
ENGR 103 – Introduction to Engineering Computing

SECTION 1:
INTRODUCTION

Webb ENGR 103

Course Overview2

Webb ENGR 103

3

What is Programming?

 Programming
 The implementation of algorithms in a particular computer

programming language for execution on a computer

 Algorithm
 A step-by-step procedure for performing a computation, solving a

problem, performing some action, etc. – a recipe
 Algorithm design is the meat of programming – the rest is just

translation into a particular language

 Programming language
 We’ll use Python. Others include C, C++, Java, MATLAB, etc.

 Computer
 May be a PC, or may be a microcontroller, FPGA, etc.

Webb ENGR 103

4

Why Programming?

 I don’t want to be a software engineer. Why do I
need to learn to program?
 All engineers will need to write computer code

throughout their careers
 Design and simulation
 Numerical solution of mathematical problems
 Data analysis – from measurements or simulation
 Firmware for the control of mechatronic systems

 More importantly: development of algorithmic
thinking ability
 Learn to think like an engineer – single most important

takeaway from your engineering education

Webb ENGR 103

5

Course Overview

Section 1: Introduction

Section 2: Vectors and Matrices

Section 4: Algorithmic Thinking &
Flow Charts

Section 5: Structured Programming in
MATLAB

Section 3: Two-Dimensional Plotting

Section 6: User-Defined Functions

Section 8: File I/O

Introductory material:
 Course overview
 Introduction to required tools
 Linear algebra basics

Algorithm fundamentals:
 Generic; Platform-independent
 Engineering thinking –

transcends programming

Package-specific tools (matplotlib):
 Data visualization
 Valuable engineering tools

Application of the fundamentals:
 Python-specific, but
 Similar to other languages

Section 7: Three-Dimensional Plotting

Section 9: Engineering Applications

Webb ENGR 103

6

Python

 This a course in programming fundamentals and
algorithmic thinking

 The language we’ll use to develop these concepts is
Python (in the Spyder development environment)
 Could just as well use another language, e.g., C, C++,

Java, MATLAB, Fortran, …
 The important concepts are not language-specific

 Two goals of this course:
 Learn to develop basic algorithms and to write

structured computer code
 Learn to use Python

Webb ENGR 103

The remainder of this section of notes is intended
to provide a brief introduction to Python and the
Spyder development environment.

Introduction to Python & Spyder7

Webb ENGR 103

8

Python – What is It?

 A general-purpose
programming language
 Used for writing programs to describe procedures to be executed

by computers
 High-level
 Readable code – includes natural-language constructs
 Makes use of extensive libraries of functions
 Highly abstracted from the machine-level instructions that will

ultimately be passed to the computer

 Interpreted
 Translation to machine instructions happens at runtime
 Not compiled – translations happens once, creating a separate

executable file

 Object oriented – more on this later

Webb ENGR 103

9

Python – How Do We Use it?

 Different ways to write and execute Python code
 Text editor
 Simple editor for writing code
 May include language specific formatting/coloring, etc.
 E.g. Vi/Vim, Sublime Text, etc.

 Integrated development environment (IDE)
 Software interface to facilitate code development

 Code editor
 Debugger
 Console
 Variable explorer
 File browser,
 Plotting support, etc.

 E.g. Spyder, Pycharm, IDLE, Visual Studio, etc.

Webb ENGR 103

10

Spyder – What is It?

 We will use the Spyder IDE
 Scientific PYthon Development EnviRonment
 Designed for scientific, engineering, and data science applications

Webb ENGR 103

11

The Spyder Interface

Console

Plot Pane

Help

Editor

File Browser

Variable Explorer

Command History

Webb ENGR 103

12

The Spyder Interface - Console

 Run Python commands interactively
 Behaves like a calculator
 Useful for:

