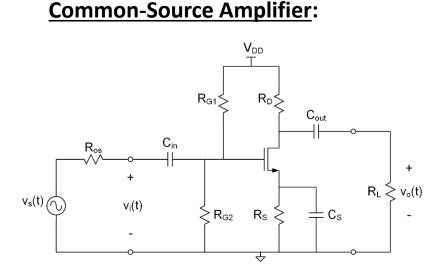
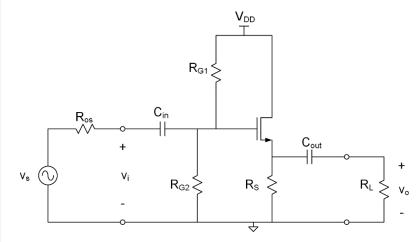
SECTION 5: MOSFET AMPLIFIERS


ECE 322 – Electronics I

² MOSFET Amplifier Circuits


MOSFET Amplifier Circuits – Preview

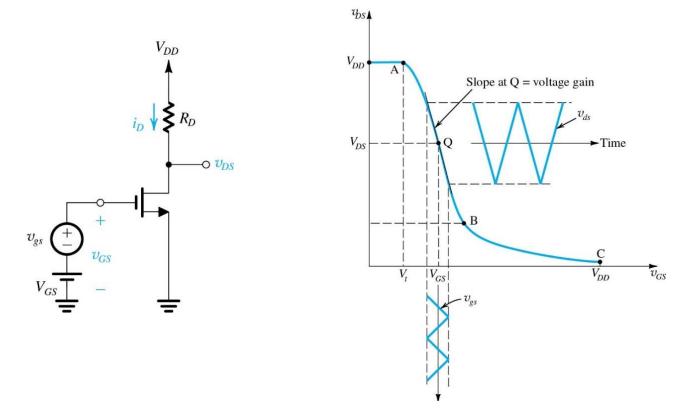
In this section of the course, we will look at three MOSFET amplifiers, with a focus on the following two circuits:

- High voltage gain
- An amplifier

Source-Follower Amplifier:

Near unity gain

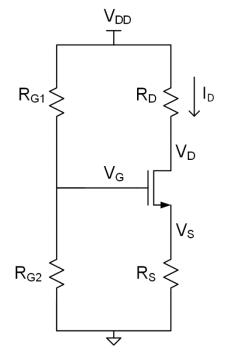
A buffer


4 MOSFET Amplifier Biasing

MOSFET Amplifier Biasing

- 5
- To function as an amplifier, a MOSFET must be biased in the *saturation region*
- DC operating point set by the *bias network*
 - Resistors and power supply voltages
 - Sets the transistor's *DC terminal voltages and currents* its DC bias
- How a transistor is *biased* determines:
 - Small-signal characteristics
 - Small-signal model parameters
 - How it will behave as an amplifier

Voltage Transfer Characteristic


- 5
- MOSFET amplifier biased in the middle of its saturation region
- Slope of the large-signal transfer characteristic gives the amplifier gain
 - Negative slope gain is inverting
 - Small input signals yield larger output signals
 - Slope is nearly linear in this region

MOSFET Biasing – Four-Resistor Bias Circuit

- We can use a similar four-resistor bias network for MOSFET amplifiers
- Commonly-used for both *common-source* amplifiers and *source-followers* Single power supply or bipolar supply
- Stable biasing over device parameter variations

• Insensitive to variations in V_t , k'_n , $\frac{W}{L}$

Analysis of the Four-Resistor Bias Circuit

□ Since $I_G = 0$, gate voltage is simply set by the voltage divider

$$V_{G} = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}}$$

Drain current is given by

$$I_{D} = \frac{1}{2} k_{n}' \left(\frac{W}{L}\right) V_{OV}^{2} = \frac{1}{2} k_{n}' \left(\frac{W}{L}\right) (V_{GS} - V_{t})^{2}$$
$$I_{D} = \frac{1}{2} k_{n}' \left(\frac{W}{L}\right) (V_{G} - V_{S} - V_{t})^{2} = \frac{1}{2} k_{n}' \left(\frac{W}{L}\right) (V_{G} - I_{D}R_{S} - V_{t})^{2}$$

□ After some rearranging, we arrive at a quadratic equation, which we can solve for I_D :

$$R_{S}^{2}I_{D}^{2} - \left[2R_{S}(V_{G} - V_{t}) + \frac{1}{\frac{1}{2}k_{n}'\left(\frac{W}{L}\right)}\right]I_{D} + (V_{G} - V_{t})^{2} = 0$$

