CLASS 14:
CONDITIONAL STATEMENTS
& LOOPS IN PYTHON

- ENGR 102 — Introduction to Engineering



- Conditional Statements

1f statements

Logical and relational operators
if..else statements
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The 1f Statement
-

We’ve already seen the if structure l
o If Xistrue,do, if not, dontdoY

O In either case, then proceed todo Z N

Is X true?

In Python:

if condition: Yl
statements

Y

Statements are executed if conditionis True |
o Statement block defined by indenting those lines of code l‘
Conditionis a logical expression

O Boolean - either True or False

o Makes use of logical and relational operators

Z

May use a single line for a single statement: l

if condition: statement
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Logical and Relational Operators
R

== Equal to X == b

| = Not equal to k 1= 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2
AND — both expressions must evaluate to L

and true for result to be true (t > @) and (c == 5)
OR — either expression must evaluate to

or true for result to be true (p > 1) o6 (m 4 3)
NOT- tes the logical val f

not negates the logical value of an not (b < 4*g)

expression
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The 1f..else Structure

.
The if ... else structure

o Perform one process if a condition l
is true
o Perform another if it is false e

In Python: l '
if condition: A ’

statements, )

else: v

statements, c

|

Note that 1f and else code
blocks are defined by indents

Webb ENGR 102



The 1f..elif..else Structure

The if ... elif ... else structure
o If a condition evaluates as false, check another condition
o May have an arbitrary number of elif statements

In Python:

if condition,:
statements;

elif condition,:
statements,

else: s c

statements,
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The if..else, if..elif..else Structures
[

Some examples:

17
9 18 if x ==
1@ if (t »>= @) and (p > 8): 19 T = 2%np.pi
11 ¥ = p**2 * ¢ 2@ elif x <= -1:
12 y =3*g + p 21 f = np.pi/4
13 else: 22 elif (y != 438) or (x > 18):
14 Xx =@ 23 f=20
15 y =q + p**2 24 else:
16 25 f = 2%np.pi/3
26

Note that code blocks are defined by indents

o Each line must have the same indent - use the Tab key

o Meaningful whitespace is a distinguishing characteristic of Python
o Other languages use brackets or end statements

Webb ENGR 102



The 1f...elif Structure

We can have an if
statement without an el se

Similarly, an if..elif \ﬁ?f/ I3
structure need not have an -
0l ce %W N
In Python: \ l
if condition,:
statements;, |
elif condition,: ¢
statements, |

Webb ENGR 102



if..elif..else
9 b

-1 Write a Python script to implement the
following pseudocode:

= Prompt user to input an integer, store as X
w If x < 5, print “The number is less than 5.”

m Else, if x < 10, print “The number is between
5 and 10.”

)
L
O
b
Q
X
Ll

w Otherwise, print “The number is at least 10.”
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n while Loops
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The while loop

The while loop
o While X is true, do A

o Once X becomes false, proceed to B
In Python: o

while condition:
statements A B

Statements are executed as long as
condition remains true

o Condition is alogical expression

Whitespace (indent) defines while block
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while Loop — Example 1
-

Consider the following while loop example
O Repeatedly increment x by 7 as long as x is less than or equal to 30

o Value of x is displayed on each iteration

7
B

g x = 12

1@

11 = while x <= 38:
12 X =X + 7
13 print({x)

14

X values displayed: 19, 26, 33

X gets incremented beyond 30

o All loop code is executed as long as the condition was true at the
start of the loop
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The break Statement

-0V
Let’s say we don’t want X to increment beyond 30

o Add a conditional break statement to the loop

18

19 X = 12

28

21 while x <= 38:
22 if (x+7)>38:
23 break
24 X =X + 7
25 print{x)

break statement causes loop exit before executing all code

Now, if (x+7)>30, the program will break out of the loop and
continue with the next line of code

x values displayed: 19, 26

For nested loops, a break statement breaks out of the current
loop level only
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while Loop — Example 1

The previous example could be simplified by modifying the
while condition, and not using a break at all

38
31

32 ¥ = 12;

33

34w while (x4+7) <= 38@:
35 X =x+ 7

36 print(x)

37

Now the result is the same as with the break statement
o X values displayed: 19, 26
This is not always the case

