
ENGR 103 – Introduction to Engineering Computing

SECTION 1: 
INTRODUCTION
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Course Overview2
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What is Programming?

 Programming
 The implementation of algorithms in a particular computer 

programming language for execution on a computer

 Algorithm
 A step-by-step procedure for performing a computation, solving a 

problem, performing some action, etc. – a recipe
 Algorithm design is the meat of programming – the rest is just 

translation into a particular language

 Programming language
 We’ll use Python. Others include C, C++, Java, MATLAB, etc.

 Computer
 May be a PC, or may be a microcontroller, FPGA, etc.
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Why Programming?

 I don’t want to be a software engineer. Why do I 
need to learn to program?
 All engineers will need to write computer code 

throughout their careers
 Design and simulation
 Numerical solution of mathematical problems
 Data analysis – from measurements or simulation
 Firmware for the control of mechatronic systems

 More importantly: development of algorithmic 
thinking ability
 Learn to think like an engineer – single most important 

takeaway from your engineering education
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Course Overview

Section 1: Introduction

Section 2: Vectors and Matrices

Section 4: Algorithmic Thinking & 
Flow Charts

Section 5: Structured Programming in 
MATLAB

Section 3: Two-Dimensional Plotting

Section 6: User-Defined Functions

Section 8: File I/O

Introductory material:
 Course overview
 Introduction to required tools
 Linear algebra basics

Algorithm fundamentals:
 Generic; Platform-independent
 Engineering thinking –

transcends programming

Package-specific tools (matplotlib):
 Data visualization
 Valuable engineering tools

Application of the fundamentals:
 Python-specific, but
 Similar to other languages

Section 7: Three-Dimensional Plotting

Section 9: Engineering Applications
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Python

 This a course in programming fundamentals and 
algorithmic thinking

 The language we’ll use to develop these concepts is 
Python (in the Spyder development environment)
 Could just as well use another language, e.g., C, C++, 

Java, MATLAB, Fortran, …
 The important concepts are not language-specific

 Two goals of this course:
 Learn to develop basic algorithms and to write 

structured computer code
 Learn to use Python
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The remainder of this section of notes is intended 
to provide a brief introduction to Python and the 
Spyder development environment. 

Introduction to Python & Spyder7
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Python – What is It?

 A general-purpose 
programming language
 Used for writing programs to describe procedures to be executed 

by computers
 High-level
 Readable code – includes natural-language constructs
 Makes use of extensive libraries of functions
 Highly abstracted from the machine-level instructions that will 

ultimately be passed to the computer

 Interpreted
 Translation to machine instructions happens at runtime
 Not compiled – translations happens once, creating a separate 

executable file

 Object oriented – more on this later
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Python – How Do We Use it?

 Different ways to write and execute Python code
 Text editor 
 Simple editor for writing code
 May include language specific formatting/coloring, etc.
 E.g. Vi/Vim, Sublime Text, etc.

 Integrated development environment (IDE)
 Software interface to facilitate code development

 Code editor
 Debugger
 Console
 Variable explorer
 File browser,
 Plotting support, etc.

 E.g. Spyder, Pycharm, IDLE, Visual Studio, etc.
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Spyder – What is It?

 We will use the Spyder IDE
 Scientific PYthon Development EnviRonment
 Designed for scientific, engineering, and data science applications
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The Spyder Interface

Console

Plot Pane

Help

Editor

File Browser

Variable Explorer

Command History
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The Spyder Interface - Console

 Run Python commands interactively
 Behaves like a calculator
 Useful for: 

 Quick calculations
 Simple debugging tasks
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The Spyder Interface - Editor

 Editor for Python scripts
 Write and execute our 

Python code  here
 Auto formatting

 Highlighting
 Indenting
 Code complettion

 Built-in debugger
 Set breakpoints
 Step through code line-by-

line or by section
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The Spyder Interface – Variable Explorer

 Lists all variables 
currently stored in 
memory
 Values for scalars 

and small arrays
 Size and data 

types for larger 
arrays

 Double-click a 
variable to open in 
a separate window
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The Spyder Interface – File Browser