 Quick calculations
 Simple debugging tasks

Webb ENGR 103

13

The Spyder Interface - Editor

 Editor for Python scripts
 Write and execute our

Python code here
 Auto formatting

 Highlighting
 Indenting
 Code complettion

 Built-in debugger
 Set breakpoints
 Step through code line-by-

line or by section

Webb ENGR 103

14

The Spyder Interface – Variable Explorer

 Lists all variables
currently stored in
memory
 Values for scalars

and small arrays
 Size and data

types for larger
arrays

 Double-click a
variable to open in
a separate window

Webb ENGR 103

15

The Spyder Interface – File Browser

 File browser
 A built-in

‘Windows
Explorer’ or
‘Finder’

 Open, move,
copy, rename,
delete files from
within Spyder

Webb ENGR 103

16

The Spyder Interface – Command History

 Lists previously-executed
commands
 All commands issued

through the command
window

 Copy comands from
history pane

 Arrow keys cycle
through command
history in the console
 Start typing to restrict

recalled commands

Webb ENGR 103

17

The Spyder Interface – Help Pane

 Display help documentation
for modules classes functions
and methods
 Enter object name directly in

the ‘Object’ field
 Place cursor on object in the

editor window and type Ctrl-i

Webb ENGR 103

18

The Spyder Interface – Plots Pane

 Plots displayed
here

 Docked to the
Spyder
desktop

 Plot history
thumbnails
displayed to
right

 Two ways to display plots:
 Plot pane
 no cursors or zooming

 Interactive window
 Cursors and zooming, but can’t dock

Webb ENGR 103

19

The Spyder Interface – Saving Layouts

 Configure the panes in your Spyder
desktop to suit your workflow

 Save one or more layouts to suit your
preferences

Webb ENGR 103

Variables used in Python can be of many different
types, e.g. integers, floating-point numbers,
alphanumeric characters, etc.
The following section introduces each of these data
types. You’ll gain a better understanding of each as
the course progresses.

Data Types20

Webb ENGR 103

21

Assignment of Variables

 Can define variables
and assign values
 Within a script
 In the console

 Can then operate on
those variables

 Variables appear in
variable explorer

Webb ENGR 103

22

Variable Declaration

 In Python, it isn’t necessary to declare a variable
before using it, e.g.:

a = 7.4039

 Declaration occurs automatically upon assignment
 This differs from many other languages, e.g. in C:

float a;
a = 7.4039;

or
float a = 7.4039;

Webb ENGR 103

23

Variable Names

 Variable names must start with a letter or underscore
 Names may contain letters, numbers, and underscore

characters
 No spaces

 Some examples:

Allowed Not allowed

A Var 3

var1 4x_a

x_2_a data file name

Avg_price %pop #

Webb ENGR 103

24

Variable Names

 Names are case sensitive
 For example, all three are different:
 Name_1
 Name_1
 NAME_1

 Cannot use Python keywords
 E.g., for, if, def, True, etc.

 Don’t name variables with names of built-in functions
 Can be done, but that function will become unavailable

 Preferred variable naming convention:
 All lowercase
 Separate multiple words with an underscore

Webb ENGR 103

25

Variable Declaration – Dynamic Typing

 Python variables are of can be different types, e.g.:
 Integer: int
 Floating-point number: float
 Alpha-numeric string: str

 Python is dynamically typed
 Don’t need to assign type when defining a variable
 Python interpreter determines type at runtime

Webb ENGR 103

26

Fundamental Python Data Types

 Python supports many different numeric and non-numeric
data types, for example

 Numeric types
 int
 float
 complex

 Non-numeric types
 str
 list
 tuple

 set
 dict
 bool

 We’ll introduce each of these types now, but will learn more
about them throughout the course

Webb ENGR 103

27

Mutable vs. Immutable Data Types

 Data objects of all types are values stored at specific
locations in a computer’s memory

 All data types fall into one of two categories:
 Immutable
 Values cannot be modified after the variable is created in memory

 Numbers – int, float, complex
 Strings – str
 Tuples – tuple

 Mutable
 Values can be modified after variable creation
 Can add, delete, insert, and rearrange items in a mutable

sequence
 Lists – list
 Dictionaries – dict

Webb ENGR 103

28

Data Types – int

 Integers
 Zero, positive, and negative whole numbers

>>> a = 7
>>> x = -4
>>> N = 0

 If you assign a whole-number value to a variable, it will
automatically be cast as an int

