SECTION 5: MOSFET AMPLIFIERS

ECE 322 - Electronics I

MOSFET Amplifier Circuits

MOSFET Amplifier Circuits - Preview

\square In this section of the course, we will look at three MOSFET amplifiers, with a focus on the following two circuits:

Common-Source Amplifier:

\square High voltage gain
\square An amplifier

Source-Follower Amplifier:

\square Near unity gain
\square A buffer

4
 MOSFET Amplifier Biasing

MOSFET Amplifier Biasing

\square To function as an amplifier, a MOSFET must be biased in the saturation region
\square DC operating point set by the bias network
\square Resistors and power supply voltages
\square Sets the transistor's DC terminal voltages and currents - its DC bias
\square How a transistor is biased determines:
\square Small-signal characteristics
\square Small-signal model parameters

- How it will behave as an amplifier

Voltage Transfer Characteristic

\square MOSFET amplifier biased in the middle of its saturation region
\square Slope of the large-signal transfer characteristic gives the amplifier gain

- Negative slope - gain is inverting
- Small input signals yield larger output signals
- Slope is nearly linear in this region

MOSFET Biasing - Four-Resistor Bias Circuit

\square We can use a similar four-resistor bias network for MOSFET amplifiers
\square Commonly-used for both commonsource amplifiers and source-followers
\square Single power supply or bipolar supply
\square Stable biasing over device parameter variations

- Insensitive to variations in $V_{t}, k_{n}^{\prime}, \frac{W}{L}$

Analysis of the Four-Resistor Bias Circuit

\square Since $I_{G}=0$, gate voltage is simply set by the voltage divider

$$
V_{G}=V_{D D} \frac{R_{G 2}}{R_{G 1}+R_{G 2}}
$$

\square Drain current is given by

$$
\begin{aligned}
& I_{D}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right) V_{O V}^{2}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)\left(V_{G S}-V_{t}\right)^{2} \\
& I_{D}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)\left(V_{G}-V_{S}-V_{t}\right)^{2}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)\left(V_{G}-I_{D} R_{S}-V_{t}\right)^{2}
\end{aligned}
$$

\square After some rearranging, we arrive at a quadratic equation, which we can solve for I_{D} :

$$
R_{S}^{2} I_{D}^{2}-\left[2 R_{S}\left(V_{G}-V_{t}\right)+\frac{1}{\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)}\right] I_{D}+\left(V_{G}-V_{t}\right)^{2}=0
$$

Four-Resistor Bias Circuit - Example

\square Determine terminal voltages and drain current for the following circuit
\square Gate voltage:

$$
V_{G}=12 \mathrm{~V} \cdot \frac{30 \mathrm{k} \Omega}{50 \mathrm{k} \Omega+30 k \Omega}=4.5 \mathrm{~V}
$$

\square Drain current:

$$
\begin{aligned}
& I_{D}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)\left(V_{G}-V_{S}-V_{t}\right)^{2} \\
& I_{D}=1 \frac{m A}{V^{2}}\left(4.5 \mathrm{~V}-I_{D} \cdot 8 \mathrm{k} \Omega-700 \mathrm{mV}\right)^{2} \\
& I_{D}=1 \frac{m A}{V^{2}}\left(-8 \mathrm{k} \Omega \cdot I_{D}+3.8 \mathrm{~V}\right)^{2} \\
& 1 \frac{m A}{V^{2}}\left(64 e 6 \cdot I_{D}^{2}-60.8 e 3 \cdot I_{D}+14.44\right)-I_{D}=0 \\
& 64 e 6 \cdot I_{D}^{2}-61.8 e 3 \cdot I_{D}+14.44=0
\end{aligned}
$$

$$
V_{t}=700 \mathrm{mV}
$$

$$
k_{n}^{\prime}\left(\frac{W}{L}\right)=2 \frac{m A}{V^{2}}
$$

Four-Resistor Bias Circuit - Example

$$
64 e 6 \cdot I_{D}^{2}-61.8 e 3 \cdot I_{D}+14.44=0
$$

\square Solving the quadratic equation for I_{D} gives

$$
I_{D}=569 \mu A \text { or } I_{D}=396 \mu A
$$

\square For $I_{D}=569 \mu A$

$$
\begin{aligned}
& V_{S}=I_{D} R_{S}=569 \mu A \cdot 8 k \Omega=4.55 \mathrm{~V} \\
& V_{G S}=-50 \mathrm{mV}<V_{t}
\end{aligned}
$$