Four-Resistor Bias Circuit – Example

9

Determine terminal voltages and drain current for the following circuit

- - -

□ Gate voltage:

$$V_G = 12 \, V \cdot \frac{30 \, k\Omega}{50 \, k\Omega + 30 \, k\Omega} = 4.5 \, V$$

Drain current:

$$I_{D} = \frac{1}{2} k_{n}' \left(\frac{W}{L}\right) (V_{G} - V_{S} - V_{t})^{2}$$

$$I_{D} = 1 \frac{mA}{V^{2}} (4.5 V - I_{D} \cdot 8k\Omega - 700 mV)^{2}$$

$$V_{t} = 700 mV$$

$$I_{D} = 1 \frac{mA}{V^{2}} (-8 k\Omega \cdot I_{D} + 3.8 V)^{2}$$

$$k_{n}' \left(\frac{W}{L}\right) = 2 \frac{mA}{V^{2}}$$

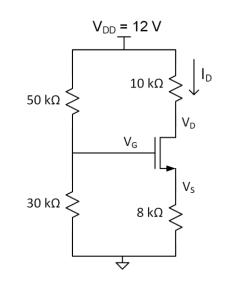
$$1 \frac{mA}{V^{2}} (64e6 \cdot I_{D}^{2} - 60.8e3 \cdot I_{D} + 14.44) - I_{D} = 0$$

 $64e6 \cdot I_D^2 - 61.8e3 \cdot I_D + 14.44 = 0$

 $V_{DD} = 12 V$ $10 k\Omega$ V_{D} V_{D} V_{D} V_{D} V_{D} V_{C} V_{C

Four-Resistor Bias Circuit – Example

$$64e6 \cdot I_D^2 - 61.8e3 \cdot I_D + 14.44 = 0$$


 \Box Solving the quadratic equation for I_D gives

$$I_D = 569 \ \mu A$$
 or $I_D = 396 \ \mu A$

□ For $I_D = 569 \ \mu A$ $V_S = I_D R_S = 569 \ \mu A \cdot 8 \ k\Omega = 4.55 \ V$ $V_{GS} = -50 \ mV < V_t$

- The transistor would be cut-off, so this is not a valid solution
- DC operating point:

$$I_D = 396 \ \mu A$$

 $V_S = 396 \ \mu A \cdot 8 \ k\Omega = 3.17 \ V$
 $V_{GS} = 1.33 \ V$
 $V_{OV} = 630 \ mV$
 $V_D = V_{DD} - I_D R_D = 8.04 \ V$

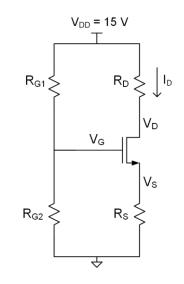
 $V_t = 700 \ mV$

 $k_n'\left(\frac{W}{L}\right) = 2\frac{mA}{V^2}$

Design of the Four-Resistor Bias Circuit

- To design a bias network to provide a desired drain current:
 - Select R_D and R_S to each drop approximately one third of the supply voltage
 - That will leave approximately one third of the supply voltage across V_{DS}
 - **\square** Calculate the required V_{OV} , V_{GS} , and V_{GS}
 - Select the voltage divider resistors at the gate to provide the required gate voltage

Bias Circuit Design - Example


12

- Design the bias network to provide $I_D = 800 \ \mu A$
- □ Calculate R_D and R_S to each drop $V_{DD}/3$

$$R_D = R_S = \frac{\frac{V_{DD}}{3}}{I_D} = \frac{5 V}{800 \ \mu A} = 6.25 \ k\Omega$$

The required overdrive voltage is

$$V_{OV} = \sqrt{\frac{2I_D}{k_n'\left(\frac{W}{L}\right)}} = \sqrt{\frac{1.6 \ mA}{1\frac{mA}{V^2}}} = 1.26 \ V$$

 $V_t = 800 \ mV$

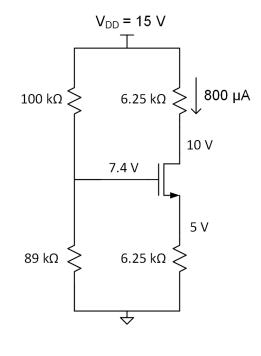
$$k_n'\left(\frac{W}{L}\right) = 1\frac{mA}{V^2}$$

