CLASS 5:
VOLTAGE \& CURRENT DIVIDERS

ENGR 102 - Introduction to Engineering

Series \& Parallel Circuits

Series Circuits

\square Series-connected components
\square Share one common node

- Nothing else connected to that node
- Connected end-to-end
- Equal current through each component

Resistors, R_{1} and R_{2}, and voltage source, V_{s}, are all connected in series

$$
I_{s}=I_{1}=I_{2}
$$

Parallel Circuits

\square Components in parallel
\square Share two common nodes

- Connected side-by-side
- Equal voltage across each component

Resistors, R_{1} and R_{2}, and voltage source, V_{s}, are all connected in parallel

$$
v_{s}=v_{1}=v_{2}
$$

Series Resistance

\square Resistances in series add

$$
R_{e q}=R_{1}+R_{2}
$$

\square In general,

$$
R_{e q}=\sum R_{i}
$$

Parallel Resistance

\square Conductances in parallel add

\square For two parallel resistors (only):

$$
R_{e q}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

Equivalent Resistance

\square Determine the equivalent resistance seen looking into the terminals of the following network

Voltage \& Current Dividers

Voltage Dividers

\square Voltage across series resistors divides proportional to resistance
\square Consider two series resistors:

- Current through the resistors

$$
I=\frac{V_{S}}{R_{1}+R_{2}}
$$

- Ohm's law gives the voltage across either resistor

$$
\begin{aligned}
& V_{n}=I R_{n} \\
& V_{1}=\frac{V_{s}}{R_{1}+R_{2}} R_{1}=V_{s} \frac{R_{1}}{R_{1}+R_{2}} \\
& V_{2}=\frac{V_{s}}{R_{1}+R_{2}} R_{2}=V_{s} \frac{R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

Voltage Dividers

\square In general, the voltage across one in a series of resistors is given by

$$
V_{n}=V_{\text {total }} \cdot \frac{R_{n}}{\Sigma R_{i}}
$$

- For example:

$$
\begin{aligned}
& V_{3}=16 V \frac{300 \Omega}{1 k \Omega+200 \Omega+300 \Omega+100 \Omega} \\
& V_{3}=16 \mathrm{~V} \frac{300 \Omega}{1.6 \mathrm{k} \Omega}=3 \mathrm{~V}
\end{aligned}
$$

Current Dividers

\square Current through parallel-connected resistances divides proportional to conductance
\square Consider two parallel resistors:

- Voltage across the resistors

$$
V_{o}=\frac{I_{S}}{G_{1}+G_{2}}=\frac{I_{S}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=I_{S} \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

- Ohm's law gives the current through either resistor

$$
\begin{aligned}
& I_{n}=\frac{V_{o}}{R_{n}} \\
& I_{1}=\frac{I_{S}}{R_{1}} \frac{R_{1} R_{2}}{R_{1}+R_{2}}=I_{S} \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{2}=\frac{I_{S}}{R_{2}} \frac{R_{1} R_{2}}{R_{1}+R_{2}}=I_{s} \frac{R_{1}}{R_{1}+R_{2}}
\end{aligned}
$$

Current Dividers

\square Current through one of two parallel resistors is given by

$$
I_{1}=I_{\text {total }} \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

$$
I_{2}=I_{\text {total }} \cdot \frac{R_{1}}{R_{1}+R_{2}}
$$

- One of the two resistors may be a parallel combination of multiple resistors
\square More generally, expressed in terms of conductance
- Applies to any number of parallel resistances

$$
I_{n}=I_{\text {total }} \cdot \frac{G_{n}}{\sum G_{i}}
$$

Current Dividers

\square For example, determine I_{1}
\square First, combine the 300Ω and 100Ω resistors in parallel

$$
R_{e q}=\left(\frac{1}{300 \Omega}+\frac{1}{100 \Omega}\right)^{-1}=75 \Omega
$$

\square Next, apply the current divider equation:

$$
\begin{aligned}
& I_{1}=I_{\text {total }} \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{1}=22 A \frac{75 \Omega}{200 \Omega+75 \Omega} \\
& I_{1}=6 \mathrm{~A}
\end{aligned}
$$

Current Dividers

\square Or, using conductances:

$$
I_{1}=22 A \frac{\frac{1}{200 \Omega}}{\frac{1}{200 \Omega}+\frac{1}{300 \Omega}+\frac{1}{100 \Omega}}
$$

$$
\begin{aligned}
& I_{1}=22 \mathrm{~A} \cdot \frac{5 \mathrm{mS}}{5 \mathrm{mS}+3.33 \mathrm{mS}+10 \mathrm{mS}} \\
& I_{1}=22 \mathrm{~A} \cdot 0.2727 \\
& I_{1}=6 \mathrm{~A}
\end{aligned}
$$

Voltage Division

\square Apply the principle of voltage division to determine V_{1} and V_{2} in the circuit below.

Current Division

Apply the principle of current division to determine V_{o} in the circuit below.