- The transistor would be cut-off, so this is not a valid solution

\square DC operating point:

$$
\begin{aligned}
& I_{D}=396 \mu \mathrm{~A} \\
& V_{S}=396 \mu \mathrm{~A} \cdot 8 \mathrm{k} \Omega=3.17 \mathrm{~V} \\
& V_{G S}=1.33 \mathrm{~V} \\
& V_{O V}=630 \mathrm{mV} \\
& V_{D}=V_{D D}-I_{D} R_{D}=8.04 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& V_{t}=700 \mathrm{mV} \\
& k_{n}^{\prime}\left(\frac{W}{L}\right)=2 \frac{m A}{V^{2}}
\end{aligned}
$$

Design of the Four-Resistor Bias Circuit

\square To design a bias network to provide a desired drain current:
\square Select R_{D} and R_{S} to each drop approximately one third of the supply voltage

- That will leave approximately one third of the supply voltage across $V_{D S}$
\square Calculate the required $V_{O V}, V_{G S}$, and V_{G}
\square Select the voltage divider resistors at the gate to provide the required gate voltage

Bias Circuit Design - Example

\square Design the bias network to provide $I_{D}=800 \mu \mathrm{~A}$
\square Calculate R_{D} and R_{S} to each drop $V_{D D} / 3$

$$
R_{D}=R_{S}=\frac{V_{D D} / 3}{I_{D}}=\frac{5 \mathrm{~V}}{800 \mu \mathrm{~A}}=6.25 \mathrm{k} \Omega
$$

\square The required overdrive voltage is

$$
V_{O V}=\sqrt{\frac{2 I_{D}}{k_{n}^{\prime}\left(\frac{W}{L}\right)}}=\sqrt{\frac{1.6 \mathrm{~mA}}{1 \frac{m A}{V^{2}}}}=1.26 \mathrm{~V}
$$

\square The gate-source voltage

$$
\begin{aligned}
& V_{G S}=V_{O V}+V_{t}=1.26 \mathrm{~V}+800 \mathrm{mV} \\
& V_{G S}=2.06 \mathrm{~V}
\end{aligned}
$$

Bias Circuit Design - Example

\square Determine the required gate voltage

$$
\begin{aligned}
& V_{G}=V_{S}+V_{G S}=I_{D} R_{S}+V_{G S} \\
& V_{G}=800 \mu A \cdot 6.25 \mathrm{k} \Omega+2.06 \mathrm{~V} \\
& V_{G}=7.06 \mathrm{~V}
\end{aligned}
$$

\square Finally, select $R_{G 1}$ and $R_{G 2}$ to provide the required V_{G}

$$
\begin{gathered}
R_{G 1}=100 \mathrm{k} \Omega \\
R_{G 2}=89 \mathrm{k} \Omega
\end{gathered}
$$

$$
\begin{aligned}
& V_{t}=800 m V \\
& k_{n}^{\prime}\left(\frac{W}{L}\right)=1 \frac{m A}{V^{2}}
\end{aligned}
$$

14 Common-Source Amplifier

Common-Source Amplifier

\square Common-source amplifier
\square All capacitors are ACcoupling/DC blocking capacitors

- Open at DC
\square Shorts at signal frequencies
- Isolate transistor bias from source/load

$$
V_{t}=1.6 \mathrm{~V} \quad k_{n}^{\prime}\left(\frac{W}{L}\right)=170 \frac{\mathrm{~mA}}{V^{2}}
$$