□ The gate-source voltage

$$V_{GS} = V_{OV} + V_t = 1.26 V + 800 mV$$

 $V_{GS} = 2.06 V$

Bias Circuit Design - Example


13

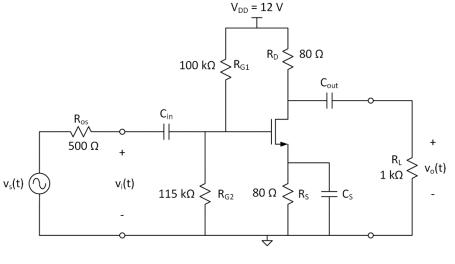
Determine the required gate voltage

$$V_G = V_S + V_{GS} = I_D R_S + V_{GS}$$

 $V_G = 800 \ \mu A \cdot 6.25 \ k\Omega + 2.06 \ V$
 $V_G = 7.06 \ V$

□ Finally, select R_{G1} and R_{G2} to provide the required V_G

$$R_{G1} = 100 \ k\Omega$$
$$R_{G2} = 89 \ k\Omega$$


 $V_t = 800 \ mV$

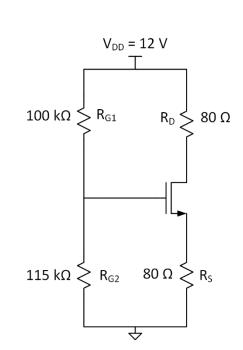
```
k_n'\left(\frac{W}{L}\right) = 1\frac{mA}{V^2}
```

¹⁴ Common-Source Amplifier

Common-Source Amplifier

- Common-source amplifier
- All capacitors are ACcoupling/DC blocking capacitors
 - Open at DC
 - Shorts at signal frequencies
 - Isolate transistor bias from source/load

- $V_t = 1.6 V \qquad k'_n \left(\frac{W}{L}\right) = 170 \frac{mA}{V^2}$
- Called *common*-source, because source is connected to common – i.e., ground or a power supply
 - C_S is a small-signal short to ground
 - Source is at small-signal ground


Common-Source Amplifier

Analyze the amplifier to find:
 DC operating point
 Small-signal voltage gain

DC operating point:The gate voltage is given by

$$V_G = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}}$$

$$V_G = 12 V \frac{115 k\Omega}{100 k\Omega + 115 k\Omega}$$

 $V_G = 6.4 V$

C-S Amplifier – Large-Signal Analysis

17

Drain current is given by

$$I_{D} = \frac{1}{2} k_{n}' \left(\frac{W}{L}\right) V_{OV}^{2} = \frac{1}{2} k_{n}' \left(\frac{W}{L}\right) (V_{G} - I_{D}R_{S} - V_{t})^{2}$$

 \Box As we have seen, solving for I_D results in the following quadratic

$$R_{S}^{2}I_{D}^{2} - \left[2R_{S}(V_{G} - V_{t}) + \frac{1}{\frac{1}{2}k_{n}'\left(\frac{W}{L}\right)}\right]I_{D} + (V_{G} - V_{t})^{2} = 0$$

6.4e3 \cdot I_{D}^{2} - 779.8 \cdot I_{D} + 23.0 = 0

This has two solutions

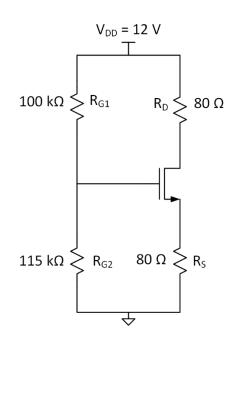
$$I_D = 72 \ mA$$
 or $I_D = 51 \ mA$

• The first solution would put the transistor in cutoff, so $I_D = 51 mA$

C-S Amplifier – Large-Signal Analysis

- 8
- Use the drain current to determine terminal voltages

$$V_D = V_{DD} - I_D R_D$$

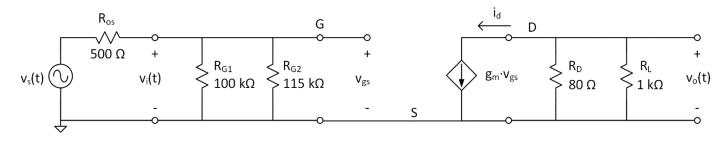

$$V_D = 12 V - 51 mA \cdot 80 \Omega = 7.95 V$$

$$V_S = I_D R_S = 51 mA \cdot 80 \Omega$$

$$V_S = 4.05 V$$

The complete DC operating point:

$$V_G = 6.42 V$$
 $I_D = 51 mA$ $V_{GS} = 2.37 V$ $V_D = 7.95 V$ $V_{OV} = 0.77 V$ $V_S = 4.05 V$

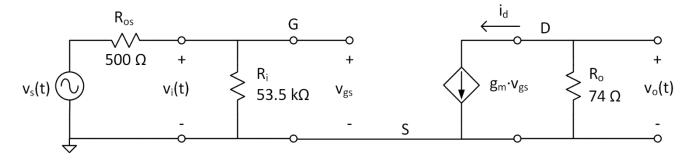

The DC operating point allows us to determine the transconductance for the transistor's small-signal model

$$g_m = k'_n \left(\frac{W}{L}\right) V_{OV} = 170 \frac{mA}{V^2} \cdot 0.77 V = 131 mS$$

