CLASS 3: ELECTRICAL FUNDAMENTALS

ENGR 102 – Introduction to Engineering

Fundamental Electrical Quantities

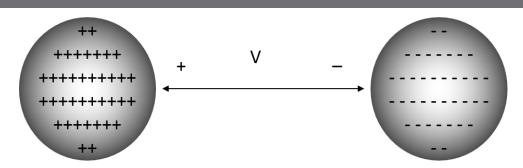
- 3
- GOAL: begin to understand the function of basic electrical circuits
- REQUIREMENT: become familiar with fundamental electrical concepts and quantities:
 - Voltage or potential
 - Charge
 - Current

Electrical Charge

- Electrical energy results from *charge differentials*
 - Different amounts of *positive* and *negative electrical charge* between two locations
 - E.g., between battery electrodes

Negative electrical charge

D *Electrons* are the carriers of negative electrical charge


Positive electrical charge

- Holes are the carriers of positive electrical charge
- The absence of an electron

Units of charge: coulombs (C)

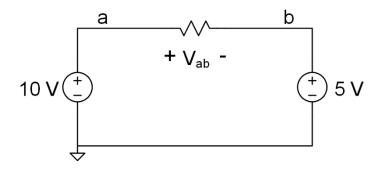
■ Charge of one electron: 1.6×10⁻¹⁹ C

Electrical Potential

Potential or voltage or electromotive force (emf)

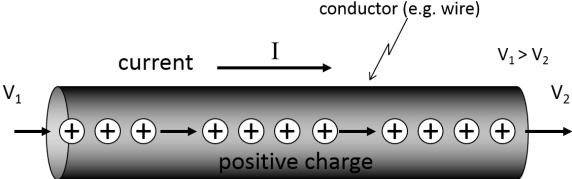
- A measure of electrical energy
- The energy required to move one unit of electrical charge from one point to another
 - Units of potential: volts (V)
 - Units of electrical charge: coulombs (C)
 - Units of energy: joules (J)

$$1V = 1\frac{J}{C}$$


Electrical Potential

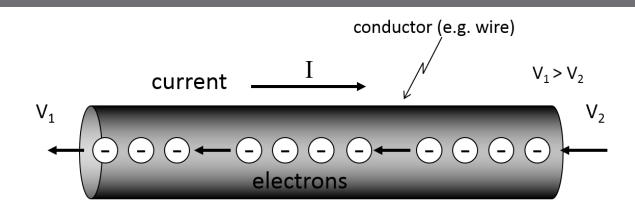
- Electrical potential is a *differential quantity*
 - Voltage between two points in a circuit
 - Voltage between a point and a ground reference
- No such thing as an *absolute* voltage at a location, but...
 - We do talk about *node voltages*
 - Always referenced to ground
 - For example,
 - Node voltages:

$$V_a = 10 V$$
, $V_b = 5 V$


Differential voltage:

$$V_{ab} = V_a - V_b = 5 V$$

Electrical Current


Current (I) is the flow of positive charge

- Voltage is the driving potential
- Units: amperes or amps (A) coulombs per second (C/s)
 - A *rate* of charge flow:

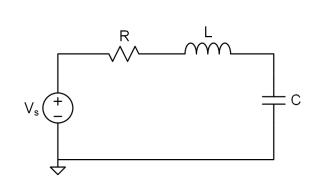
$$1A = 1\frac{C}{s}$$

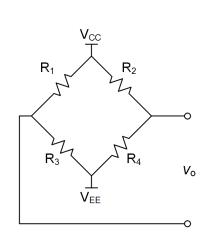
- Current wants to flow from high to low potential
- Analogous to fluid flow or heat flow
 - Fluid flows from high to low pressure
 - Heat flows from high to low temperature

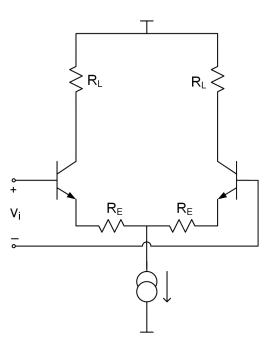
Current – what's really flowing?

- Current is defined as the *flow of positive charge*
- Really, current is the *flow of negatively-charged electrons in the opposite direction*
 - Electrons flow from low potential to high potential
 - Negative charge flow in one direction is equivalent to positive charge flow in the opposite direction

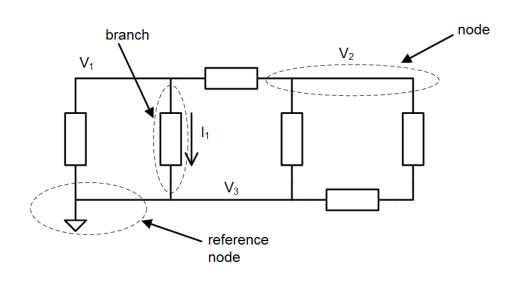
Electrical-Mechanical Analogies


- □ Electrical systems are analogous to:
 - **G** Fluid systems
 - Thermal systems


