CLASS 19: MOTORS & GENERATORS

ENGR 102 – Introduction to Engineering

Electrical Machines

Electrical machines are *energy conversion* devices
 Convert between *electrical* and *mechanical* energy
 Includes *motors* and *generators*

http://www.trimainternational.com/Products/de.htm

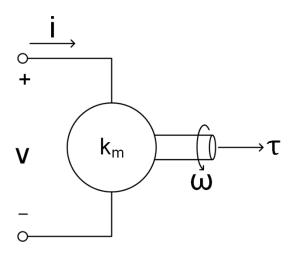
Motors and generators are the *same device* Only difference is the *direction of power flow*

Motors & Generators


Motor

 Electrical machine converting electrical energy to mechanical energy

Generator


Electrical machine converting mechanical energy to electrical energy

http://www.trimainternational.com/Products/de.htm

Motor/Generator Quantities

[A]

Electrical domain

- Voltage, v [V]
- Current, i
- **D** Power, $P = v \cdot i$ [W]

Mechanical domain

- **D** Torque, au
- Velocity, ω

• Power,
$$P = \tau \cdot \omega$$

- [Nm]
- [rad/s] [W]

Motor Constant

- Motor converts:
 - Current to torque
 - Voltage to angular velocity
- Generator converts:
 - Torque to current
 - Angular velocity to voltage
- Motor properties determine constant of proportionality
 Motor constant, k_m

$$\tau = k_m \cdot i$$
$$\nu = k_m \cdot \omega$$

 $\square k_m$ has equivalent units of: [Nm/A] or [V/rad/s]

Motor Physics – Lorentz Force

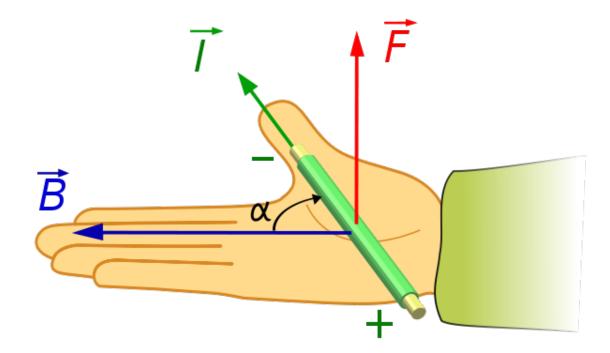
Lorentz force:

- Basis for electrical/mechanical energy conversion
- A current-carrying wire in a magnetic field experiences a force

$$\vec{F} = \vec{I}\ell \times \vec{B}$$

where

 \vec{I} : current vector ℓ : length of wire \vec{B} : magnetic field \vec{F} : force exerted on wire


 \blacksquare × is the cross product

$$F = \left| \vec{F} \right| = \mathrm{I}\ell B \sin(\theta)$$

where θ is the angle between \vec{I} and \vec{B}

Lorentz Force – Right-Hand Rule

- 7
- Right-hand rule gives the direction of the force:
 - Fingers point in the direction of the magnetic field
 - Thumb points in the direction of the current
 - Force is out of the palm

DC Motor Operation

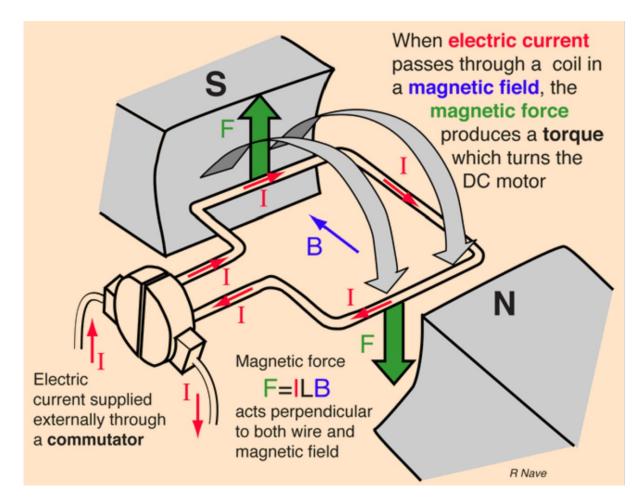


Image source: Dr. Rod Nave, http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motdc.html#c1