O The break statement can be very useful

o May want to break based on a condition other than the loop condition

break works with both while and for loops
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while Loop — Example 2

Next, let’s revisit the while loop
examples from Section 4

Use input() to prompt for input
Use print() to return the result

39

48

41

42 ¥ = input('Enter a number: "}; =

43 ¥ = Tloat(x) :V

a4

45 count = @; N

45 x>1

47 while » > 1:

48 = %2 Y

449 count = count + 1 \ 4 v

15

51 print( count = {:d}".format{count)) /2 . X
Enter a number: 138
count = 8 v
In [42]: i v :

count = count +1 End
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while Loop — Example 3

- Here, we use awhile loop to
calculate the factorial value of a

£ Read in
specified number
store as x
54 # calculate factorial
55
56 x = input{'Enter an integer: ')
57 ¥ = xin = fTloat(x)
58
5g fact = 1 _
z 1
61 while x » 1:
62 fact = fact*x N
63 ¥ = x - 1 x>1
a4
b5 Y
66 print({ " \nfact{{}) = {} .format{xin, fact)) v ) 4
-
fact = fact*x Return fact
Enter an integer: 12
fact(12.0) = 479001600.0
h /
In [52]: v

x=x-1 End
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while Loop — Example 3
B

= Add error checking to ensure that x L)
is an integer L/

Read in
number and

- One way to check if X is an integer: ;f

69 # calculate foctorial N
78 # with error checking for integer input fﬁ;aMM%Q;W
72 ¥ = input('Enter an integer: ') N
73 x = Tloat(x) I v
74 7
5 # check 1f x 1s an integer /' ERROR: _
76 if x = int(x): fact=1 J  xmustbe
an integer.
77 raise Exception('ERROR: x must be an integer.') / /
78 ]
79 fact = 1 >
ae X
81 while x » 1: PN
g2 fact = fact*x YL
83 = x -1 N~ A
84 Y
85 print( "\nfact({:d}) = {:d} " .format(xin, fact)) i v
/ /
Enter an iﬂtEgEf‘: 11.5 fact = fact*x Return fact
Traceback (most recent call last): _
File "C:\Users\webbky\Box\KWebb\Classes\ENGR182_183\Notes\PythonY _
raise Exception("ERROR: x must be an integer.') \ 4 X
\ 4
Exception: ERROR: x must be an integer. I x=x-1 ii End )
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while Loop — Example 3

-1 Another possible method for

checking if X is an integer:

a8
a9
98
91
a2
93
a4
95
96
97
Q8
a9
1aa
1al
1a2
1a3
1a4

input('Enter an integer: ")
float(x)

E
[

X

if (x - np.floor(x)) != @:
raise Exception('ERROR: x must be an integer.')

fact = 1
while = » 1:
fact = fact*x

x=x -1

print( ' nfact({:d}) = {:d}".format(xin, fact))

w
o
[y
P
S~

Read in /
numberand

/ /
/ store as x /

S

< Isxaninteger?
7

~

fact=1

Enter an integer: 28.3
Traceback (most recent call last):

raise Exception('ERROR: x must be an integer.')

Exception: ERROR: x must be an integer.

File "C:\WUsersiwebbky\Box\KhWebb\Classes\ENGR182_183\Notes \Python’,

fact = fact*x

Webb

A 4

ERROR:

/" "xmust be /
/ an integer.” /

Return fact
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Infinite Loops

e
A loop that never terminates is an infinite loop
Often, this unintentional
o Coding error

Other times infinite loops are intentional
o E.g., microcontroller in a control system

A while loop will never terminate if the while condition
is always true

o By definition, True is always true:

while True:
statements repeat infinitely
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while True

Thewhile True syntax can be used in conjunction with a
break statement, e.g.:

43 while True:
44 iter = iter + 1

Useful for ss
45 xrold = xr

. 47

multiple break s

49 if (func(xl)*func(xr)) == @:
B 5a xl = ur

conditions o
52 if (func(=u)*func(xr)) == 8:
53 MU = W&
54

Control over s P
56 epsa = @

1 lse:

break point :
59 ¥ro= w0 - func(xu)®(xu - x1)/({func(xu) - func(xl))
68

Could a |SO E; epsa = abs({xr-xrold)/xr)*188
63
64

mOd Ify th e Wh I |e 65 if (epsa<=reltol):

d, . 66 break

67 elif (iter »>= maxiter):

Con Itlon 68 print('wnMaximum # of iterations reached - exiting.‘wnin')
69 break
78
71 fur = funcixr);
72
73 return [xr, fxr, epsa, iter]
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while Loop
S

)
L
O
b
Q
X
Ll

Webb

-1 Write a Python script to implement the
following pseudocode:

Import Python’s time module

Prompt user to input a timer value in seconds,
store as t.

