CLASS 14:
CONDITIONAL STATEMENTS
& LOOPS IN PYTHON

- ENGR 102 — Introduction to Engineering

- Conditional Statements

1f statements

Logical and relational operators
if..else statements

Webb ENGR 102

The 1f Statement
-

We’ve already seen the if structure l
o If Xistrue,do, if not, dontdoY

O In either case, then proceed todo Z N

Is X true?

In Python:

if condition: Yl
statements

Y

Statements are executed if conditionis True |
o Statement block defined by indenting those lines of code l‘
Conditionis a logical expression

O Boolean - either True or False

o Makes use of logical and relational operators

Z

May use a single line for a single statement: l

if condition: statement

Webb ENGR 102

Logical and Relational Operators
R

== Equal to X == b

| = Not equal to k 1= 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2
AND — both expressions must evaluate to L

and true for result to be true (t > @) and (c == 5)
OR — either expression must evaluate to

or true for result to be true (p > 1) o6 (m 4 3)
NOT- tes the logical val f

not negates the logical value of an not (b < 4*g)

expression

Webb ENGR 102

The 1f..else Structure

.
The if ... else structure

o Perform one process if a condition l
is true
o Perform another if it is false e

In Python: l '
if condition: A ’

statements,)

else: v

statements, c

|

Note that 1f and else code
blocks are defined by indents

Webb ENGR 102

The 1f..elif..else Structure

The if ... elif ... else structure
o If a condition evaluates as false, check another condition
o May have an arbitrary number of elif statements

In Python:

if condition,:
statements;

elif condition,:
statements,

else: s c

statements,

Webb ENGR 102

The if..else, if..elif..else Structures
[

Some examples:

17
9 18 if x ==
1@ if (t »>= @) and (p > 8): 19 T = 2%np.pi
11 ¥ = p**2 * ¢ 2@ elif x <= -1:
12 y =3*g + p 21 f = np.pi/4
13 else: 22 elif (y != 438) or (x > 18):
14 Xx =@ 23 f=20
15 y =q + p**2 24 else:
16 25 f = 2%np.pi/3
26

Note that code blocks are defined by indents

o Each line must have the same indent - use the Tab key

o Meaningful whitespace is a distinguishing characteristic of Python
o Other languages use brackets or end statements

Webb ENGR 102

The 1f...elif Structure

We can have an if
statement without an el se

Similarly, an if..elif \ﬁ?f/ I3
structure need not have an -
0l ce %W N
In Python: \ l
if condition,:
statements;, |
elif condition,: ¢
statements, |

Webb ENGR 102

if..elif..else
9 b

-1 Write a Python script to implement the
following pseudocode:

= Prompt user to input an integer, store as X
w If x < 5, print “The number is less than 5.”

m Else, if x < 10, print “The number is between
5 and 10.”

)
L
O
b
Q
X
Ll

w Otherwise, print “The number is at least 10.”

Webb ENGR 102

n while Loops

Webb ENGR 102

The while loop

The while loop
o While X is true, do A

o Once X becomes false, proceed to B
In Python: o

while condition:
statements A B

Statements are executed as long as
condition remains true

o Condition is alogical expression

Whitespace (indent) defines while block

Webb ENGR 102

while Loop — Example 1
-

Consider the following while loop example
O Repeatedly increment x by 7 as long as x is less than or equal to 30

o Value of x is displayed on each iteration

7
B

g x = 12

1@

11 = while x <= 38:
12 X =X + 7
13 print({x)

14

X values displayed: 19, 26, 33

X gets incremented beyond 30

o All loop code is executed as long as the condition was true at the
start of the loop

Webb ENGR 102

The break Statement

-0V
Let’s say we don’t want X to increment beyond 30

o Add a conditional break statement to the loop

18

19 X = 12

28

21 while x <= 38:
22 if (x+7)>38:
23 break
24 X =X + 7
25 print{x)

break statement causes loop exit before executing all code

Now, if (x+7)>30, the program will break out of the loop and
continue with the next line of code

x values displayed: 19, 26

For nested loops, a break statement breaks out of the current
loop level only

Webb ENGR 102

while Loop — Example 1

The previous example could be simplified by modifying the
while condition, and not using a break at all

38
31

32 ¥ = 12;

33

34w while (x4+7) <= 38@:
35 X =x+ 7

36 print(x)

37

Now the result is the same as with the break statement
o X values displayed: 19, 26
This is not always the case

