CLASS 13:
PYTHON SCRIPTS

- ENGR 102 — Introduction to Engineering

- Modules

Spyder Console
-
As we’ve seen, we can execute Python commands
through the console
o Useful for quick calculations, debugging, etc.
O Enter one expression at a time

o To execute a sequence of commands repeatedly, must
re-enter all commands each time

o Command history is only record of executed commands

Better practice is to write all commands to be
executed in a single file, script, or module

Webb ENGR 102

Python Scripts

Scripts or modules or programs are files containing
a series of Python commands

o . py filename extension

o Quickly and easily re-run at any time — no need to re-
type all commands in the command window

O Execute in Spyder by clicking the Run button (or F5)

@ Spyder (Python 3.8)
File Edit Search Source

& Conscles Projects Tools View Help

PED G = ==» 00
=EB%&Ex 00!

O 5 =EQq

x & 5 Q C

Our primary mode of executing Python code

Webb ENGR 102

Scripts vs. Programs vs. Modules
-

We'll use the terms scripts or programs interchangeably when referring to
Python files

Technically, they are scripts, but this distinction is not important for our
purposes.

Programs
o Written (possibly) in a high-level language — source code

o Compiled (once) by a compiler into a machine language executable file — object
code

o Fast, because compilation performed once, ahead of runtime

Scripts

o High-level source code is interpreted and executed line-by-line by an interpreter
at runtime

o Slower than compiled programs

Modules
o Python scripts that are intended to be imported into other scripts or modules

Webb ENGR 102

Python Scripts — Best Practices

Start scripts with a comment listing the file name.

Additional comments
with a brief overall

script description and
other details is useful.

Define variables to be
used in equations.
Parameters can be

changed in a single place.

e Keep your code DRY:
Don't Repeat Yourself

Webb

import matplotlib.pyplot as plt
import numpy as np

Thoroughly
R = 1le3
C = 18e-9 <— comment
tau = R*C

Vi= -1 your code.
vf = 2]

t = np.linspace(@, 18%tau, 1888)

vo = W + (Vi - Vf)*np.exp(-t/tau)

plt.figure(1)

plt.plot(t/le-6, wo, label="%v o(t)%")
plt.xlabel(' time [$'mu sec$]")
plt.ylabel(v _o(t)% [vl")
plt.grid()

plt.xlim({&, 18a})

plt.title('RC Circuit Response')

~|

ENGR 102

Comments
X

Comments are explanatory or descriptive text added to your code
o Not executed commands

In Python, comments are preceded by the hash mark: #

Comments may occupy an
entire line _

R = 1e3
C = lae-9
tau = R*C

k¥ T

Or, may be inserted at the >
= 2

end of a line, after —
uncommented expressions

t = np.linspace(®, 12%tau, 1288)

Ctrl+1 comments and uncomments a line of text in the Spyder editor

Commenting is useful for temporarily removing instructions from a
script

Webb ENGR 102

Cells

Can divide Spyder scripts into cells

o Code blocks that can be executed at
once, without running the entire
script

Cells are defined with a special
comment line:

o Follow the hash mark, #, with two
percent signs, %%

o Can also include comment text

%% start of a cell

o Cell ends at the start of the next cell

To run a cell:
o Place the cursor in the cell to be run
o Ctrl-Enter, or click 'Run current cell’

Webb

rng = np.random.default_rng()
print{ '\n")

for i in range(1@):
x = rng.uniform(low=8, high=1)
print('x = {:8.47} " .Tormat(x))

¥ = rng.integers(a, 1@8, 1a8)
xmax = x[@]
imax = @

for i, xval in enumerate(x[1:])
if wwal > xmax:
xmax = xval
imax = 1

print('\nx = ", x)
print('\nxmax: x[{:d}] = {:d}'.format(i, >max))

Debug Consoles Projects Tools View He

> HB® G &=

Run current cell
[Use #%% to create cells] (Ctrl+Return)
T ST ™Y

ENGR 102

Pseudocode

The most important part of the process of writing
computer code is planning

o Determine exactly what the program should do
o And, how it will do it

Before writing any code, write a step-by-step
description of the program

o Natural language
o Graphical — flow chart

This may be referred to as pseudocode

Webb ENGR 102

Programming Process
e

Programming process:

o Define the problem
Ensure you have a complete understanding of the problem

Determine exactly what the program should do
Inputs and outputs
Relevant equations

o Design the program
Pseudocode — language-independent

o Write the program
Simple translation from pseudocode

o Validate the program
Do the outputs make sense
Test with inputs that yield known outputs
Test thoroughly — try to break it

Webb ENGR 102

Pseudocode

1 Comments can serve as pseudocode
o Write the comments first
o Then insert code to do what the comments say

-1 For example:

1 # max_pow_
2 #
3 # T
Fil i#
1 # max_pow._ 5 #
2 i B
3 # T 7 # define pi
4 # 8 rho = 1006 #
5 # 9 g = 9.81 #
6 18
7 - 11 # prompt user to enter the amount o
8 = 12 h = input('Enter the head [m]: ")
9 # 13 h = float(h)

|—=
[xx]

-

I

=

=
t1
]
=
Ln

nput('Enter the flow rate [m"3..-"sf|: | .