Use a while loop to count down from t to zero:
= Display t
= Decrement t by one

= Wait for 1 sec

Display “Time’s up!”
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The for Loop

The for loop
O Loop executed a specified number of times

for var in 1iterable:
statements

o i1terable: any iterable object (ndarray, list, tuple,
dict, str)

O var: variable that assumes each successive value in
1terable on each iteration

o Statements: code block that is executed once for
each itemin 1terable

Inherently collection-based, not counter-based
O lterates through each item in a collection
o But, can be counter-based, as we will see

Webb

v

define or read in the
iterable variable

o

set var to the first
item in iterable

b

»
L

\ 4

AN

_~var pointing\\ N
to anitemin
iterable?

advance var to the
———— nextlocation in
iterable
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for Loop — Example 1

A collection-based (or iterator-
based) for loop

O Iterates through each value in a list
of days

o No explicit loop counter

7 days = [ "Monday ',
B "Wednesday "',
9 "Friday']
1@
11 print{"in")
12
13 for day in days:
14 print{day, ', ', day[@:3])
15

Monday , Mon
Wednesday , Wed
Friday , Fri

In [70]:

Webb

|

days = ['Monday’,
‘Wednesday’,
‘Friday’]

day = first item in days

day still in days?

Display:
day, first 3 letters of
day

-

advance day to next

item in days
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for Loop — Example 2 — range()

Counter-based for loop VL
o Use Python's range() function:

range(start, stop, step) i=0

O Generate a list of loop counter values to _
iterate through »l

o Technically, still collection-based
19 rng = np.random.default rng() N
28 i<10
21 print{ n")
22
23 for i in range(1@): Y
24 ¥ = rag.uniform{low=2, high=1)
25 print('x = {:8.47} " .format(x)}) Generate and
— display a uniformly-
distributed random
w = @,@8735 number between O
X = 8.2565 and 1
W o= 8.8224
x = 8.5613 ¢
W o= 8.1624
W o= 8.2274
¥ o= @.9985 i=i+1
W = @.8892
W o= B8.7598
w = 8,7589
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for Loop — Example 3 — enumerate()
-

Sometimes we may want a combination of a collection-
based and counter-based for loop

O Iterate over both the values and indices of all items in an iterable

o Use Python's enumerate() function
Generates an (index, value) pair for each item in the iterable

For example, consider a list of numbers:
X =[2, 4, 6, 8]

Generate (index, value) pairs for each item in x:
enumerate(x)

Generates the following (index, value) pairs:
(6, 2), (1, 4), (2, 6), (3, 8)

Can iterate over these (index, value) pairs with a for loop
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for Loop — Example 3 — enumerate()
-

Loop through an array of numbers to
find the maximum value and its index

o Use enumerate() to simultaneously
loop through array values and their

indices
79
30 ¥ = rng.integers(8, 188, 18)
31 xmax = x[0]
32 imax = @
33
34 for i, xval in enumerate(x[1:]):
35 if xwval » xmax:
36 xmax = xval
37 imax = i+l
38
39 print{"\nx = ', x)
49 print{ \nxmax: x[{:d}] = {:d} " .format({imax, xmax))
41

x = [63 65 57 17 69 63 92 47 86 73]

xmax: x[6] = 92

In [33]:

Webb

l

x = array of random
integers

xmax = x[0]
Imax =0

v

i, xval = enumerate(x[1:])

A
'

Y

xval still in x?

Y
A\ 4

if xval > xmax:
xmax = xval
imax =i

\ 4

\ 4

display:
X
xmax
imax

Advance to next

(i, xval) pair

v
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