\square Called common-source, because source is connected to common - i.e., ground or a power supply
$\square C_{S}$ is a small-signal short to ground
\square Source is at small-signal ground

Common-Source Amplifier

\square Analyze the amplifier to find:

- DC operating point
- Small-signal voltage gain
\square DC operating point:
- The gate voltage is given by

$$
\begin{aligned}
& V_{G}=V_{D D} \frac{R_{G 2}}{R_{G 1}+R_{G 2}} \\
& V_{G}=12 V \frac{115 \mathrm{k} \Omega}{100 \mathrm{k} \Omega+115 \mathrm{k} \Omega} \\
& V_{G}=6.4 \mathrm{~V}
\end{aligned}
$$

C-S Amplifier - Large-Signal Analysis

$\square \quad$ Drain current is given by

$$
I_{D}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right) V_{O V}^{2}=\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)\left(V_{G}-I_{D} R_{S}-V_{t}\right)^{2}
$$

\square As we have seen, solving for I_{D} results in the following quadratic

$$
\begin{aligned}
& R_{S}^{2} I_{D}^{2}-\left[2 R_{S}\left(V_{G}-V_{t}\right)+\frac{1}{\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)}\right] I_{D}+\left(V_{G}-V_{t}\right)^{2}=0 \\
& 6.4 e 3 \cdot I_{D}^{2}-779.8 \cdot I_{D}+23.0=0
\end{aligned}
$$

\square This has two solutions

$$
I_{D}=72 \mathrm{~mA} \text { or } I_{D}=51 \mathrm{~mA}
$$

\square The first solution would put the transistor in cutoff, so $I_{D}=51 \mathrm{~mA}$

C-S Amplifier - Large-Signal Analysis

\square Use the drain current to determine terminal voltages

$$
\begin{aligned}
& V_{D}=V_{D D}-I_{D} R_{D} \\
& V_{D}=12 \mathrm{~V}-51 \mathrm{~mA} \cdot 80 \Omega=7.95 \mathrm{~V} \\
& V_{S}=I_{D} R_{S}=51 \mathrm{~mA} \cdot 80 \Omega \\
& V_{S}=4.05 \mathrm{~V}
\end{aligned}
$$

\square The complete DC operating point:

$$
\begin{array}{ll}
V_{G}=6.42 \mathrm{~V} & I_{D}=51 \mathrm{~mA} \\
V_{G S}=2.37 \mathrm{~V} & V_{D}=7.95 \mathrm{~V} \\
V_{O V}=0.77 \mathrm{~V} & V_{S}=4.05 \mathrm{~V}
\end{array}
$$

C-S Amplifier - Small-Signal Analysis

\square The DC operating point allows us to determine the transconductance for the transistor's small-signal model

$$
g_{m}=k_{n}^{\prime}\left(\frac{W}{L}\right) V_{O V}=170 \frac{\mathrm{~mA}}{V^{2}} \cdot 0.77 \mathrm{~V}=131 \mathrm{mS}
$$

\square Next, create the small-signal equivalent circuit for the amplifier and perform a small-signal analysis:

1. Replace all AC coupling capacitors with shorts

- Large enough to look like shorts at signal frequencies

2. Connect all DC supply voltages to ground

- From a small-signal perspective these are all constant voltages
- Small-signal ground

3. Replace the transistor with its small-signal model

C-S Amplifier - Small-Signal Analysis

\square Small-signal equivalent circuit

- Use to determine small-signal voltage gain

\square Source is connected to small signal ground through C_{S}
$\square R_{G 1}$ and $R_{G 2}$ appear in parallel at the gate

$$
R_{i}=R_{G 1} \| R_{G 2}=53.5 \mathrm{k} \Omega
$$

$\square R_{D}$ and R_{L} are in parallel at the output

$$
R_{o}=R_{D} \| R_{L}=74 \Omega
$$

\square Input voltage, $v_{i}(t)$, is the gate-source voltage, $v_{g s}$

C-S Amplifier - Small-Signal Analysis

\square Determine the small-signal voltage gain:

$$
\begin{equation*}
A_{v}=\frac{v_{o}}{v_{i}} \tag{1}
\end{equation*}
$$

\square The input is applied across the G-S junction, so

$$
\begin{equation*}
v_{i}=v_{g s} \tag{2}
\end{equation*}
$$

\square The output is the drain current applied across the output resistance

$$
\begin{equation*}
v_{o}=-i_{d} R_{o}=-g_{m} v_{g s} R_{o} \tag{3}
\end{equation*}
$$