- Next, create the *small-signal equivalent circuit* for the amplifier and perform a *small-signal analysis:*
 - 1. Replace all AC coupling capacitors with shorts
 - Large enough to look like shorts at signal frequencies
 - 2. Connect all DC supply voltages to ground
 - From a small-signal perspective these are all constant voltages
 - Small-signal ground
 - 3. Replace the transistor with its small-signal model

- 20
- Small-signal equivalent circuit

Use to determine small-signal voltage gain


- \Box Source is connected to small signal ground through C_S
- \square R_{G1} and R_{G2} appear in parallel at the gate

 $R_i = R_{G1} || R_{G2} = 53.5 \ k\Omega$

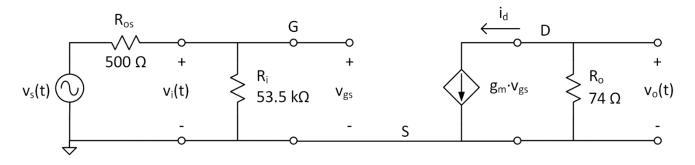
 \square R_D and R_L are in parallel at the output

$$R_o = R_D || R_L = 74 \ \Omega$$

□ Input voltage, $v_i(t)$, is the gate-source voltage, v_{gs}

Determine the small-signal voltage gain:

$$A_{v} = \frac{v_{o}}{v_{i}} \tag{1}$$

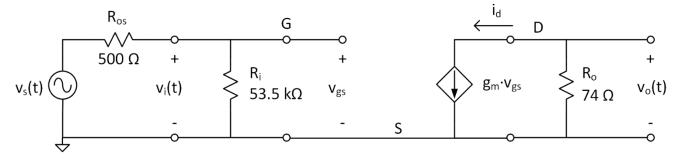

The input is applied across the G-S junction, so

$$v_i = v_{gs} \tag{2}$$

The output is the drain current applied across the output resistance

$$\nu_o = -i_d R_o = -g_m \nu_{gs} R_o \tag{3}$$

22


Substituting (3) and (2) into (1) gives the gain:

$$A_{v} = \frac{v_o}{v_i} = -\frac{g_m v_{gs} R_o}{v_{gs}} = -g_m R_o$$

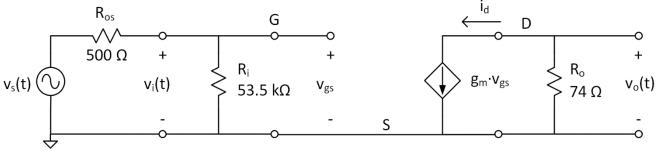
This is the gain for any common-source amplifier

$$A_{v} = -g_{m}R_{o}$$

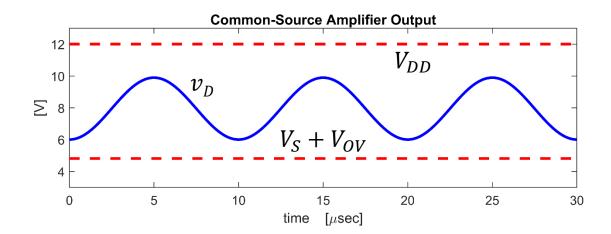
The negative sign indicates that the amplifier has inverting gain

 \Box For this circuit, the gain (from v_i to v_o) is

$$A_{v} = \frac{v_{o}}{v_{i}} = -131 \ mS \cdot 74 \ \Omega = -9.7$$

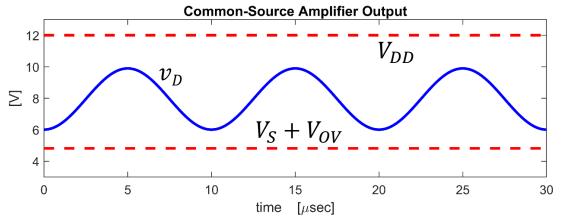

For the gain from v_s to v_o , account for attenuation due to source loading

$$A_{v} = \frac{v_o}{v_s} = \frac{v_i}{v_s} \cdot \frac{v_o}{v_i} = \frac{R_i}{R_s + R_i} \cdot (-g_m R_o)$$


