CLASS 17: ANALOG VS. DIGITAL

ENGR 102 – Introduction to Engineering

² Analog vs. Digital

Analog vs. Digital

Analog signals

Continuous in time and amplitude

- All physical phenomena pressure, temperature, velocity, strain, position, etc. – are *analog* in nature
 - Any value at any time

Digital signals

- **Discrete in time and amplitude**
 - Can only assume a *finite number of discrete values* at *discrete instants in time*
 - Representations of analog signals that are easily stored and processed

Analog vs. Digital – Example

- 4
- Temperature is an analog quantityAny value at any instant in time

- Mercury thermometer
 - Analog
 - Mercury can be any height at any time

- www.mdhb.com
- Digital thermometer
 - Samples actual temperature at discrete instants in time
 - Represents sampled value with one of a finite number of possible values

Digital Measurement System

Analog-to-Digital Conversion

- 5
- Analog-to-digital conversion two steps:
 - Sampling
 - Quantization

Sampling

- Analog signal measured at discrete instants in time
- Series of discrete-time (but continuous in amplitude) samples

Quantization

- Mapping of samples to a finite number of *discrete amplitude* values
- Each quantization level corresponds to a continuous input range

A/D Conversion – Sampling

Sampled signal

 Discrete in time
Continuous in amplitude

A/D Conversion – quantization

Digital signal

- Quantized samples
- Discrete in time
- Discrete in amplitude
- Amplitude values expressed as *codes*
 - # of A/D codes = 2^{N}
 - N = # of bits
 - 10-bit A/D has 1024 distinct *quantization levels*
 - Digital signal stored as binary values

Analog-to-Digital Conversion

A temperature sensor IC has the following specs:

 $\Box V_{out} = 10 \ mV/^{\circ}C$

\square Temperature range: $0^{\circ}C \dots 100^{\circ}C$

- Write code to measure the sensor output voltage with a 10-bit A/D and convert that to a temperature in °C and °F.
- What A/D code corresponds to a temperature of 25°C?

Analog-to-Digital Conversion

A water level sensor has a current output

•
$$I_o = 0 \dots 20 \ mA$$
 for $d = 0 \dots 5 \ m \rightarrow 0 \dots 5m$

- You plan to use the sensor to measure depths ranging from 0 m ... 4 m
- Use a current-sense resistor to convert output current to a voltage
 - Map the I_o for 0 m ... 4 m depth range to 0 V ... 5 V ADC input range
- Determine the value of R_{sense}
- Write code to read the sensor and convert to a depth in meters