Webb ENGR 103

29

Data Types – float

 Floating point numbers
 Positive, and negative non-whole numbers

>>> a = 2.71
>>> x = -4.5
>>> bigNum = 1.8e12
>>> smallNum = 6.4E-9

 If you assign a non-whole-number value to a variable, it will
automatically be cast as a float

Webb ENGR 103

30

Scientific Notation

 Use scientific notation to represent very large or very small floating-
point numbers, e.g.:

1.58 × 10−9

 Very bad practice to type a lot of zeros – never do this:

0.00000000158

 Difficult to read, and much too easy to miscount zeros

 In Python use e or E for × 10𝑥𝑥, e.g.:

x = 1.58e-9

x = 1.58E-9

 Don’t confuse with the exponential function 𝑒𝑒𝑥𝑥 (i.e. 2.718𝑥𝑥)

Webb ENGR 103

31

Data Types – complex

 Complex numbers
 Numbers with real and imaginary parts

>>> z = 3 + 2j
>>> b = -4.5 + 6j
>>> V = 105 – 18.6j

 j is the imaginary unit
 j = −1

Webb ENGR 103

32

Data Types – str

 Strings
 Sequences of alpha-numeric characters
 Enclosed in single, double, or triple quotes

>>> str_1 = 'Hello, World!'

>>> Name = "John Doe"

>>> ml_string = '''Multi-line strings
are enclosed in
triple quotes.'''

Webb ENGR 103

33

Data Types – str – Escape Characters

 Escape characters
 Allows you to insert special characters in strings
 Backslash, \, followed by a special character

Escape
Character

Result

\' Single quote

\" Double quote

\\ Backslash

\n New line

\t Tab

Webb ENGR 103

34

Data Types – list

 Lists
 Ordered, mutable collections of one or more different

data types
 Enclosed in square brackets, [], separated by commas

>>> list1 = [3, 15.2, 12e3, -459]
>>> names = ['Jane', ‘Bob', 'Sally']
>>> mixed = [3, 'Hello', 4 + 9j]

Webb ENGR 103

35

Data Types – tuple

 Tuples
 Ordered, immutable collections of one or more different

data types
 Like a list, but immutable
 Enclosed in square parentheses, (), separated by commas

>>> tup1 = (3, 15.2, 12e3, -459)
>>> names = ('Jane', 'Bob', 'Sally')
>>> mixtup = (3, 'Hello', 4 + 9j)

Webb ENGR 103

36

Data Types – set

 Sets
 Unordered, mutable collections of one or more different data types
 Enclosed in square curly brackets, { }, separated by commas
 Sets do not store duplicate objects
 Suitable for mathematical set operations, e.g., union, intersection,

difference, etc.

>>> numset = {3, 15.2, 12e3, -459}
>>> names = {'Jane', 'Bob', 'Sally'}
>>> set3 = {3, 'Hello', 4 + 9j}

Webb ENGR 103

37

Data Types – dict

 Dictionaries
 Ordered, mutable collections of data stored as key:value pairs
 Enclosed in square curly brackets, { }
 Keys and values separated by colons
 Key:value pairs separated by commas
 Duplicate keys are not allowed

>>> person1 = {'Name':, 'Joe', 'Age':, 32, 'Hair':,
'brown', 'Eyes':, 'green'}

>>> capitals = {'OR':, 'Salem', 'WA':, 'Olympia',
'CA':, 'Sacremento', 'ID':, 'Boise}

Webb ENGR 103

38

Data Types – bool

 Booleans
 One of two logical values: True or False
 Often the result of a logical expression, e.g., a > b
 Any value can be cast as a Boolean using the bool() function
 True:

 Non-zero numbers
 Non-empty strings, lists, tuples, sets, or dictionaries

 False:
 Zero
 Empty strings, lists, tuples, sets, or dictionaries

Webb ENGR 103

Python includes the most basic mathematical
operations. Other math functions will be
accessed by importing the NumPy package

Mathematical Operations39

Webb ENGR 103

40

Basic Mathematical Operations

 Python itself includes only
seven mathematical operators
 Addition: +
 Subtraction: –
 Multiplication: *
 Division: /
 Modulus: %
 Exponentiation: **
 Floor division: //

Webb ENGR 103

41

Order of Operations

 Python order of operations:
1) () parentheses
2) ^ exponentiation
3) - negation
4) *, / multiplication, division
5) +, - addition, subtraction

 Expressions are evaluated left to right within each
level of the precedence hierarchy

Webb ENGR 103

42

Other Built-In Python Functions

 A few other math-related built-in Python functions:
 abs(x): absolute value

>>> a = abs(-1.76)

1.76

>>> z = abs(2 – 2j)

2.828

 len(x): returns the length of an object

>>> len([2, 4, 5, 3, 1])

5

>>> len('Hello, World!')

13

Webb ENGR 103

43

Other Built-In Python Functions

 A few other math-related built-in Python functions:
 max(x): maximum value in a sequence

>>> x_max = max([2, 4, 5, 3, 1])

5

 min(x): minimum value in a sequence

>>> x_min = min([2, 4, 5, 3, 1])

1

 type(x): returns the type of an object

>>> type([2, 4, 5, 3, 1])

list

>>> type('Hello, World!')

str

Webb ENGR 103

Here we will introduce the concept of
packages, and will look specifically at the
package we will use most for mathematical
operations, NumPy.

NumPy44

Webb ENGR 103

45

Packages

 Python packages
 Libraries consisting of multiple modules, or individual Python files
 Modules within a package define

 Data types
 Functions

 Must install a package before we can use it
 Anaconda distribution includes all the packages we will need

 Must import a package in our code before we can use it
 Use the import function

 Packages available for
 Array processing and mathematics
 Plotting
 Data analysis
 GUI development
 Much, much more …

Webb ENGR 103

46

NumPy

 We will use the NumPy (Numerical Python)
package extensively

 Fundamental data type:
 Multi-dimensional array object – ndarray
 Useful for engineering computation

 Many built-in functions
 Mathematical operations, e.g.:
 Trigonometric functions
 Exponents and logarithms
 Complex number operations

 Array creation an manipulation routines
 Polynomial creation, manipulation, fitting, etc.
 Much more …

Webb ENGR 103

47

Using NumPy

 To use NumPy functions and data types, we must first
import it:

>>> import numpy as np

 We can assign it a shortened name, np, to keep our code
clean

 To call functions defined in NumPy, precede the
function name with np.

>>> N = np.log2(1024)

>>> x = 3*np.sin(np.pi/2)

 We'll now introduce a small sample of NumPy functions

Webb ENGR 103

48

NumPy – Trigonometric Functions

 sin(x), cos(x), tan(x)
 Input in radians

>>> y = np.sin(x)
>>> y = np.sin(np.radians(x))

 arcsin(x), arccos(x), arctan(x)
 Inverse trig functions
 Output in radians

>>> theta = np.arcsin(0.6)

Webb ENGR 103

49

NumPy – Trigonometric Functions

 arctan2(x) – quadrant-aware inverse tangent
 Accounts for the difference between, e.g. , 45° and 225°
 Output in radians

>>> phi = np.arctan2(-4, 3)
>>> phi_deg = np.degrees(np.arctan2(-4, 3))

 degrees(x) – converts from radians to degrees

>>> ang45 = np.degrees(np.pi/4)

 radians(x) – converts from degrees to radians

>>> angPi = np.radians(180)

Webb ENGR 103

50

NumPy – Rounding

 around(x, decimals=0) – round to the specified
number of decimals (default, 0)