Domain	Driving potential	Flowing quantity	Flow	(units)
Electrical	Voltage	Positive charge	Current	(A)
Fluid	Pressure	Fluid	Flow rate	(m³/s)
Thermal	Temperature	Heat	Heat flux	(W)


¹⁰ Electrical Circuits

Electrical Networks – Schematics


- Electrical circuits represented graphically with schematics
 - Schematic symbols represent circuit elements
 - Schematics detail connections between circuit elements
 - Schematics describe paths for the flow of electrical current
- □ Some examples:

Electrical Networks – Branches & Nodes

□ Nodes

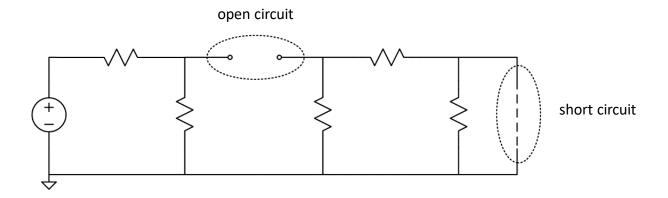
- Connection points for circuit elements
- Node voltages given with respect to a reference node (0 V, ground)

■ E.g., V₃ = 0 V, here

 Current flows into and out of nodes

Branches

- Paths for current to flow
- Connections between nodes
- Branches are the components that comprise the circuit
- Voltage across a branch is the difference between node voltages at either end


Short Circuits & Open Circuits

Short circuit

- Direct connection between multiple nodes in a circuit
- A direct path for current to flow
- Often refers to an unintentional connection

Open circuit

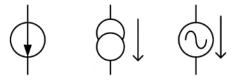
- Lack of any electrical connection between two nodes in a circuit
- No path for current to flow
- Again, often used to refer to an unintended condition

Complete Circuits

- Electrical current always flows in a complete circuit
 - A return current path must always exist for current to flow
 - **Consider** a simple lamp:
 - Two-conductor cord line and neutral
 - Current flows from socket, down one conductor line
 - Current flows through the bulb
 - Current returns back along the neutral conductor to the wall, and, ultimately, to the power plant

Ladder on a power line vs. bird on power line

¹⁵ Electrical Circuit Components


- □ Voltage source
 - **Schematic symbol:**

- **Description:**
 - Generates a fixed voltage between its terminals
 - DC or AC
- **Units**: volts (V)

Current source

G Schematic symbol:

- **Description:**
 - Generates a fixed current
 - DC or AC
 - Current flows in one terminal and out the other
- Units: amperes (A)

Resistor

Schematic symbol:

Description:

- Circuit element that resists the flow of electrical current
- Intentional or parasitic resistance (even wires are resistive)
- **Ο** Units: ohms (Ω)

Ground

Schematic symbol:

\uparrow \mp

Description:

- Voltage reference for a circuit
- Ground node
- Potential of 0 V

Capacitor

Schematic symbol:

Description:

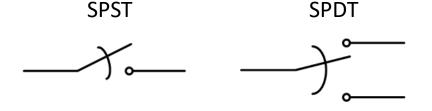
- Stores energy in an electric field
- Two electrodes separated by a dielectric
- Stores a charge differential between the two electrodes
- **Units**: farads (F)

Inductor

G Schematic symbol:

\mathcal{M}

—— (

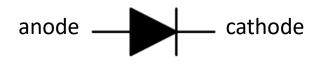


Description:

- Stores energy in a magnetic field
- A coil of wire
- **Units**: henries (H)

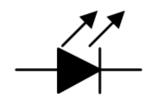
Switch

Schematic symbol:



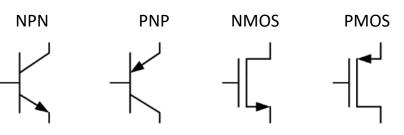
Description:

- Controls connections between multiple nodes in a circuit
- Single-pole single-throw (SPST) switch makes/breaks connection between two nodes
- Single-pole double-throw (SPDT) switch connects one node to one of two other nodes
- Many other configurations, e.g. DPDT, 3PDT, 6P3T, etc.

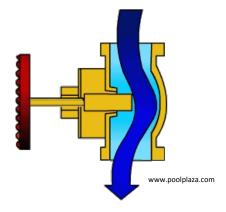

Diode

Schematic symbol:

Description:


- Two-terminal semiconductor device
- Junction of p-type and n-type semiconductor a p-n junction
- Allows current to flow in one direction only (anode to cathode)
- Analogous to a check valve
- Light-emitting diode (LED)
 Schematic symbol:

Description:


Diode that emits photons in response to current flowing through it

Transistor
 Schematic symbol:

Description:

- Three-terminal semiconductor device
- Small voltage on/current into one terminal controls current flow between the other two terminals
- Primary building block of integrated circuits
- Can be used as switches or amplifiers
- Analogous to valves:

ENGR 102