
ENGR 102 – Introduction to Engineering

CLASS 13:
PYTHON SCRIPTS

Webb ENGR 102

Python Scripts - Modules2

Webb ENGR 102

3

Spyder Console

 As we’ve seen, we can execute Python commands
through the console

 Useful for quick calculations, debugging, etc.

 Enter one expression at a time

 To execute a sequence of commands repeatedly, must
re-enter all commands each time

 Command history is only record of executed commands

 Better practice is to write all commands to be
executed in a single file, script, or module

Webb ENGR 102

4

Python Scripts

 Scripts or modules or programs are files containing
a series of Python commands

 .py filename extension

 Quickly and easily re-run at any time – no need to re-
type all commands in the command window

 Execute in Spyder by clicking the Run button (or F5)

 Our primary mode of executing Python code

Webb ENGR 102

5

Scripts vs. Programs vs. Modules

 We’ll use the terms scripts or programs interchangeably when referring to
Python files

 Technically, they are scripts, but this distinction is not important for our
purposes.

 Programs
 Written (possibly) in a high-level language – source code

 Compiled (once) by a compiler into a machine language executable file – object
code

 Fast, because compilation performed once, ahead of runtime

 Scripts
 High-level source code is interpreted and executed line-by-line by an interpreter

at runtime

 Slower than compiled programs

 Modules
 Python scripts that are intended to be imported into other scripts or modules

Webb ENGR 102

6

Python Scripts – Best Practices

Start scripts with a comment listing the file name.

Additional comments
with a brief overall
script description and
other details is useful.

Thoroughly
comment
your code.

Define variables to be
used in equations.
Parameters can be
changed in a single place.

• Keep your code DRY:
Don't Repeat Yourself

Webb ENGR 102

7

Comments

 Comments are explanatory or descriptive text added to your code
 Not executed commands

 In Python, comments are preceded by the hash mark: #

 Comments may occupy an
entire line

 Or, may be inserted at the
end of a line, after
uncommented expressions

 Ctrl+1 comments and uncomments a line of text in the Spyder editor

 Commenting is useful for temporarily removing instructions from a
script

Webb ENGR 102

8

Cells

 Can divide Spyder scripts into cells
 Code blocks that can be executed at

once, without running the entire
script

 Cells are defined with a special
comment line:
 Follow the hash mark, #, with two

percent signs, %%

 Can also include comment text

%% start of a cell

 Cell ends at the start of the next cell

 To run a cell:
 Place the cursor in the cell to be run

 Ctrl-Enter, or click 'Run current cell'

Webb ENGR 102

9

Pseudocode

 The most important part of the process of writing
computer code is planning
 Determine exactly what the program should do

 And, how it will do it

 Before writing any code, write a step-by-step
description of the program
 Natural language

 Graphical – flow chart

 This may be referred to as pseudocode

Webb ENGR 102

10

Programming Process

 Programming process:

 Define the problem
 Ensure you have a complete understanding of the problem
 Determine exactly what the program should do

 Inputs and outputs
 Relevant equations

 Design the program
 Pseudocode – language-independent

 Write the program
 Simple translation from pseudocode

 Validate the program
 Do the outputs make sense
 Test with inputs that yield known outputs
 Test thoroughly – try to break it

Webb ENGR 102

11

Pseudocode

 Comments can serve as pseudocode
 Write the comments first
 Then insert code to do what the comments say

 For example:

Webb ENGR 102

12

Sequential Code Execution

 In general code is executed line-by-line sequentially
from the top of an m-file down

 There are, however, very important non-sequential
code structures:

 Conditional statements – code that is executed only if
certain conditions are met
 if
 if … else
 if … elif … else

 Loops – code that is repeated a specified number of times
or while certain conditions are met
 for
 while

Webb ENGR 102

Inputs & Outputs13

Webb ENGR 102

14

Inputs to Scripts

 Inputs to a script:

 Assignments of variable values

 Several input methods:

 Within the script

 From external files (.csv, Excel, etc.) – more later

 Specified by user during execution – input()

Webb ENGR 102

15

User-Specified Input – input()

 Prompt user for value to be assigned to a variable

var = input(Prompt)

 Prompt: a string that will be displayed in the console, prompting
the user for an input

 var: string variable to which the user-specified input is stored

 Re-cast for different data types (e.g. float)

 For example:

Webb ENGR 102

16

Outputs from Scripts

 Outputs from scripts:

 Display of values calculated by the script

 Several output methods

 Plotting (more later)

 In the console

 print()

 Writing data to files (more later)

Webb ENGR 102

17

print()

 Output a string to the console

print(string)

 string: a string – may contain formatting sequences for
insertion of variable values

 For example:

Webb ENGR 102

18

Formatting Strings – .format()

 Insert formatted numbers and strings into a string

<template>.format(args)

 <template>: a string containing replacement fields for insertion of
variable values
 Replacement fields may include formatting specifications

 args: objects to be inserted into the <template> string
 Strings or numeric values

 For example:

Webb ENGR 102

19

.format() – Syntax & Terminology

<template>.format(args)

 .format() is a method applied to the object,
<template>, which is an instance of the class str

 Class: a template for creating objects
 For now, think of this as the data type
 Here, the class is string, str
 Classes have attributes and methods associated with them

 Object: an instance of a class
 On the previous page, s is an object of type str

 Method: a function associated with a specific class
 Here, format() is a method that operates on str objects

 These object-oriented programming concepts will be
covered in detail later in the course

Webb ENGR 102

20

Formatting Strings – Replacement Fields

 Replacement fields:

 Enclosed in curly brackets, {}

 Arguments in format() are inserted in order

 May include a formatting specification, format_spec

{:format_spec}

 format_spec: specifies how to format numeric values

Webb ENGR 102

21

Formatting Strings – format_spec

 format_spec:
 Specify how numeric values are formatted

:[width][group][.prec][type]

 Always start format_spec with a colon, :

 width: minimum width of the field into which the
argument is inserted – may result in white space

 group: grouping character for each three digits to the left
of the decimal point (e.g. , or _)

 .prec: number of digits after the decimal point for floating
point numbers, or maximum field width for strings

 type: presentation type, e.g. floating point, integer, string,
etc.

Webb ENGR 102

22

format_spec – type

 Type characters specify how to format variable values within
a string

Presentation Type Type Character

Decimal integer d

Binary integer b

Hexadecimal integer x

Floating point f or F

Exponential notation
(e.g., 1.6e-19 or 1.6E-19)

e or E

More compact of %e or %f g

More compact of %E or %F G

Single character c

String s

Percentage %

Webb ENGR 102

23

format_spec – Examples

 Fixed-point notation

 Field-width control

 Exponential notation

 Compact format
 Note that .prec

specifies number of
significant figures for
g or G type