>>> xint = np.around(1.6)
2.0

>>> xrnd = np.around(np.pi, decimals=2)
3.14

 Numbers exactly halfway between rounded decimal values round
to the nearest even value
>>> x0 = np.around(2.5)
2.0

>>> x1 = np.around(1.65, decimals=1)
1.6

>>> y1 = np.around(1.55, decimals=1)
1.6

Webb ENGR 103

51

NumPy – Rounding

 fix(x) – round to the nearest integer toward zero
>>> xfix = np.fix(1.2)
1.0

>>> yfix = np.fix(-2.8)
-2.0

 floor(x) – round to the nearest integer toward negative infinity
>>> xfloor = np.floor(1.6)
1.0

>>> xflr = np.floor(-1.2)
-2.0

 ceil(x) – round to the nearest integer toward positive infinity
>>> xceil = np.fix(1.2)
2.0

>>> yceil = np.fix(-2.8)
-2.0

Webb ENGR 103

52

NumPy – Exponents

 exp(x) – exponential: 𝑒𝑒𝑥𝑥
>>> y = np.exp(4.1)
60.3403

>>> e = np.exp(1)
2.71828

 exp2(x) – power of 2: 2𝑥𝑥
>>> x = np.exp2(3)
8.0

>>> N = np.exp2(10)
1024.0

Webb ENGR 103

53

NumPy – Logarithms

 log(x) – natural log
>>> y = np.log(5)
1.609

 log10(x) – base-10 logarithm
>>> x = np.log10(1e4)
4.0

 log2(x) – base-2 logarithm
>>> x = np.log2(256)
8.0

Webb ENGR 103

54

NumPy – Complex Numbers

 real(z) – real part of a complex number
>>> y = np.log(5)
1.609

 imag(z) – imaginary part of a complex number
>>> x = np.log10(1e4)
4.0

 angle(z) – angle of complex number in radians
>>> x = np.log2(256)
8.0

 conj(z) – complex conjugate
>>> x = np.log2(256)
8.0

Webb ENGR 103

55

NumPy – Miscellaneous

 sqrt(x) – square root
>>> y = np.sqrt(2)
1.4142

 sum(x) – sum of all elements in a sequence
>>> total = np.sum([2, 4, 5, 3, 1])
15

 sign(x) – returns: -1 if x < 0, 0 if x == 0, 1 if x > 0
>>> np.sign([-12, 4, 6, 0, -3])
array([-1, 1, 1, 0, -1])

Webb ENGR 103

56

NumPy – Element-Wise Operations

 Numpy functions operate element-by-element on
array (or other sequence) inputs
 Return array outputs (more later)

>>> np.log10([1e4, 0.001, 10, 1e-6])
array([4., -3., 1., -6.])

>>> np.sqrt([4, 9, 25, 1e4])
array([2., 3., 5., 100.])

 Eliminates the need to explicitly perform the operation
on each element in an array

Webb ENGR 103

57

Built-In Constants

 Some built-in Python and Numpy constants:

 𝜋𝜋: np.pi

 Imaginary unit (−1): i or j

 Infinity (∞): inf
 Not-a-number: NaN or nan
 Both inf and nan often result from algorithmic errors

Webb ENGR 103

Python Scripts - Modules58

Webb ENGR 103

59

Spyder Console

 As we’ve seen, we can execute Python commands
through the console
 Useful for quick calculations, debugging, etc.
 Enter one expression at a time
 To execute a sequence of commands repeatedly, must

re-enter all commands each time
 Command history is only record of executed commands

 Better practice is to write all commands to be
executed in a single file, script, or module

Webb ENGR 103

60

Python Scripts

 Scripts or modules or programs are files containing
a series of Python commands
 .py filename extension
 Quickly and easily re-run at any time – no need to re-

type all commands in the command window
 Execute in Spyder by clicking the Run button (or F5)

 Our primary mode of executing Python code

Webb ENGR 103

61

Scripts vs. Programs vs. Modules

 We’ll use the terms scripts or programs interchangeably when referring to
Python files

 Technically, they are scripts, but this distinction is not important for our
purposes.