C-S Amplifier - Small-Signal Analysis

\square Substituting (3) and (2) into (1) gives the gain:

$$
A_{v}=\frac{v_{o}}{v_{i}}=-\frac{g_{m} v_{g s} R_{o}}{v_{g s}}=-g_{m} R_{o}
$$

\square This is the gain for any common-source amplifier

$$
A_{v}=-g_{m} R_{o}
$$

\square The negative sign indicates that the amplifier has inverting gain

C-S Amplifier - Small-Signal Analysis

\square For this circuit, the gain (from v_{i} to v_{o}) is

$$
A_{v}=\frac{v_{o}}{v_{i}}=-131 \mathrm{mS} \cdot 74 \Omega=-9.7
$$

\square For the gain from v_{s} to v_{o}, account for attenuation due to source loading

$$
A_{v}=\frac{v_{o}}{v_{s}}=\frac{v_{i}}{v_{s}} \cdot \frac{v_{o}}{v_{i}}=\frac{R_{i}}{R_{s}+R_{i}} \cdot\left(-g_{m} R_{o}\right)
$$

\square Here,

$$
A_{v}=\frac{v_{o}}{v_{s}}=\frac{53.5 \mathrm{k} \Omega}{500 \Omega+53.5 \mathrm{k} \Omega} \cdot(-9.7)=-9.6
$$

C-S Amplifier - Small-Signal Analysis

\square The output for a $200 \mathrm{mV} V_{p p}, 100 \mathrm{kHz}$ input:

C-S Amplifier - Dynamic Range

\square Dynamic range

- Range of input or output signal for which the transistor remains in the saturation region

- The amplifier's linear range
\square For saturation bias:
- D-S voltage must remain greater than the overdrive voltage

$$
v_{D S}>V_{O V}
$$

- G-S voltage must remain greater than the threshold voltage

$$
v_{G S}>V_{t}
$$

C-S Amplifier - Input \& Output Resistance

\square Gate resistance is infinite, so amplifier input resistance is

$$
R_{i}=R_{G 1} \| R_{G 2}
$$

\square Output resistance is the drain resistance:

$$
R_{o}=R_{D}
$$

- Or, if accounting for channel-length modulation:

$$
R_{o}=R_{D} \| r_{o}
$$

C-S Amplifier - Gain

$$
A_{v}=-g_{m} R_{o}
$$

\square C-S gain is determined by $\boldsymbol{g}_{\boldsymbol{m}}$ and $\boldsymbol{R}_{\boldsymbol{o}}$
\square Select $R_{o}\left(R_{D}\right)$ and set g_{m} for desired gain

- Transconductance is proportional to the square root of bias current

$$
g_{m}=\sqrt{k_{n}^{\prime}\left(\frac{W}{L}\right) I_{D}}
$$

- Therefore, gain is proportional to the square root of bias current

28
 Source Degeneration

C-S Amplifier - Source Degeneration

\square The C-S amplifier we have looked at so far had its source grounded (small-signal ground)

- Due to bypass capacitor, C_{S}, around R_{S}
\square What if we remove C_{S} ?
- Or add another source resistor not bypassed by C_{S}
- Source degeneration

C-S Amplifier - Source Degeneration

\square Now, R_{S} is included in the small signal equivalent circuit \square Source is no longer connected to small-signal ground
\square Analysis will be simplified if we use the T-model