DC Motor Components

Stator

Stationary part of motor

Rotor

Rotating part of motor

<u>Armature</u>

Current-carrying coils on rotor

Commutator

 Mechanism for reversing armature current

Brushes

Contacts to the commutator

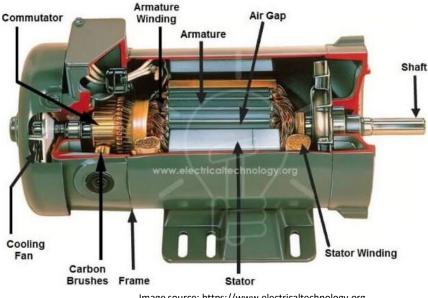


Image source: https://www.electricaltechnology.org

Types of Motors

DC motors

Brushed

Brushless (electronically-commutated motor)

AC motors

Synchronous (PMAC, PMSM)

Asynchronous (induction motors – most common)

Universal motors

AC or DCTools, appliances, etc.

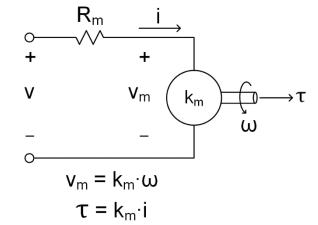
Equivalent Circuit Model

11

- Simple DC motor model accounts for:
 - Energy conversion
 - Armature resistance

Scenario 1: no load

- No external load: $\tau = 0$
- **D** Small internal load due to friction: τ_{int}
- **\square** Small no-load current required to overcome τ_{int}

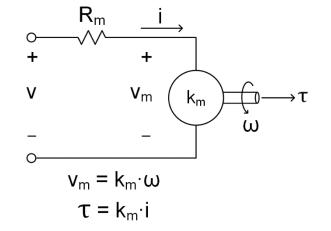

$$\bar{x}_{nl} = \frac{1}{k_m} \tau_{int}$$

No-load back emf voltage:

$$v_m = v - i_{nl}R_m = v - \frac{R_m}{k_m}\tau_{int}$$

No-load speed:

$$\omega_{nl} = \frac{1}{k_m} v_m = \frac{1}{k_m} \left(v - \frac{R_m}{k_m} \tau_{int} \right)$$


Equivalent Circuit Model

Scenario 2: applied load

• Now, $\tau > \tau_{int}$

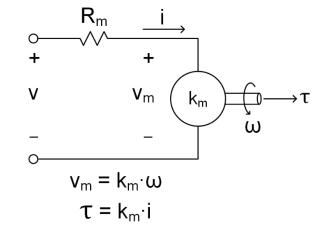
More current required to supply required torque

$$i = \frac{1}{k_m}\tau$$

Back emf voltage decreases with increasing load:

$$v_m = v - iR_m = v - \frac{R_m}{k_m}\tau$$

Speed decreases with increasing load:


$$\omega = \frac{1}{k_m} v_m = \frac{1}{k_m} \left(v - \frac{R_m}{k_m} \tau \right)$$

Equivalent Circuit Model

Scenario 3: stall torque

Applied load causes motor to stall
 Speed goes to zero, ω = 0
 Back emf goes to zero:

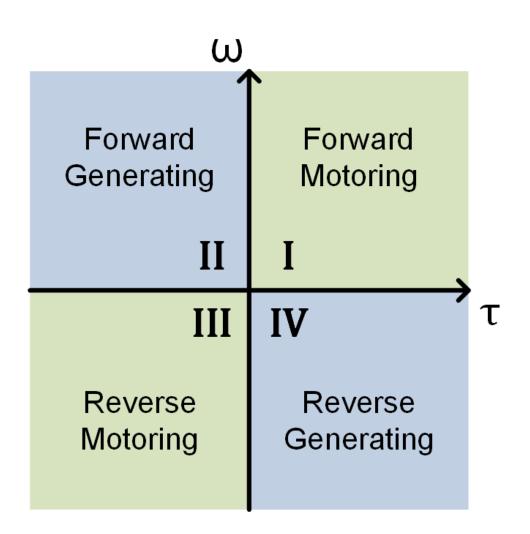
$$v_m = k_m \omega = 0$$

Ohm's law gives the stall current:

$$i_{stall} = rac{v}{R_m}$$

• The stall torque is:

$$\tau_{stall} = k_m i_{stall} = \frac{k_m}{R_m} v$$


Operating Quadrants

Motoring

 Torque and velocity in the same direction

Generating

 Torque and velocity in opposing directions