 Programs
 Written (possibly) in a high-level language – source code
 Compiled (once) by a compiler into a machine language executable file – object

code
 Fast, because compilation performed once, ahead of runtime

 Scripts
 High-level source code is interpreted and executed line-by-line by an interpreter

at runtime
 Slower than compiled programs

 Modules
 Python scripts that are intended to be imported into other scripts or modules

Webb ENGR 103

62

Python Scripts – Best Practices

Start scripts with a comment listing the file name.

Additional comments
with a brief overall
script description and
other details is useful.

Thoroughly
comment
your code.Define variables to be

used in equations.
Parameters can be
changed in a single place.

• Keep your code DRY:
Don't Repeat Yourself

Webb ENGR 103

63

Comments

 Comments are explanatory or descriptive text added to your code
 Not executed commands

 In Python, comments are preceded by the hash mark: #

 Comments may occupy an
entire line

 Or, may be inserted at the
end of a line, after
uncommented expressions

 Ctrl+1 comments and uncomments a line of text in the Spyder editor

 Commenting is useful for temporarily removing instructions from a
script

Webb ENGR 103

64

Cells

 Can divide Spyder scripts into cells
 Code blocks that can be executed at

once, without running the entire
script

 Cells are defined with a special
comment line:
 Follow the hash mark, #, with two

percent signs, %%
 Can also include comment text

%% start of a cell

 Cell ends at the start of the next cell

 To run a cell:
 Place the cursor in the cell to be run
 Ctrl-Enter, or click 'Run current cell'

Webb ENGR 103

65

Pseudocode

 The most important part of the process of writing
computer code is planning
 Determine exactly what the program should do
 And, how it will do it

 Before writing any code, write a step-by-step
description of the program
 Natural language
 Graphical – flow chart (more later)

 This may be referred to as pseudocode

Webb ENGR 103

66

Programming Process

 Programming process:

 Define the problem
 Ensure you have a complete understanding of the problem
 Determine exactly what the program should do

 Inputs and outputs
 Relevant equations

 Design the program
 Pseudocode – language-independent

 Write the program
 Simple translation from pseudocode

 Validate the program
 Do the outputs make sense
 Test with inputs that yield known outputs
 Test thoroughly – try to break it

Webb ENGR 103

67

Pseudocode

 Comments can serve as pseudocode
 Write the comments first
 Then insert code to do what the comments say

 For example:

Webb ENGR 103

68

Sequential Code Execution

 In general code is executed line-by-line sequentially
from the top of an m-file down

 There are, however, very important non-sequential
code structures:
 Conditional statements – code that is executed only if

certain conditions are met
 if
 if … else
 if … elif … else

 Loops – code that is repeated a specified number of times
or while certain conditions are met
 for
 while

Webb ENGR 103

Inputs & Outputs69

Webb ENGR 103

70

Inputs to Scripts

 Inputs to a script:
 Assignments of variable values

 Several input methods:
 Within the script
 From external files (.csv, Excel, etc.) – more later
 Specified by user during execution – input()

Webb ENGR 103

71

User-Specified Input – input()

 Prompt user for value to be assigned to a variable

var = input(Prompt)

 Prompt: a string that will be displayed in the console, prompting
the user for an input

 var: string variable to which the user-specified input is stored
 Re-cast for different data types (e.g. float)

 For example:

Webb ENGR 103

72

Outputs from Scripts

 Outputs from scripts:
 Display of values calculated by the script

 Several output methods
 Plotting (more later)
 In the console
 print()

 Writing data to files (more later)

Webb ENGR 103

73

print()

 Output a string to the console

print(string)

 string: a string – may contain formatting sequences for
insertion of variable values

 For example:

Webb ENGR 103

74

Formatting Strings – .format()

 Insert formatted numbers and strings into a string

<template>.format(args)

 <template>: a string containing replacement fields for insertion of
variable values
 Replacement fields may include formatting specifications

 args: objects to be inserted into the <template> string
 Strings or numeric values

 For example:

Webb ENGR 103

75

.format() – Syntax & Terminology

<template>.format(args)

 .format() is a method applied to the object,
<template>, which is an instance of the class str
 Class: a template for creating objects
 For now, think of this as the data type
 Here, the class is string, str
 Classes have attributes and methods associated with them

 Object: an instance of a class
 On the previous page, s is an object of type str

 Method: a function associated with a specific class
 Here, format() is a method that operates on str objects

 These object-oriented programming concepts will be
covered in detail later in the course

Webb ENGR 103

76

Formatting Strings – Replacement Fields

 Replacement fields:
 Enclosed in curly brackets, {}

 Arguments in format() are inserted in order
 May include a formatting specification, format_spec

{:format_spec}

 format_spec: specifies how to format numeric values

Webb ENGR 103

77

Formatting Strings – format_spec

 format_spec:
 Specify how numeric values are formatted

:[width][group][.prec][type]

 Always start format_spec with a colon, :
 width: minimum width of the field into which the

argument is inserted – may result in white space
 group: grouping character for each three digits to the left

of the decimal point (e.g. , or _)
 .prec: number of digits after the decimal point for floating

point numbers, or maximum field width for strings
 type: presentation type, e.g. floating point, integer, string,

etc.

Webb ENGR 103

78

format_spec – type

 Type characters specify how to format variable values within
a string

Presentation Type Type Character

Decimal integer d

Binary integer b

Hexadecimal integer x

Floating point f or F

Exponential notation
(e.g., 1.6e-19 or 1.6E-19) e or E

More compact of %e or %f g

More compact of %E or %F G

Single character c

String s

Percentage %

Webb ENGR 103

79

format_spec – Examples

 Fixed-point notation

 Field-width control

 Exponential notation

 Compact format
 Note that .prec

specifies number of
significant figures for
g or G type

	Section 1: �Introduction
	Course Overview
	What is Programming?
	Why Programming?
	Course Overview
	Python
	Introduction to Python & Spyder
	Python – What is It?
	Python – How Do We Use it?
	Spyder – What is It?
	The Spyder Interface
	The Spyder Interface - Console
	The Spyder Interface - Editor
	The Spyder Interface – Variable Explorer
	The Spyder Interface – File Browser
	The Spyder Interface – Command History
	The Spyder Interface – Help Pane
	The Spyder Interface – Plots Pane
	The Spyder Interface – Saving Layouts
	Data Types
	Assignment of Variables
	Variable Declaration
	Variable Names
	Variable Names
	Variable Declaration – Dynamic Typing
	Fundamental Python Data Types
	Mutable vs. Immutable Data Types
	Data Types – int
	Data Types – float
	Scientific Notation
	Data Types – complex
	Data Types – str
	Data Types – str – Escape Characters
	Data Types – list
	Data Types – tuple
	Data Types – set
	Data Types – dict
	Data Types – bool
	Mathematical Operations
	Basic Mathematical Operations
	Order of Operations
	Other Built-In Python Functions
	Other Built-In Python Functions
	NumPy
	Packages
	NumPy
	Using NumPy
	NumPy – Trigonometric Functions
	NumPy – Trigonometric Functions
	NumPy – Rounding
	NumPy – Rounding
	NumPy – Exponents
	NumPy – Logarithms
	NumPy – Complex Numbers
	NumPy – Miscellaneous
	NumPy – Element-Wise Operations
	Built-In Constants
	Python Scripts - Modules
	Spyder Console
	Python Scripts
	Scripts vs. Programs vs. Modules
	Python Scripts – Best Practices
	Comments
	Cells
	Pseudocode
	Programming Process
	Pseudocode
	Sequential Code Execution
	Inputs & Outputs
	Inputs to Scripts
	User-Specified Input – input()
	Outputs from Scripts
	print()
	Formatting Strings – .format()
	.format() – Syntax & Terminology
	Formatting Strings – Replacement Fields
	Formatting Strings – format_spec
	format_spec – type
	format_spec – Examples