el el el

W Ty X%

1t t

]]

o

[P R
[I o RS

pmax = rho*g*h*Q

o
~ o
t

M
(R
=

pr‘int{"ﬁ..n.‘-'lax. Power = {} MW'.format(pmax/le6))

el
o ca
P b
i pa

Webb ENGR 102

Sequential Code Execution

In general code is executed line-by-line sequentially
from the top of an m-file down

There are, however, very important non-sequential
code structures:

o Conditional statements — code that is executed only if
certain conditions are met
if
if .. else
if .. elif .. else

O Loops — code that is repeated a specified number of times
or while certain conditions are met

for
while

Webb ENGR 102

- Inputs & Outputs

Inputs to Scripts
e

Inputs to a script:
o Assignments of variable values

Several input methods:

o Within the script

o From external files (.csv, Excel, etc.) — more later
o Specified by user during execution — input ()

Webb ENGR 102

User-Specified Input — input ()
-
Prompt user for value to be assigned to a variable

var = input(Prompt)

O Prompt: a string that will be displayed in the console, prompting
the user for an input

O var: string variable to which the user-specified input is stored
Re-cast for different data types (e.g. float)

For example:

15
16
17

input('Enter the flow rate [m"3/s]: ")
Tloat(Q)

Q:
Q:

M console 1/a E] |

Enter the flow rate [m~3/s]: |

Webb ENGR 102

Outputs from Scripts
-
Outputs from scripts:
o Display of values calculated by the script

Several output methods
o Plotting (more later)
O In the console
print()
o Writing data to files (more later)

Webb ENGR 102

print()

Output a string to the console

print (string)

O string: a string — may contain formatting sequences for
insertion of variable values

For example:

O Console 1A B |

In [369]: print('The value of pi is 3.14159.")
The walue of pi is 3.14159.

In [37@]: print('\nThe value of pi is 3.14159.")
The walue of pi is 3.14159.
In [371]: print{'\nThe value ‘nof pi is 3.14159.")

The wvalue
of pi is 3.14159.

In [372]: s = '"The value of pi is 3.14159°

In [373]: print(s)
The wvalue of pi is 3.14159

Webb ENGR 102

Formatting Strings — . format ()
e —

Insert formatted numbers and strings into a string

<template>.format(args)

0o <template>: a string containing replacement fields for insertion of
variable values
Replacement fields may include formatting specifications

O args: objects to be inserted into the <template> string
Strings or numeric values

For example: O consoe A |

In [379]: s = 'The value of {} is {}'.format('pi’, 3.14159)

In [380]: print(s)
The wvalue of pi is 3.14159

In [381]: 5 = '"The value of {} is {} .format{'pi", np.pi)

In [382]: print(s)
The walue of pi is 3.141592653589793

Webb ENGR 102

.format () — Syntax & Terminology
-~
<template>.format(args)

.format () is a method applied to the object,
<template>, which is an instance of the class str

O Class: a template for creating objects
For now, think of this as the data type
Here, the class is string, str
Classes have attributes and methods associated with them

O Object: an instance of a class
On the previous page, s is an object of type str

o Method: a function associated with a specific class
Here, format() is a method that operates on str objects

These object-oriented programming concepts will be
covered in detail later in the course

Webb ENGR 102

Formatting Strings — Replacement Fields
e

Replacement fields:
o0 Enclosed in curly brackets, { }

In [379]: 5 = '"The value of {} is {}'.format{'pi’, 3.14159)

o Arguments in format () are inserted in order
o May include a formatting specification, format spec

{:format_spec}

o format _spec: specifies how to format numeric values

In [389]: s = "The value of {} i'Fd:ur"rrlartl:'pi'J np.pi)

In [390]: print(s)
The value of pi is 3.142

Webb ENGR 102

Formatting Strings — format _spec

format_spec:
o Specify how numeric values are formatted

:[width][group][.prec][type]

o Always start format_spec with a colon, :

o width: minimum width of the field into which the
argument is inserted — may result in white space

O group: grouping character for each three digits to the left
of the decimal point (e.g. , or)

O .prec: number of digits after the decimal point for floating
point numbers, or maximum field width for strings

O type: presentation type, e.g. floating point, integer, string,
etc.

Webb ENGR 102

format spec —type

Type characters specify how to format variable values within

a string
Presentation Type Type Character

Decimal integer d
Binary integer b
Hexadecimal integer X
Floating point forF

Exponential notation

(e.g., 1.6e-19 or 1.6E-19) eork
More compact of %e or %f g
More compact of %E or %F

Single character C
String S
Percentage %

Webb ENGR 102

format spec —Examples

O console 1/a [E) |

Fixed-point notation In [468]: x - 10e4 * np.pi/2
\ { In [469]: print('\n\tx = {:8.2f} .format(x)})

¥ o= 157879.63

Field-width control
\ In [470]: print('\n\tx

= {:15.2f} " .format(x))
g
N o= 157879.63
Exponential notation Al cara1s primeunen = (10,201 ormation;
\ ¥ o= 1.57e+85
Compact format T [ta721: print(v = {:0.26) " Format(x))

¥ = 1.57E+85

o Note that .prec

specifies number of 0 [473]: print(’\n\tx = {:0.2g}".format(x))

significant figures for x = 1.6e+05

g or G type T |20 [a7a1: print(tumiex - {:6.26) " Format(x))
- x = 1.GE+85

Webb ENGR 102