O The break statement can be very useful

o May want to break based on a condition other than the loop condition

break works with both while and for loops

Webb ENGR 102

while Loop — Example 2

Next, let’s revisit the while loop
examples from Section 4

Use input() to prompt for input
Use print() to return the result

39

48

41

42 ¥ = input('Enter a number: "}; =

43 ¥ = Tloat(x) :V

a4

45 count = @; N

45 x>1

47 while » > 1:

48 = %2 Y

449 count = count + 1 \ 4 v

15

51 print(count = {:d}".format{count)) /2 . X
Enter a number: 138
count = 8 v
In [42]: i v :

count = count +1 End

Webb ENGR 102

while Loop — Example 3

- Here, we use awhile loop to
calculate the factorial value of a

£ Read in
specified number
store as x
54 # calculate factorial
55
56 x = input{'Enter an integer: ')
57 ¥ = xin = fTloat(x)
58
5g fact = 1 _
z 1
61 while x » 1:
62 fact = fact*x N
63 ¥ = x - 1 x>1
a4
b5 Y
66 print({ " \nfact{{}) = {} .format{xin, fact)) v) 4
-
fact = fact*x Return fact
Enter an integer: 12
fact(12.0) = 479001600.0
h /
In [52]: v

x=x-1 End

Webb ENGR 102

while Loop — Example 3
B

= Add error checking to ensure that x L)
is an integer L/

Read in
number and

- One way to check if X is an integer: ;f

69 # calculate foctorial N
78 # with error checking for integer input fﬁ;aMM%Q;W
72 ¥ = input('Enter an integer: ') N
73 x = Tloat(x) I v
74 7
5 # check 1f x 1s an integer /' ERROR: _
76 if x = int(x): fact=1 J xmustbe
an integer.
77 raise Exception('ERROR: x must be an integer.') / /
78]
79 fact = 1 >
ae X
81 while x » 1: PN
g2 fact = fact*x YL
83 = x -1 N~ A
84 Y
85 print("\nfact({:d}) = {:d} " .format(xin, fact)) i v
/ /
Enter an iﬂtEgEf‘: 11.5 fact = fact*x Return fact
Traceback (most recent call last): _
File "C:\Users\webbky\Box\KWebb\Classes\ENGR182_183\Notes\PythonY _
raise Exception("ERROR: x must be an integer.') \ 4 X
\ 4
Exception: ERROR: x must be an integer. I x=x-1 ii End)

Webb ENGR 102

while Loop — Example 3

-1 Another possible method for

checking if X is an integer:

a8
a9
98
91
a2
93
a4
95
96
97
Q8
a9
1aa
1al
1a2
1a3
1a4

input('Enter an integer: ")
float(x)

E
[

X

if (x - np.floor(x)) != @:
raise Exception('ERROR: x must be an integer.')

fact = 1
while = » 1:
fact = fact*x

x=x -1

print(' nfact({:d}) = {:d}".format(xin, fact))

w
o
[y
P
S~

Read in /
numberand

/ /
/ store as x /

S

< Isxaninteger?
7

~

fact=1

Enter an integer: 28.3
Traceback (most recent call last):

raise Exception('ERROR: x must be an integer.')

Exception: ERROR: x must be an integer.

File "C:\WUsersiwebbky\Box\KhWebb\Classes\ENGR182_183\Notes \Python’,

fact = fact*x

Webb

A 4

ERROR:

/" "xmust be /
/ an integer.” /

Return fact

ENGR 102

Infinite Loops

e
A loop that never terminates is an infinite loop
Often, this unintentional
o Coding error

Other times infinite loops are intentional
o E.g., microcontroller in a control system

A while loop will never terminate if the while condition
is always true

o By definition, True is always true:

while True:
statements repeat infinitely

Webb ENGR 102

while True

Thewhile True syntax can be used in conjunction with a
break statement, e.g.:

43 while True:
44 iter = iter + 1

Useful for ss
45 xrold = xr

. 47

multiple break s

49 if (func(xl)*func(xr)) == @:
B 5a xl = ur

conditions o
52 if (func(=u)*func(xr)) == 8:
53 MU = W&
54

Control over s P
56 epsa = @

1 lse:

break point :
59 ¥ro= w0 - func(xu)®(xu - x1)/({func(xu) - func(xl))
68

Could a |SO E; epsa = abs({xr-xrold)/xr)*188
63
64

mOd Ify th e Wh I |e 65 if (epsa<=reltol):

d, . 66 break

67 elif (iter »>= maxiter):

Con Itlon 68 print('wnMaximum # of iterations reached - exiting.‘wnin')
69 break
78
71 fur = funcixr);
72
73 return [xr, fxr, epsa, iter]

Webb ENGR 102

while Loop
S

)
L
O
b
Q
X
Ll

Webb

-1 Write a Python script to implement the
following pseudocode:

Import Python’s time module

Prompt user to input a timer value in seconds,
store as t.