 \Box Here,

$$A_{v} = \frac{v_{o}}{v_{s}} = \frac{53.5 \ k\Omega}{500 \ \Omega + 53.5 \ k\Omega} \cdot (-9.7) = -9.6$$

 \Box The output for a 200 mV_{pp} , 100 kHz input:



C-S Amplifier – Dynamic Range

Dynamic range

25

 Range of input or output signal for which the transistor remains in the saturation region

The amplifier's *linear range*

For saturation bias:

D-S voltage must remain greater than the overdrive voltage

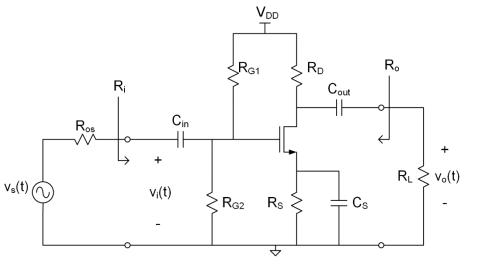
$$v_{DS} > V_{OV}$$

G-S voltage must remain greater than the threshold voltage

$$v_{GS} > V_t$$

C-S Amplifier – Input & Output Resistance

 Gate resistance is infinite, so amplifier input resistance is


$$R_i = R_{G1} || R_{G2}$$

Output resistance is the drain resistance:

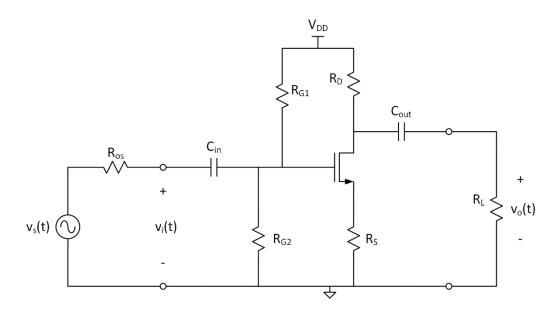
$$R_o = R_D$$

• Or, if accounting for channel-length modulation:

$$R_o = R_D || r_o$$

C-S Amplifier – Gain

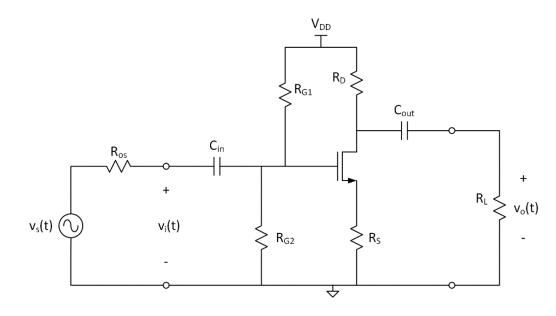
$$A_{v} = -g_{m}R_{o}$$


- \square C-S gain is **determined by** g_m and R_o
 - **\square** Select R_o (R_D) and set g_m for desired gain
 - Transconductance is proportional to the square root of bias current

$$g_m = \sqrt{k_n'\left(\frac{W}{L}\right)I_D}$$

Therefore, gain is proportional to the square root of bias current

C-S Amplifier – Source Degeneration


 The C-S amplifier we have looked at so far had its source grounded (small-signal ground)

D Due to bypass capacitor, C_S , around R_S

- What if we remove C_S ?
 - Or add another source resistor not by passed by C_S
 - Source degeneration

29

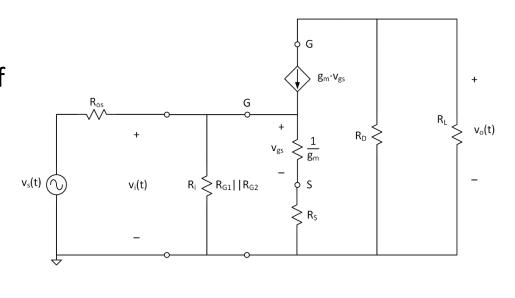
C-S Amplifier – Source Degeneration

- Now, R_S is included in the small signal equivalent circuit
 Source is no longer connected to small-signal ground
- Analysis will be simplified if we use the T-model
 Usually the case whenever we have source resistance
 R_s will be in series with resistance in the model

