
ENGR 102 – Introduction to Engineering

CLASS 13:
PYTHON SCRIPTS

Webb ENGR 102

Python Scripts - Modules2

Webb ENGR 102

3

Spyder Console

 As we’ve seen, we can execute Python commands
through the console

 Useful for quick calculations, debugging, etc.

 Enter one expression at a time

 To execute a sequence of commands repeatedly, must
re-enter all commands each time

 Command history is only record of executed commands

 Better practice is to write all commands to be
executed in a single file, script, or module

Webb ENGR 102

4

Python Scripts

 Scripts or modules or programs are files containing
a series of Python commands

 .py filename extension

 Quickly and easily re-run at any time – no need to re-
type all commands in the command window

 Execute in Spyder by clicking the Run button (or F5)

 Our primary mode of executing Python code

Webb ENGR 102

5

Scripts vs. Programs vs. Modules

 We’ll use the terms scripts or programs interchangeably when referring to
Python files

 Technically, they are scripts, but this distinction is not important for our
purposes.

 Programs
 Written (possibly) in a high-level language – source code

 Compiled (once) by a compiler into a machine language executable file – object
code

 Fast, because compilation performed once, ahead of runtime

 Scripts
 High-level source code is interpreted and executed line-by-line by an interpreter

at runtime

 Slower than compiled programs

 Modules
 Python scripts that are intended to be imported into other scripts or modules

Webb ENGR 102

6

Python Scripts – Best Practices

Start scripts with a comment listing the file name.

Additional comments
with a brief overall
script description and
other details is useful.

Thoroughly
comment
your code.

Define variables to be
used in equations.
Parameters can be
changed in a single place.

• Keep your code DRY:
Don't Repeat Yourself

Webb ENGR 102

7

Comments

 Comments are explanatory or descriptive text added to your code
 Not executed commands

 In Python, comments are preceded by the hash mark: #

 Comments may occupy an
entire line

 Or, may be inserted at the
end of a line, after
uncommented expressions

 Ctrl+1 comments and uncomments a line of text in the Spyder editor

 Commenting is useful for temporarily removing instructions from a
script

Webb ENGR 102

8

Cells

 Can divide Spyder scripts into cells
 Code blocks that can be executed at

once, without running the entire
script

 Cells are defined with a special
comment line:
 Follow the hash mark, #, with two

percent signs, %%

 Can also include comment text

%% start of a cell

 Cell ends at the start of the next cell

 To run a cell:
 Place the cursor in the cell to be run

 Ctrl-Enter, or click 'Run current cell'

Webb ENGR 102

9

Pseudocode

 The most important part of the process of writing
computer code is planning
 Determine exactly what the program should do

 And, how it will do it

 Before writing any code, write a step-by-step
description of the program
 Natural language

 Graphical – flow chart

 This may be referred to as pseudocode

Webb ENGR 102

10

Programming Process

 Programming process:

 Define the problem
 Ensure you have a complete understanding of the problem
 Determine exactly what the program should do

 Inputs and outputs
 Relevant equations

 Design the program
 Pseudocode – language-independent

 Write the program
 Simple translation from pseudocode

 Validate the program
 Do the outputs make sense
 Test with inputs that yield known outputs
 Test thoroughly – try to break it

Webb ENGR 102

11

Pseudocode

 Comments can serve as pseudocode
 Write the comments first
 Then insert code to do what the comments say

 For example:

Webb ENGR 102

12

Sequential Code Execution

 In general code is executed line-by-line sequentially
from the top of an m-file down

 There are, however, very important non-sequential
code structures:

 Conditional statements – code that is executed only if
certain conditions are met
 if
 if … else
 if … elif … else

 Loops – code that is repeated a specified number of times
or while certain conditions are met
 for
 while

Webb ENGR 102

Inputs & Outputs13

Webb ENGR 102

14

Inputs to Scripts

 Inputs to a script:

 Assignments of variable values

 Several input methods:

 Within the script

 From external files (.csv, Excel, etc.) – more later

 Specified by user during execution – input()

Webb ENGR 102

15

User-Specified Input – input()

 Prompt user for value to be assigned to a variable

var = input(Prompt)

 Prompt: a string that will be displayed in the console, prompting
the user for an input

 var: string variable to which the user-specified input is stored

 Re-cast for different data types (e.g. float)

 For example:

Webb ENGR 102

16

Outputs from Scripts

 Outputs from scripts:

 Display of values calculated by the script

 Several output methods

 Plotting (more later)

 In the console

 print()

 Writing data to files (more later)

Webb ENGR 102

17

print()

 Output a string to the console

print(string)

 string: a string – may contain formatting sequences for
insertion of variable values

 For example:

Webb ENGR 102

18

Formatting Strings – .format()

 Insert formatted numbers and strings into a string

<template>.format(args)

 <template>: a string containing replacement fields for insertion of
variable values
 Replacement fields may include formatting specifications

 args: objects to be inserted into the <template> string
 Strings or numeric values

 For example:

Webb ENGR 102

19

.format() – Syntax & Terminology

<template>.format(args)

 .format() is a method applied to the object,
<template>, which is an instance of the class str

 Class: a template for creating objects
 For now, think of this as the data type
 Here, the class is string, str
 Classes have attributes and methods associated with them

 Object: an instance of a class
 On the previous page, s is an object of type str

 Method: a function associated with a specific class
 Here, format() is a method that operates on str objects

 These object-oriented programming concepts will be
covered in detail later in the course

Webb ENGR 102

20

Formatting Strings – Replacement Fields

 Replacement fields:

 Enclosed in curly brackets, {}

 Arguments in format() are inserted in order

 May include a formatting specification, format_spec

{:format_spec}

 format_spec: specifies how to format numeric values

Webb ENGR 102

21

Formatting Strings – format_spec

 format_spec:
 Specify how numeric values are formatted

:[width][group][.prec][type]

 Always start format_spec with a colon, :

 width: minimum width of the field into which the
argument is inserted – may result in white space

 group: grouping character for each three digits to the left
of the decimal point (e.g. , or _)

 .prec: number of digits after the decimal point for floating
point numbers, or maximum field width for strings

 type: presentation type, e.g. floating point, integer, string,
etc.

Webb ENGR 102

22

format_spec – type

 Type characters specify how to format variable values within
a string

Presentation Type Type Character

Decimal integer d

Binary integer b

Hexadecimal integer x

Floating point f or F

Exponential notation
(e.g., 1.6e-19 or 1.6E-19)

e or E

More compact of %e or %f g

More compact of %E or %F G

Single character c

String s

Percentage %

Webb ENGR 102

23

format_spec – Examples

 Fixed-point notation

 Field-width control

 Exponential notation

 Compact format
 Note that .prec

specifies number of
significant figures for
g or G type

