
ENGR 102 – Introduction to Engineering

CLASS 14:
CONDITIONAL STATEMENTS
& LOOPS IN PYTHON

Webb ENGR 102

• if statements
• Logical and relational operators
• if…else statements

Conditional Statements2

Webb ENGR 102

3

The if Statement

 We’ve already seen the if structure
 If X is true, do Y, if not, don’t do Y
 In either case, then proceed to do Z

 In Python:
if condition:

statements
⋮

 Statements are executed if condition is True
 Statement block defined by indenting those lines of code

 Condition is a logical expression
 Boolean - either True or False
 Makes use of logical and relational operators

 May use a single line for a single statement:

if condition: statement

Webb ENGR 102

Operator Relationship or Logical Operation Example

== Equal to x == b

!= Not equal to k != 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2

and AND – both expressions must evaluate to
true for result to be true (t > 0) and (c == 5)

or OR – either expression must evaluate to
true for result to be true (p > 1) or (m > 3)

not NOT– negates the logical value of an
expression not (b < 4*g)

4

Logical and Relational Operators

Webb ENGR 102

5

The if…else Structure

 The if … else structure
 Perform one process if a condition

is true
 Perform another if it is false

 In Python:

if condition:
statements1

else:
statements2

 Note that if and else code
blocks are defined by indents

Webb ENGR 102

6

The if…elif…else Structure

 In Python:

if condition1:
statements1

elif condition2:
statements2

else:
statements3

 The if … elif … else structure
 If a condition evaluates as false, check another condition
 May have an arbitrary number of elif statements

Webb ENGR 102

7

The if…else, if…elif…else Structures

 Some examples:

 Note that code blocks are defined by indents
 Each line must have the same indent - use the Tab key
 Meaningful whitespace is a distinguishing characteristic of Python
 Other languages use brackets or end statements

Webb ENGR 102

8

The if…elif Structure

 We can have an if
statement without an else

 Similarly, an if…elif
structure need not have an
else

 In Python:

if condition1:
statements1

elif condition2:
statements2

Webb ENGR 102

9
Ex

er
ci

se
 Write a Python script to implement the

following pseudocode:

 Prompt user to input an integer, store as x

 If x < 5, print “The number is less than 5.”

 Else, if x < 10, print “The number is between
5 and 10.”

 Otherwise, print “The number is at least 10.”

if…elif…else

Webb ENGR 102

while Loops10

Webb ENGR 102

11

The while loop

 The while loop
 While X is true, do A
 Once X becomes false, proceed to B

 In Python:

while condition:
statements

⋮

 Statements are executed as long as
condition remains true
 Condition is a logical expression

 Whitespace (indent) defines while block

Webb ENGR 102

12

while Loop – Example 1

 Consider the following while loop example
 Repeatedly increment x by 7 as long as x is less than or equal to 30
 Value of x is displayed on each iteration

 x values displayed: 19, 26, 33
 x gets incremented beyond 30

 All loop code is executed as long as the condition was true at the
start of the loop

Webb ENGR 102

13

The break Statement

 Let’s say we don’t want x to increment beyond 30
 Add a conditional break statement to the loop

 break statement causes loop exit before executing all code
 Now, if (x+7)>30, the program will break out of the loop and

continue with the next line of code
 x values displayed: 19, 26
 For nested loops, a break statement breaks out of the current

loop level only

Webb ENGR 102

14

while Loop – Example 1

 The previous example could be simplified by modifying the
while condition, and not using a break at all

 Now the result is the same as with the break statement
 x values displayed: 19, 26

 This is not always the case
 The break statement can be very useful
 May want to break based on a condition other than the loop condition

 break works with both while and for loops

Webb ENGR 102

15

while Loop – Example 2

 Next, let’s revisit the while loop
examples from Section 4

 Use input() to prompt for input
 Use print() to return the result

Webb ENGR 102

16

while Loop – Example 3

 Here, we use a while loop to
calculate the factorial value of a
specified number

Webb ENGR 102

17

while Loop – Example 3

 Add error checking to ensure that x
is an integer

 One way to check if x is an integer:

Webb ENGR 102

18

while Loop – Example 3

 Another possible method for
checking if x is an integer:

Webb ENGR 102

19

Infinite Loops

 A loop that never terminates is an infinite loop
 Often, this unintentional

 Coding error

 Other times infinite loops are intentional
 E.g., microcontroller in a control system

 A while loop will never terminate if the while condition
is always true
 By definition, True is always true:

while True:
statements repeat infinitely

Webb ENGR 102

20

while True

 The while True syntax can be used in conjunction with a
break statement, e.g.:

 Useful for
multiple break
conditions

 Control over
break point

 Could also
modify the while
condition

Webb ENGR 102

21
Ex

er
ci

se
 Write a Python script to implement the

following pseudocode:

 Import Python’s time module

 Prompt user to input a timer value in seconds,
store as t.

 Use a while loop to count down from t to zero:
 Display t

 Decrement t by one

 Wait for 1 sec

 Display “Time’s up!”

while Loop

Webb ENGR 102

for Loops22

Webb ENGR 102

23

The for Loop

 The for loop
 Loop executed a specified number of times

for var in iterable:
statements

⋮

 iterable: any iterable object (ndarray, list, tuple,
dict, str)

 var: variable that assumes each successive value in
iterable on each iteration

 Statements: code block that is executed once for
each item in iterable

 Inherently collection-based, not counter-based
 Iterates through each item in a collection
 But, can be counter-based, as we will see

Webb ENGR 102

24

for Loop – Example 1

 A collection-based (or iterator-
based) for loop
 Iterates through each value in a list

of days
 No explicit loop counter

Webb ENGR 102

25

for Loop – Example 2 – range()

 Counter-based for loop
 Use Python's range() function:

range(start, stop, step)

 Generate a list of loop counter values to
iterate through

 Technically, still collection-based

Webb ENGR 102

26

for Loop – Example 3 – enumerate()

 Sometimes we may want a combination of a collection-
based and counter-based for loop
 Iterate over both the values and indices of all items in an iterable
 Use Python's enumerate() function
 Generates an (index, value) pair for each item in the iterable

 For example, consider a list of numbers:
x = [2, 4, 6, 8]

 Generate (index, value) pairs for each item in x:
enumerate(x)

 Generates the following (index, value) pairs:
(0, 2), (1, 4), (2, 6), (3, 8)

 Can iterate over these (index, value) pairs with a for loop

Webb ENGR 102

27

for Loop – Example 3 – enumerate()

 Loop through an array of numbers to
find the maximum value and its index
 Use enumerate() to simultaneously

loop through array values and their
indices

	Class 14: �Conditional Statements & Loops in Python
	Conditional Statements
	The if Statement
	Logical and Relational Operators
	The if…else Structure
	The if…elif…else Structure
	The if…else, if…elif…else Structures
	The if…elif Structure
	if…elif…else
	while Loops
	The while loop
	while Loop – Example 1
	The break Statement
	while Loop – Example 1
	while Loop – Example 2
	while Loop – Example 3
	while Loop – Example 3
	while Loop – Example 3
	Infinite Loops
	while True
	while Loop
	for Loops
	The for Loop
	for Loop – Example 1
	for Loop – Example 2 – range()
	for Loop – Example 3 – enumerate()
	for Loop – Example 3 – enumerate()