30

C-S Amplifier – Source Degeneration

31

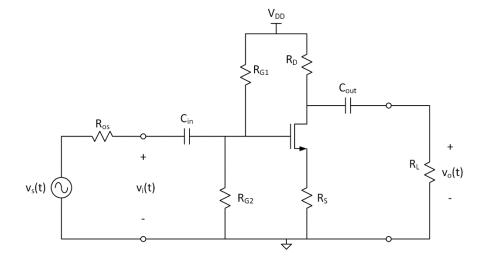

 \square

The output is still given by

$$v_o = -i_d R_o = -g_m v_{gs} R_o$$

 But, now, v_{gs} is the portion of v_i that appears across the 1/g_m resistance

$$v_{gs} = v_i \frac{1/g_m}{1/g_m + R_s}$$
$$v_{gs} = v_i \frac{1}{1 + g_m R_s}$$


□ The output is

$$v_o = v_i \left(-g_m R_o \frac{1}{1 + g_m R_S} \right)$$

Source Degeneration – Gain

- 32
- Rearranging the expression for the output gives the gain

$$A_{v} = -\frac{g_m R_o}{1 + g_m R_S}$$

□ Source degeneration reduces the gain by a factor of $(1 + g_m R_S)$

□ If $R_S \gg 1/g_m$, then $g_m R_S \gg 1$, and

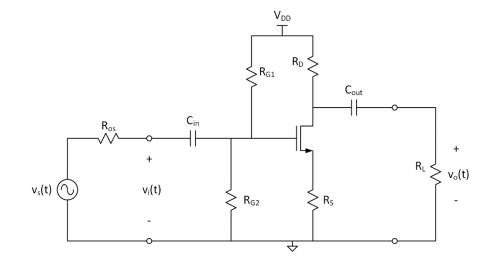
$$A_{\nu} = -\frac{R_o}{R_S}$$

Source Degeneration – Transconductance

33

$$A_v = -\frac{g_m R_o}{1 + g_m R_S}$$

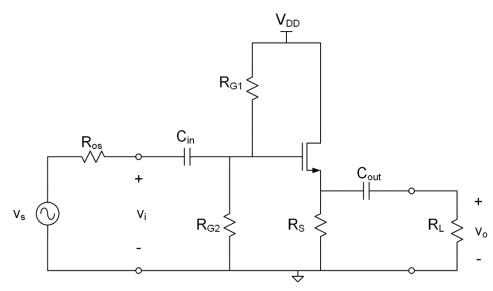
We can rewrite the gain as


$$A_{v} = -G_{m}R_{o}$$

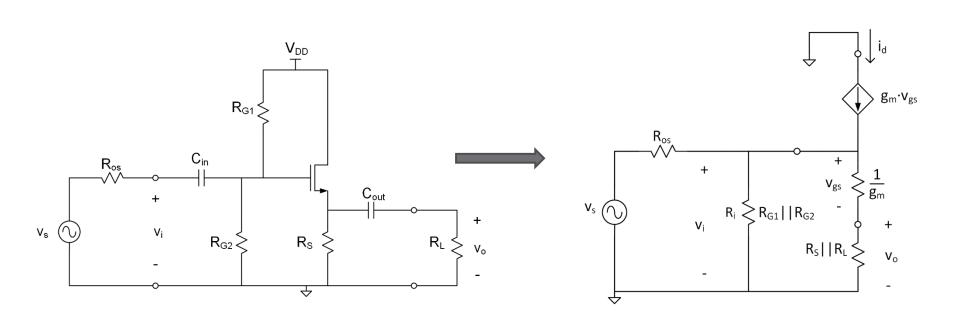
G_m is the effective transconductance of the amplifier

$$G_m = \frac{g_m}{1 + g_m R_S}$$

Source degeneration reduces the transconductance by a factor of $(1 + g_m R_S)$


This is why we see a reduction in gain by the same factor

Source-Follower


Source-follower amplifier

- Input applied to the gate
- Output at the source
- Source follows the gate

Also called a *common-drain* amplifier (CD)

Drain is connected to small-signal ground

Source-Follower – Small-Signal Analysis

Replace the MOSFET with small-signal model

- Source resistance, so use T-model
- Short coupling caps
- DC voltages connect to ground
- Simplify parallel resistances