- Usually the case whenever we have source resistance
$\square R_{S}$ will be in series with resistance in the model

C-S Amplifier - Source Degeneration

\square The output is still given by

$$
v_{o}=-i_{d} R_{o}=-g_{m} v_{g s} R_{o}
$$

\square But, now, $v_{g s}$ is the portion of v_{i} that appears across the $1 / g_{m}$ resistance

$$
\begin{aligned}
& v_{g s}=v_{i} \frac{1 / g_{m}}{1 / g_{m}+R_{S}} \\
& v_{g s}=v_{i} \frac{1}{1+g_{m} R_{S}}
\end{aligned}
$$

\square The output is

$$
v_{o}=v_{i}\left(-g_{m} R_{o} \frac{1}{1+g_{m} R_{S}}\right)
$$

Source Degeneration - Gain

\square Rearranging the expression for the output gives the gain

$$
A_{v}=-\frac{g_{m} R_{o}}{1+g_{m} R_{S}}
$$

\square Source degeneration reduces the gain by a factor of $\left(1+g_{m} R_{S}\right)$
\square If $R_{S} \gg 1 / g_{m}$, then $g_{m} R_{S} \gg 1$, and

$$
A_{v}=-\frac{R_{o}}{R_{S}}
$$

Source Degeneration - Transconductance

$$
A_{v}=-\frac{g_{m} R_{o}}{1+g_{m} R_{S}}
$$

\square We can rewrite the gain as

$$
A_{v}=-G_{m} R_{o}
$$

$\square G_{m}$ is the effective transconductance of the
 amplifier

$$
G_{m}=\frac{g_{m}}{1+g_{m} R_{S}}
$$

\square Source degeneration reduces the transconductance by a factor of ($1+g_{m} R_{S}$)

- This is why we see a reduction in gain by the same factor

Source Follower

Source-Follower

\square Source-follower amplifier

- Input applied to the gate
- Output at the source
\square Source follows the gate
\square Also called a common-drain amplifier (CD)
\square Drain is connected to small-signal ground

Source-Follower - Small-Signal Analysis

\square Replace the MOSFET with small-signal model

- Source resistance, so use T-model
- Short coupling caps
- DC voltages connect to ground
- Simplify parallel resistances

Source-Follower - Small-Signal Analysis

\square Determine the gain from v_{i} to v_{o}

$$
A_{v}=\frac{v_{o}}{v_{i}}
$$

Applying voltage division gives the output

$$
v_{o}=v_{i} \frac{R_{S} \| R_{L}}{\left(R_{S} \| R_{L}+\frac{1}{g_{m}}\right)}
$$

Rearrange to get the gain

$$
A_{v}=\frac{R_{S} \| R_{L}}{\left(R_{S} \| R_{L}+\frac{1}{g_{m}}\right)}
$$

- Clearly, $A_{v}<1$
- But, for $R_{S}| | R_{L} \gg 1 / g_{m}, A_{v} \approx 1$

Source Follower - Input \& Output Resistance

\square Gate resistance is infinite, so amplifier input resistance is

$$
R_{i}=R_{G 1} \| R_{G 2}
$$

\square The output resistance is the source resistance in parallel with $1 / g_{m}$:

$$
R_{o}=R_{S} \| \frac{1}{g_{m}}
$$

Common-Gate Amplifier

Common-Gate Amplifier

\square The third MOSFET amplifier configuration we will look at is the common-gate amplifier

- Input applied to the source
- Output taken from the drain
\square Gate is connected to small-signal ground
- The least common of the three amplifiers

Common-Gate Amplifier - Gain

\square There is source resistance, so use the T-model for small-signal analysis
\square The output is given by

$$
\begin{aligned}
v_{o} & =-i_{d} R_{D} \| R_{L} \\
v_{o} & =-g_{m} v_{g s} R_{D} \| R_{L} \\
v_{o} & =g_{m} v_{i} R_{D} \| R_{L}
\end{aligned}
$$

