
CLASS 18: BATTERIES

ENGR 102 – Introduction to Engineering

Batteries

- □ Batteries − electrochemical energy-storage devices
 - Electrical input and output
 - Chemical energy storage
- Allow us to use energy when and where we want

Batteries - Uses

Portable electronics

■ Phones, laptops, watches, etc.

Power tools

- Vehicles
 - EVs, HEVs, ICE vehicles

Off-grid power

Homes, remote sensing, communications

Grid energy storage

- Integration of renewable generation
- Power backup, UPS

Batteries - Specifications

4

Capacity

Total energy or charge stored in a battery

□ Specific energy

Energy stored per unit mass

□ Energy density

Energy stored per unit volume

□ Specific power

Maximum available power per unit mass

Power density

Maximum available power per unit volume

□ Capacity

- Total energy or charge stored in a battery
- Typically expressed one of two ways:
 - Ampere-hours (Ah)
 - Watt-hours (Wh)

Capacity – Ampere-Hours

- Ampere-hours (Ah)
 - Product of current and corresponding discharge time
- For example, a 40 Ah battery could supply the equivalent of 40 A for 1 hour

$$40 Ah = 40 A \cdot 1 h = 40 \frac{C}{s} \cdot 1 h \cdot \frac{3600 s}{1 h} = 144 \times 10^3 C$$

Or, 1 A for 40 hours (or any other equivalent combination)

$$40 Ah = 1 A \cdot 40 h = 1 \frac{C}{s} \cdot 40 h \cdot \frac{3600 s}{1 h} = 144 \times 10^3 C$$

Clearly, this is a quantity of charge, not energy

Capacity – Watt-Hours

- Watt-hours (Wh)
 - Product of power and corresponding discharge time
- □ For example, a 9.88 Wh battery could supply the equivalent of 9.88 W for 1 hour

9.88
$$Wh = 9.88 W \cdot 1 h = 9.88 \frac{J}{s} \cdot 1 h \cdot \frac{3600 s}{1 h} = 35.6 \times 10^3 J$$

Or, 1 W for 9.88 hours (or ...)

9.88
$$Wh = 1 W \cdot 9.88h = 1 \frac{J}{s} \cdot 9.88 h \cdot \frac{3600 s}{1 h} = 35.6 \times 10^3 J$$

□ This is a *is* a measure of *energy*

Capacity – Ah vs. Wh

- To relate capacity in Ah to that in Wh, we must know the battery's voltage
 - Assume nominal and constant voltage

- For example, consider a 3000 mAh, 3.85 V battery
 - If discharging at 300 mA, for example, the power supplied is

$$P = V \cdot I = 3.85 V \cdot 300 mA = 1.155 W$$

At this rate, the battery can discharge for 10 h, so the total stored energy is

$$E = P \cdot t = 1.155 W \cdot 10 h = 11.55 Wh$$

Capacity in Wh given by the product of capacity in Ah and voltage

$$E = (capacity in Ah) \cdot (battery voltage)$$

Webb

Primary vs. Secondary Batteries

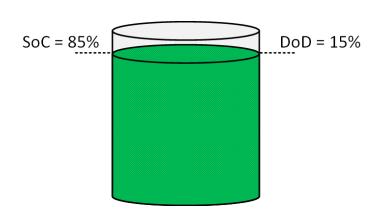
Primary batteries

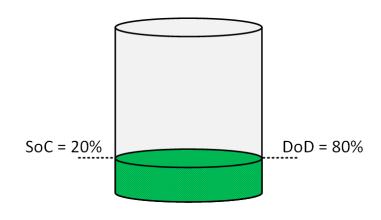
- Disposable, single-use
- Non-rechargeable
- E.g., alkaline

Secondary batteries

- Rechargeable
- E.g., lead-acid, Li-ion

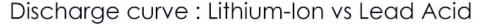
State of Charge vs. Depth of Discharge

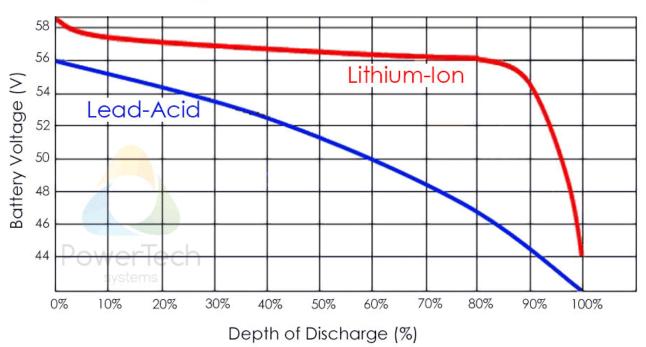

State of charge (SoC)


- Energy stored in a battery as a percentage of its capacity
- 100% SoC = full
- **□** 0% SoC = empty

Depth of discharge (DoD)

- Energy removed from a fully-charged battery as a percentage of its capacity
- 0% DoD = full
- 100% DoD = empty
- SoC and DoD are complementary


$$SoC + DoD = 100\%$$



State of Charge

- SoC can often be approximated from open-circuit voltage
 - Easier for some chemistries (e.g., lead-acid) than for others (e.g., Li-ion)

Battery Comparison

Specification	Units	Alkaline	Lead Acid	NiCd	NiMH	Li-lon
Specific energy	[Wh/kg]	110-160	30-50	45-80	60-120	100-260
Energy density	[Wh/I]	250-430	60-75	50-150	140-300	250-670
Cell voltage	[V]	1.5	2	1.2	1.2	3.6-3.85
Self discharge	[%/mo]	<0.3	5	20	20	1.5-2
Lifetime	[# cycles]	N/A	200-300	1000	300-500	300-1000

Sources:

- https://www.epectec.com/batteries/cell-comparison.html
- https://www.cei.washington.edu/education/science-of-solar/battery-technology/
- https://en.wikipedia.org/
- https://www.eetimes.com/

Exercise – Battery Capacity & Power

- Cell phone battery:
 - □ 3110 mAh
 - **□** 3.8 V
 - Charged overnight to 100% SoC
 - 16 hours later, SoC = 18%
- What was the average power consumption of the phone during the 16 hours it was in use?

Webb

Exercise – Battery Capacity

- A refrigerator is to be used to transport medicines to remote areas
 - 100 W, 50% duty cycle
 - Battery-powered lead-acid
 - Solar panel charges the batteries
 - Needs to be able to go three days without any solar input
 - Max. DoD: 80%
- What is the required battery capacity in Wh?

Webb