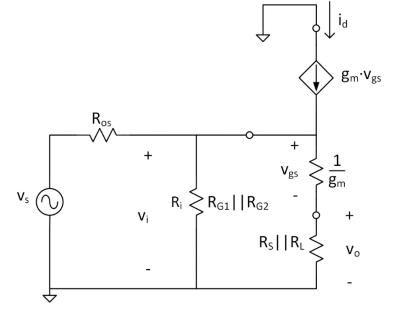
36

37

 \Box Determine the gain from v_i to v_o

$$A_v = \frac{v_o}{v_i}$$

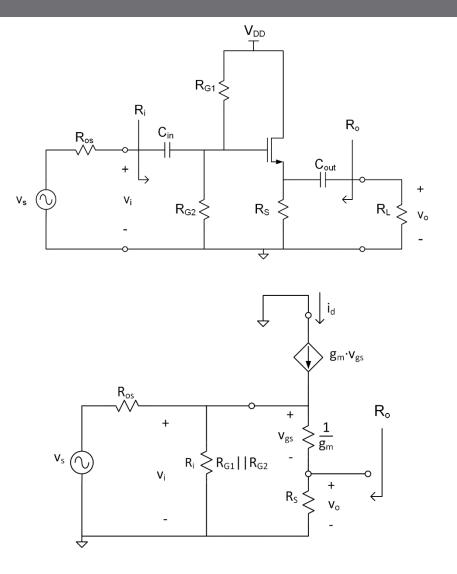
Applying voltage division gives the output


$$v_o = v_i \frac{R_S ||R_L}{\left(R_S ||R_L + \frac{1}{g}\right)}$$

Rearrange to get the gain

$$A_{v} = \frac{R_{S} ||R_{L}}{\left(R_{S} ||R_{L} + \frac{1}{g_{m}}\right)}$$

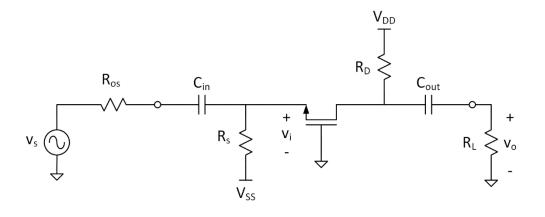
Clearly,
$$A_v < 1$$
 But, for $R_S ||R_L \gg 1/g_m$, $A_v \approx 1$


Source Follower – Input & Output Resistance

 Gate resistance is infinite, so amplifier input resistance is

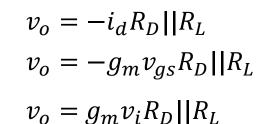
 $R_i = R_{G1} || R_{G2}$

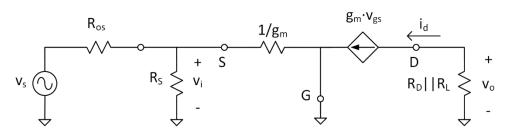
□ The output resistance is the source resistance in parallel with $1/g_m$:


$$R_o = R_S || \frac{1}{g_m}$$

³⁹ Common-Gate Amplifier

Common-Gate Amplifier

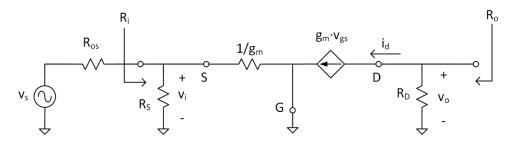




- The third MOSFET amplifier configuration we will look at is the *common-gate amplifier*
 - Input applied to the source
 - Output taken from the drain
 - Gate is connected to small-signal ground
 - The least common of the three amplifiers

Common-Gate Amplifier – Gain

- 41
- There is source resistance, so use the T-model for small-signal analysis
- The output is given by

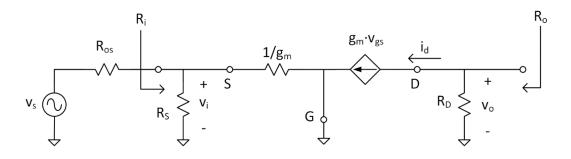


Common-gate voltage gain is

$$A_{v} = g_{m}R_{D}||R_{L}$$

Common-Gate – Input Resistance

R_i is the parallel combination of the resistance connected to the source and the resistance looking into the source


$$R_i = R_S || \frac{1}{g_m}$$

 \Box If $1/g_m \ll R_S$, then

$$R_i \approx \frac{1}{g_m}$$

42

Common-Gate – Output Resistance

 If we neglect the transistor's output resistance, r_o, the common-gate output resistance is