Use a while loop to count down from t to zero:
= Display t
= Decrement t by one

= Wait for 1 sec

Display “Time’s up!”

ENGR 102

o T

Webb ENGR 102

The for Loop

The for loop
O Loop executed a specified number of times

for var in 1iterable:
statements

o i1terable: any iterable object (ndarray, list, tuple,
dict, str)

O var: variable that assumes each successive value in
1terable on each iteration

o Statements: code block that is executed once for
each itemin 1terable

Inherently collection-based, not counter-based
O lterates through each item in a collection
o But, can be counter-based, as we will see

Webb

v

define or read in the
iterable variable

o

set var to the first
item in iterable

b

»
L

\ 4

AN

_~var pointing\\ N
to anitemin
iterable?

advance var to the
———— nextlocation in
iterable

ENGR 102

for Loop — Example 1

A collection-based (or iterator-
based) for loop

O Iterates through each value in a list
of days

o No explicit loop counter

7 days = ["Monday ',
B "Wednesday "',
9 "Friday']
1@
11 print{"in")
12
13 for day in days:
14 print{day, ', ', day[@:3])
15

Monday , Mon
Wednesday , Wed
Friday , Fri

In [70]:

Webb

|

days = ['Monday’,
‘Wednesday’,
‘Friday’]

day = first item in days

day still in days?

Display:
day, first 3 letters of
day

-

advance day to next

item in days

ENGR 102

for Loop — Example 2 — range()

Counter-based for loop VL
o Use Python's range() function:

range(start, stop, step) i=0

O Generate a list of loop counter values to _
iterate through »l

o Technically, still collection-based
19 rng = np.random.default rng() N
28 i<10
21 print{ n")
22
23 for i in range(1@): Y
24 ¥ = rag.uniform{low=2, high=1)
25 print('x = {:8.47} " .format(x)}) Generate and
— display a uniformly-
distributed random
w = @,@8735 number between O
X = 8.2565 and 1
W o= 8.8224
x = 8.5613 ¢
W o= 8.1624
W o= 8.2274
¥ o= @.9985 i=i+1
W = @.8892
W o= B8.7598
w = 8,7589

ENGR 102

=
()
o
[on

for Loop — Example 3 — enumerate()
-

Sometimes we may want a combination of a collection-
based and counter-based for loop

O Iterate over both the values and indices of all items in an iterable

o Use Python's enumerate() function
Generates an (index, value) pair for each item in the iterable

For example, consider a list of numbers:
X =[2, 4, 6, 8]

Generate (index, value) pairs for each item in x:
enumerate(x)

Generates the following (index, value) pairs:
(6, 2), (1, 4), (2, 6), (3, 8)

Can iterate over these (index, value) pairs with a for loop

Webb ENGR 102

for Loop — Example 3 — enumerate()
-

Loop through an array of numbers to
find the maximum value and its index

o Use enumerate() to simultaneously
loop through array values and their

indices
79
30 ¥ = rng.integers(8, 188, 18)
31 xmax = x[0]
32 imax = @
33
34 for i, xval in enumerate(x[1:]):
35 if xwval » xmax:
36 xmax = xval
37 imax = i+l
38
39 print{"\nx = ', x)
49 print{ \nxmax: x[{:d}] = {:d} " .format({imax, xmax))
41

x = [63 65 57 17 69 63 92 47 86 73]

xmax: x[6] = 92

In [33]:

Webb

l

x = array of random
integers

xmax = x[0]
Imax =0

v

i, xval = enumerate(x[1:])

A
'

Y

xval still in x?

Y
A\ 4

if xval > xmax:
xmax = xval
imax =i

\ 4

\ 4

display:
X
xmax
imax

Advance to next

(i, xval) pair

v

ENGR 102

	Class 14: �Conditional Statements & Loops in Python
	Conditional Statements
	The if Statement
	Logical and Relational Operators
	The if…else Structure
	The if…elif…else Structure
	The if…else, if…elif…else Structures
	The if…elif Structure
	if…elif…else
	while Loops
	The while loop
	while Loop – Example 1
	The break Statement
	while Loop – Example 1
	while Loop – Example 2
	while Loop – Example 3
	while Loop – Example 3
	while Loop – Example 3
	Infinite Loops
	while True
	while Loop
	for Loops
	The for Loop
	for Loop – Example 1
	for Loop – Example 2 – range()
	for Loop – Example 3 – enumerate()
	for Loop – Example 3 – enumerate()