\square Common-gate voltage gain is

$$
A_{v}=g_{m} R_{D} \| R_{L}
$$

Common-Gate - Input Resistance

$\square R_{i}$ is the parallel combination of the resistance connected to the source and the resistance looking into the source

$$
R_{i}=R_{S} \| \frac{1}{g_{m}}
$$

If $1 / g_{m} \ll R_{S}$, then

Common-Gate - Output Resistance

\square If we neglect the transistor's output resistance, r_{o}, the common-gate output resistance is

$$
R_{o}=R_{D}
$$

- Entirely determined by the drain resistor

Common-Gate Amplifier

\square Low input resistance

$$
R_{i} \approx \frac{1}{g_{m}}
$$

- For $R_{o s} \gg 1 / g_{m}$, there will be significant attenuation from v_{s} to v_{i}

$$
v_{i} \ll v_{s}
$$

- The overall gain from v_{s} to v_{o} may be small
\square Like the common-base amplifier, useful in specific applications:
- Low source resistance
- E.g., amplifiers driven by cables
- R_{i} matched to Z_{0} (e.g. 50Ω or 75Ω) to avoid reflections
- Current buffers
- E.g., in cascode amplifiers

MOSFETs as Switches

MOSFETs as Switches

\square MOSFETs used as switches operate alternately in the triode (closed) and cutoff (open) regions
\square Equivalent circuit models:

Triode Region (ON):

- $V_{G S}>V_{t}$
- $V_{G S}=V_{D D}$
- Switch is on
- $I_{D} \geq 0$

Cutoff Region (OFF):

- $V_{G S}<V_{t}$
- $V_{G S}=0$
- Switch is off
- $I_{D}=0$
- $V_{D S}=V_{D D}$

- $V_{D S}=I_{D} r_{D S}<V_{O V}$

Using a MOSFET as a Switch - Example

- Turn resistance heater on and off using a microcontroller
- Heater may require amperes of current
- Microcontroller output may be limited to tens of mA
\square Control a MOSFET switch with the microcontroller output
- Low-current control signal from the microcontroller
- Gate draws no DC current
- MOSFET switches the large current required by the heater

Using a MOSFET as a Switch - Example

\square When the μ-controller's output is low (0 V)
$\square V_{G S}=0 \mathrm{~V}$
\square Transistor is in the cutoff region
\square Switch is off

- No current flows
- The heater is off

Using a MOSFET as a Switch - Example

\square When the μ-controller's output is high (3.3 V)

- $V_{G S}=3.3 \mathrm{~V}, V_{O V}=1.3 \mathrm{~V}$
- Transistor is in triode
- Switch and heater are on
\square Drain current in triode is:

$$
r_{D S} \approx \frac{1}{k_{n}^{\prime} \frac{W}{L} V_{O V}}=\frac{1}{1.2 \frac{A}{V^{2}} \cdot 1.3 \mathrm{~V}}=641 \mathrm{~m} \Omega
$$

Using a MOSFET as a Switch - Example

\square Voltage division gives approximate drain voltage

$$
\begin{aligned}
V_{D} & =48 \mathrm{~V} \cdot \frac{r_{D S}}{R_{h}+r_{D S}}=48 \mathrm{~V} \cdot \frac{641 \mathrm{~m} \Omega}{45 \Omega+641 \mathrm{~m} \Omega} \\
V_{D} & =674 \mathrm{mV}
\end{aligned}
$$

\square Drain current is approximately

$$
\begin{aligned}
I_{D} & =\frac{48 \mathrm{~V}}{R_{h}+r_{D S}}=\frac{48 \mathrm{~V}}{45 \Omega+641 \mathrm{~m} \Omega} \\
I_{D} & =1.05 \mathrm{~A}
\end{aligned}
$$

\square Heater power is

$$
\begin{aligned}
& P_{h}=I_{D}^{2} R_{h}=(1.05 A)^{2} \cdot 45 \Omega \\
& P_{h}=49.75 \mathrm{~W}
\end{aligned}
$$