$$R_o = R_D$$

Entirely determined by the drain resistor

Common-Gate Amplifier

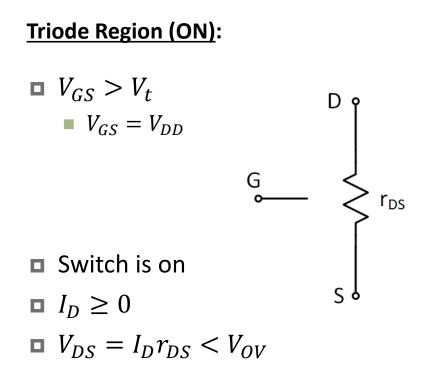
44

Low input resistance

$$R_i \approx \frac{1}{g_m}$$

• For $R_{os} \gg 1/g_m$, there will be significant attenuation from v_s to v_i

 $v_i \ll v_s$


\square The overall gain from v_s to v_o may be small

- □ Like the common-base amplifier, useful in specific applications:
 - Low source resistance
 - E.g., amplifiers driven by cables
 - **R**_i matched to Z_0 (e.g. 50 Ω or 75 Ω) to avoid reflections
 - Current buffers
 - E.g., in *cascode* amplifiers

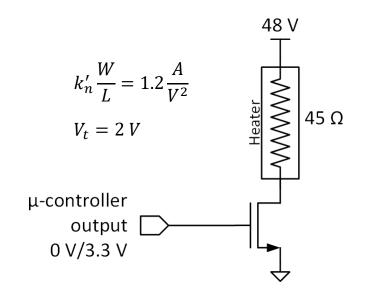
MOSFETs as Switches

- MOSFETs used as *switches* operate alternately in the *triode* (closed) and *cutoff* (open) regions
- Equivalent circuit models:

Cutoff Region (OFF):

$$V_{GS} < V_t$$

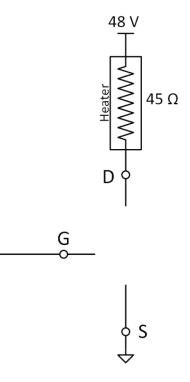
$$V_{GS} = 0$$


$$G_{O}$$

$$I_D = 0$$

$$V_{GS} = 0$$

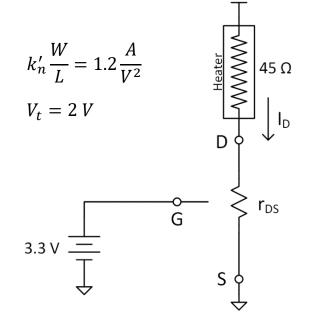
 $\Box V_{DS} = V_{DD}$


- Turn resistance heater on and off using a microcontroller
- Heater may require amperes of current
- Microcontroller output may be limited to tens of mA
- Control a MOSFET switch with the microcontroller output
 - Low-current control signal from the microcontroller
 - Gate draws no DC current
 - MOSFET switches the large current required by the heater

- 48
- When the µ-controller's output is low (0 V)

$$\Box V_{GS} = 0 V$$

- Transistor is in the cutoff region
- Switch is off
- No current flows
- The heater is off



- When the μ -controller's output is high (3.3 V)
 - **D** $V_{GS} = 3.3 V, V_{OV} = 1.3 V$
 - Transistor is in triode
 - Switch and heater are on
- Drain current in triode is:

$$I_{D} = k'_{n} \frac{W}{L} \left[V_{OV} - \frac{1}{2} V_{DS} \right] V_{DS}$$
$$I_{D} = k'_{n} \frac{W}{L} \left[V_{OV} - \frac{1}{2} (48 V - I_{D} R_{h}) \right] (48 V - I_{D} R_{h})$$

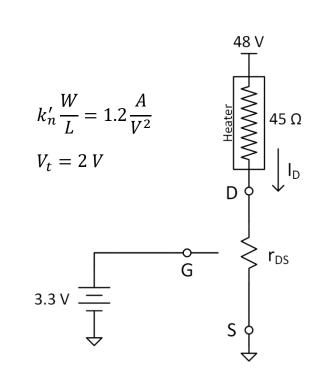
□ Can solve the above quadratic, or, assuming V_{DS} is small, approximate switch on-resistance as:

$$r_{DS} \approx \frac{1}{k'_n \frac{W}{L} V_{OV}} = \frac{1}{1.2 \frac{A}{V^2} \cdot 1.3 V} = 641 \ m\Omega$$

48 V

50

Voltage division gives approximate drain voltage


$$V_D = 48 V \cdot \frac{r_{DS}}{R_h + r_{DS}} = 48 V \cdot \frac{641 m\Omega}{45 \Omega + 641 m\Omega}$$
$$V_D = 674 mV$$

Drain current is approximately

$$I_D = \frac{48 V}{R_h + r_{DS}} = \frac{48 V}{45 \Omega + 641 m\Omega}$$
$$I_D = 1.05 A$$

Heater power is

$$P_h = I_D^2 R_h = (1.05 A)^2 \cdot 45 \Omega$$

 $P_h = 49.75 W$

