{W}{L} (v_{GS} - V_t)^2 (1 + \lambda v_{DS})
$$

 \Box λ is inversely proportional to channel length, L

 \blacksquare λ related to the *Early voltage*: $\lambda =$ 1 V_A

Output Resistance

Slope of the $i_D \text{-} v_{DS}$ characteristic is the inverse of the transistor's *output resistance*

Resistance seen looking into the drain

 Constant saturation current implies *infinite output resistance*

Output Resistance

48

 \Box Output resistance given by

$$
r_o = \left[\frac{\partial i_D}{\partial v_{DS}}\right]^{-1}
$$

■ The inverse of the slope of the $i_D \text{-} v_{DS}$ characteristic

 \Box Channel-length modulation results in finite output resistance

Output Resistance

- **49**
- \Box Model the finite output resistance due to channel-length modulation by adding a resistor to our large-signal model

 \Box Output resistance given by

$$
r_o = \left[\frac{\partial i_D}{\partial v_{DS}}\right]^{-1} = \left[\frac{\partial}{\partial v_{DS}} \left(\frac{1}{2} k'_n \frac{W}{L} (v_{GS} - V_t)^2 (1 + \lambda v_{DS})\right)\right]^{-1}
$$

$$
r_o = \left[\frac{\lambda}{2} k'_n \frac{W}{L} (v_{GS} - V_t)^2\right]^{-1}
$$

$$
r_o = \frac{1}{\lambda I'_D} = \frac{V_A}{I'_D}
$$

The Body Effect

- **51**
- So far, we have largely ignored the connection to the substrate
	- Equivalently, we have assumed it to be tied to the source:

 This a valid assumption for *discrete* devices ■ Not so for MOSFETs on integrated circuits (ICs)

The Body Effect

- For integrated circuits, the substrate is typically tied to the most negative supply voltage for NMOS devices
	- PMOS n-wells tied to the most positive supply voltage
- \Box Substrate for a given device may well be biased below its source voltage (above for PMOS)
	- \blacksquare This is the bias voltage for the channel region
- \Box For $V_{SB} > 0$ ($V_{SB} < 0$ for PMOS), the *threshold voltage is effectively increased*

This is the *body effect*

MOSFETs as Switches

Our focus is on the use of MOSFETs for *linear amplifiers* in *analog circuits*

Operation in the *saturation* region

- MOSFETs are also useful as *switches* in *digital circuits*
	- Microprocessors contain *billions* of MOSFETs used as switches on a single chip
- □ When operating as a switch, MOSFETs alternate between the *triode* (on, closed) and *cutoff* (off, open) regions

Triode/Cutoff Region Models

- **55**
- MOSFETs used as *switches* operate alternately in the *triode* (closed) and *cutoff* (open) regions
- \Box Equivalent circuit models:

 Switch is off < [◼] = 0

$$
\blacksquare \, I_D = 0
$$

 $V_{DS}=V_{DD}$

 $\overline{\mathsf{S}}$

Inverters

- The *inverter* is a fundamental building block of *digital logic circuits*
- Output is the *inverse* of the input
	- \blacksquare When the input is a logic high (1/T) the output is low (0/F)
	- \blacksquare When the input is low (0/F) the output is high (1/T)

CMOS Inverter

- CMOS inverters make use of NMOS and PMOS devices acting as switches
	- \blacksquare Input applied to gate of each device
	- Output taken from their drain terminals
	- When one switch is on, the other is off
	- Output connected to either V_{DD} or ground

CMOS Inverter

Input is high:

 $V_I = V_{DD}$ \Box $\left| V_{GS_p} \right| = 0$ $V < \left| V_{t_p} \right|$ ■ PMOS device is off $V_{GS_n} = V_{DD} > V_{t_n}$ ■ NMOS device is on $V_0 \approx 0 V$

CMOS Inverter

Input is low:

 $V_I = 0 V$ $\begin{vmatrix} V_{GS_p} \end{vmatrix} = V_{DD} > \begin{vmatrix} V_{t_p} \end{vmatrix}$ ■ PMOS device is on $V_{GS_n} = 0 V < V_{t_n}$ ■ NMOS device is off $V_0 \approx V_{DD}$

⁶⁰ Small-Signal Models

MOSFET Small-Signal Hybrid- π Model

- Just as with BJTs, we use the large-signal model to determine the MOSFET's *DC operating point*
	- DC terminal voltages and drain current
- Need a *small-signal model* to describes the MOSFETs response to small signals
	- \blacksquare To describe its behavior as an amplifier
- \Box Small-signal model parameters determined by the DC operating point

MOSFET Small-Signal Hybrid- π Model

- **62**
- \Box Similar to the BJT hybrid- π model \blacksquare But, input resistance at the gate is infinite:

$$
i_g = 0
$$

 \Box **Transconductance**, g_m , defined as

$$
g_m \equiv \frac{\partial i_d}{\partial v_{gs}}
$$

- \blacksquare Where i_d and v_{gs} are the *small-signal components* of the drain current and gate-source voltage , respectively
- \Box Transconductance determined by the DC operating point:

$$
g_m = \mu_n C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_t)
$$

$$
g_m = k'_n \left(\frac{W}{L}\right) V_{OV}
$$

MOSFET Small-Signal Hybrid- π Model

$$
g_m = k'_n \left(\frac{W}{L}\right) V_{OV}
$$

 \Box Recall that DC drain current is given by

$$
I_D = \frac{1}{2} k'_n \left(\frac{W}{L}\right) V_{OV}^2
$$

Solving for V_{OV} :

$$
V_{OV} = \sqrt{\frac{2I_D}{k'_n \frac{W}{L}}}
$$

□ Substituting the V_{OV} expression into the g_m expression:

$$
g_m = k'_n \left(\frac{W}{L}\right) \sqrt{\frac{2I_D}{k'_n \frac{W}{L}}} = \sqrt{2k'_n \left(\frac{W}{L}\right) I_D}
$$

MOSFET Small-Signal T-Model

- □ An alternative small-signal MOSFET model is the T-model ■ As with the BJT T-model, useful when there is source resistance
- \Box Though not immediately obvious, note that $i_q = 0$

$$
i_d = i_s = g_m v_{gs}
$$

 Resistance seen looking into the source:

$$
R_s = \frac{1}{g_m}
$$

MOSFET Small-Signal Models

- \Box In summary:
	- \blacksquare Transconductance in terms of overdrive voltage:

$$
g_m = k'_n \left(\frac{W}{L}\right) V_{OV}
$$

 \blacksquare Transconductance in terms of drain current:

$$
g_m = \sqrt{2k'_n \left(\frac{W}{L}\right)I_D}
$$

Small-Signal Models – Finite r_{o}

- **66**
- We have seen that we can add output resistance to the large-signal model to account for channel-length modulation
	- **□** Can do the same for the small-signal model
	- Will rarely, if ever, do this for the large signal model, but often will for the small-signal model

Using the MOSFET Models

- **67**
- In the next section of the course, we will look at the analysis and design of MOSFET amplifiers
	- Bias network and DC operating point
	- **□** Signal-path
- As was the case for BJT amplifiers, our general procedure will be:
	- *Large-signal analysis*
		- DC operating point
		- Small-signal model parameters
	- *Small-signal analysis*
		- Circuit gain