CLASS 1: COURSE OVERVIEW

ENGR 102 – Introduction to Engineering

² Course Overview

ENGR 102 – Course Overview

3

- Many modern engineering systems are *electronically* controlled
 - They include a microcontroller
 - We call these *embedded systems*
- ENGR 100/102 provide a brief intro to the basic components of embedded systems
 - Mechanical
 - Electrical
 - Computer programming
- Building toward the ENGR 103 project:
 - Design and fabrication of an embedded system
 - Hand-crank battery charger

Embedded Systems

- Embedded systems:
 - *Microcontroller*-based systems
 - Mechanical, electrical, mechatronic systems
 - **Programmed** to provide desired system functionality
- □ Embedded systems are *everywhere*, e.g.:
 - Automotive systems
 - Home appliances
 - Mobile phones
 - Industrial robotics
 - IoT devices
 - Smart watches, ...

Microcontrollers

□ Microcontroller

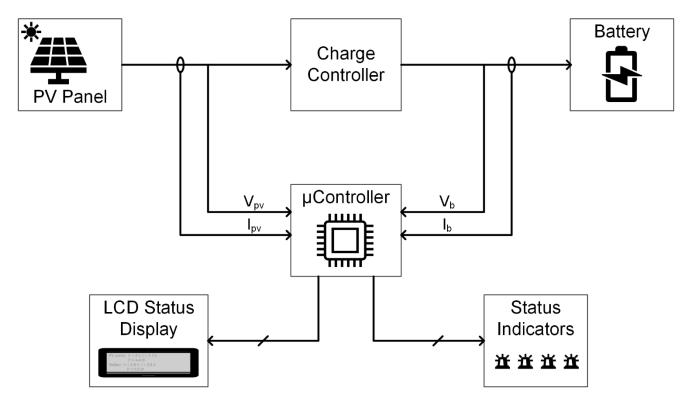
- A single-chip computer with integrated memory and input/output peripherals
- Typically less computing power, but more functionality than a microprocessor
- The *brain* of an embedded system
- Must be programmed to do what we want
 - Microcontroller code is called firmware

Embedded System Components

6

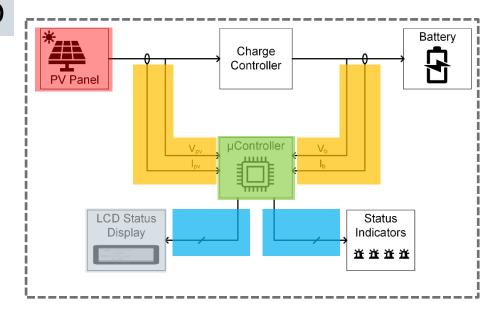
- System to be controlled
 - Electrical, mechanical, mechatronic, etc.
- ☐ Microcontroller
 - Typically on a printed circuit board (PCB)
- Inputs
 - From sensors, knobs, buttons, network, etc.
- Outputs
 - To motors, displays, actuators, network, etc.
- Firmware
 - Computer code defining system behavior

Webb


ENGR 102 Course Overview

Week	Topics	Lab
1	Intro to embedded systems EE overview	Lab 1: Microcontrollers
2	Electrical fundamentals Voltage, current Fundamental laws	Lab 2: Lab tools
3		Lab 3: Soldering
4	Algorithmic thinking	Lab 4: Analog & digital inputs/outputs
5	Flowcharts, algorithm design	Lab 5: Power measurement
6	Python intro Data types Mathematical operations Conditional statements	Lab 6: Flowcharts
7		Lab 7: Writing to an LCD
8	More electrical fundamentals Solar panels Batteries Motors/generators	Lab 8: Solar panel
9		Lab 9: Solar battery charger
10		

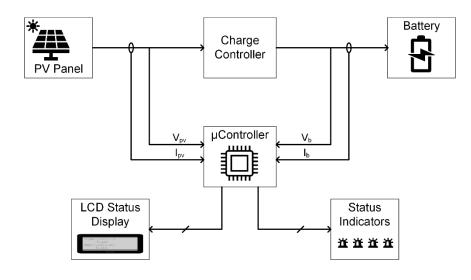
Hardware	Programming	Hardware & Programming
	0	


ENGR 102 – Labs

- All ENGR 102 labs build toward construction of a final embedded system:
 - **□** Solar battery charger

Hardware labs:

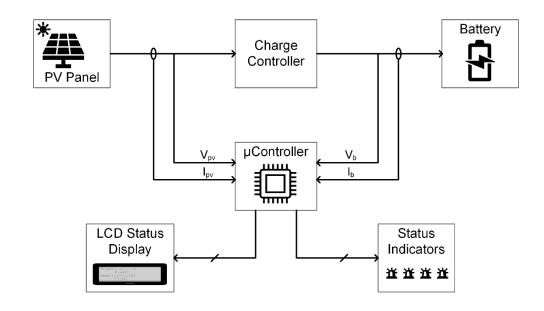
- Lab 1: microcontroller introduction
- Lab 4: Analog & Digital Inputs/Outputs
- Lab 5: Power Measurement
- Lab 7: Writing to an LCD
- Lab 8: PV PanelCharacterization
- Labs 9 & 10: Solar Battery Charger



Webb

ENGR 102 – Labs

Programming labs:


- Lab 1: Microcontroller Introduction
- Lab 4: Analog & Digital Inputs/Outputs
- Lab 5: Power Measurement
- Lab 6: Flowcharts
- Lab 8: PV Panel Characterization
- Labs 9 & 10: Solar Battery Charger

ENGR 102 – Labs

Tools and prototyping labs:

- Lab 2: Lab Tools & Equipment
- Lab 3: Introduction to Soldering