 File browser
 A built-in 

‘Windows 
Explorer’ or 
‘Finder’

 Open, move, 
copy, rename, 
delete files from 
within Spyder
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The Spyder Interface – Command History

 Lists previously-executed 
commands
 All commands issued 

through the command 
window

 Copy comands from 
history pane

 Arrow keys cycle 
through command 
history in the console
 Start typing to restrict 

recalled commands
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The Spyder Interface – Help Pane

 Display help documentation 
for modules classes functions 
and methods
 Enter object name directly in 

the ‘Object’ field
 Place cursor on object in the 

editor window and type Ctrl-i



Webb ENGR 103

18

The Spyder Interface – Plots Pane

 Plots displayed 
here

 Docked to the 
Spyder
desktop

 Plot history 
thumbnails 
displayed to 
right

 Two ways to display plots:
 Plot pane 
 no cursors or zooming

 Interactive window
 Cursors and zooming, but can’t dock
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The Spyder Interface – Saving Layouts

 Configure the panes in your Spyder
desktop to suit your workflow

 Save one or more layouts to suit your 
preferences
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Variables used in Python can be of many different 
types, e.g. integers, floating-point numbers, 
alphanumeric characters, etc.
The following section introduces each of these data 
types. You’ll gain a better understanding of each as 
the course progresses.

Data Types20
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Assignment of Variables

 Can define variables 
and assign values
 Within a script
 In the console

 Can then operate on 
those variables

 Variables appear in 
variable explorer
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Variable Declaration

 In Python, it isn’t necessary to declare a variable 
before using it, e.g.:

a = 7.4039

 Declaration occurs automatically upon assignment
 This differs from many other languages, e.g. in C:

float a;
a = 7.4039;

or
float a = 7.4039;
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Variable Names

 Variable names must start with a letter or underscore
 Names may contain letters, numbers, and underscore

characters
 No spaces

 Some examples:

Allowed Not allowed

A Var 3

var1 4x_a

x_2_a data file name

Avg_price %pop #



Webb ENGR 103

24

Variable Names

 Names are case sensitive
 For example, all three are different:
 Name_1
 Name_1
 NAME_1

 Cannot use Python keywords
 E.g., for, if, def, True, etc.

 Don’t name variables with names of built-in functions
 Can be done, but that function will become unavailable

 Preferred variable naming convention:
 All lowercase
 Separate multiple words with an underscore
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Variable Declaration – Dynamic Typing

 Python variables are of can be different types, e.g.:
 Integer: int
 Floating-point number: float
 Alpha-numeric string: str

 Python is dynamically typed
 Don’t need to assign type when defining a variable
 Python interpreter determines type at runtime
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Fundamental Python Data Types

 Python supports many different numeric and non-numeric 
data types, for example

 Numeric types
 int
 float
 complex

 Non-numeric types
 str
 list
 tuple

 set
 dict
 bool

 We’ll introduce each of these types now, but will learn more 
about them throughout the course
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Mutable vs. Immutable Data Types

 Data objects of all types are values stored at specific 
locations in a computer’s memory

 All data types fall into one of two categories:
 Immutable
 Values cannot be modified after the variable is created in memory

 Numbers – int, float, complex
 Strings – str
 Tuples – tuple

 Mutable
 Values can be modified after variable creation
 Can add, delete, insert, and rearrange items in a mutable 

sequence
 Lists – list
 Dictionaries – dict
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Data Types – int

 Integers
 Zero, positive, and negative whole numbers

>>> a = 7
>>> x = -4
>>> N = 0

 If you assign a whole-number value to a variable, it will 
automatically be cast as an int
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Data Types – float

 Floating point numbers
 Positive, and negative non-whole numbers

>>> a = 2.71
>>> x = -4.5
>>> bigNum = 1.8e12
>>> smallNum = 6.4E-9

 If you assign a non-whole-number value to a variable, it will 
automatically be cast as a float
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Scientific Notation

 Use scientific notation to represent very large or very small floating-
point numbers, e.g.:

1.58 × 10−9

 Very bad practice to type a lot of zeros – never do this:

0.00000000158

 Difficult to read, and much too easy to miscount zeros

 In Python use e or E for × 10𝑥𝑥, e.g.:

x = 1.58e-9

x = 1.58E-9

 Don’t confuse with the exponential function 𝑒𝑒𝑥𝑥 (i.e. 2.718𝑥𝑥)
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Data Types – complex

 Complex numbers
 Numbers with real and imaginary parts

>>> z = 3 + 2j
>>> b = -4.5 + 6j
>>> V = 105 – 18.6j

 j is the imaginary unit
 j = −1
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Data Types – str

 Strings
 Sequences of alpha-numeric characters
 Enclosed in single, double, or triple quotes

>>> str_1 = 'Hello, World!'

>>> Name = "John Doe"

>>> ml_string = '''Multi-line strings
are enclosed in 
triple quotes.'''
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Data Types – str – Escape Characters

 Escape characters
 Allows you to insert special characters in strings
 Backslash, \, followed by a special character

Escape 
Character

Result

\' Single quote

\" Double quote

\\ Backslash

\n New line

\t Tab
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Data Types – list

 Lists
 Ordered, mutable collections of one or more different 

data types
 Enclosed in square brackets, [ ], separated by commas

>>> list1 = [3, 15.2, 12e3, -459]
>>> names = ['Jane', ‘Bob', 'Sally']
>>> mixed = [3, 'Hello', 4 + 9j]
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Data Types – tuple

 Tuples
 Ordered, immutable collections of one or more different 

data types
 Like a list, but immutable
 Enclosed in square parentheses, ( ), separated by commas

>>> tup1 = (3, 15.2, 12e3, -459)
>>> names = ('Jane', 'Bob', 'Sally')
>>> mixtup = (3, 'Hello', 4 + 9j)



Webb ENGR 103

36

Data Types – set

 Sets
 Unordered, mutable collections of one or more different data types
 Enclosed in square curly brackets, { }, separated by commas
 Sets do not store duplicate objects
 Suitable for mathematical set operations, e.g., union, intersection, 

difference, etc.

>>> numset = {3, 15.2, 12e3, -459}
>>> names = {'Jane', 'Bob', 'Sally'}
>>> set3 = {3, 'Hello', 4 + 9j}
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Data Types – dict

 Dictionaries
 Ordered, mutable collections of data stored as key:value pairs
 Enclosed in square curly brackets, { } 
 Keys and values separated by colons
 Key:value pairs separated by commas
 Duplicate keys are not allowed

>>> person1 = {'Name':, 'Joe', 'Age':, 32, 'Hair':, 
'brown', 'Eyes':, 'green'}

>>> capitals = {'OR':, 'Salem', 'WA':, 'Olympia', 
'CA':, 'Sacremento', 'ID':, 'Boise}
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Data Types – bool

 Booleans
 One of two logical values: True or False
 Often the result of a logical expression, e.g., a > b
 Any value can be cast as a Boolean using the bool() function
 True:

 Non-zero numbers
 Non-empty strings, lists, tuples, sets, or dictionaries

 False:
 Zero
 Empty strings, lists, tuples, sets, or dictionaries
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Python includes the most basic mathematical 
operations. Other math functions will be 
accessed by importing the NumPy package 

Mathematical Operations39
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Basic Mathematical Operations

 Python itself includes only 
seven mathematical operators
 Addition:  +
 Subtraction:  –
 Multiplication:  *
 Division:  /
 Modulus:  %
 Exponentiation:  **
 Floor division:  //
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Order of Operations

 Python order of operations:
1) ( ) parentheses
2) ^ exponentiation
3) - negation
4) *, / multiplication, division
5) +, - addition, subtraction

 Expressions are evaluated left to right within each 
level of the precedence hierarchy 
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Other Built-In Python Functions

 A few other math-related built-in Python functions:
 abs(x): absolute value

>>> a = abs(-1.76)

1.76

>>> z = abs(2 – 2j)

2.828

 len(x): returns the length of an object

>>> len([2, 4, 5, 3, 1])

5

>>> len('Hello, World!')

13
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Other Built-In Python Functions

 A few other math-related built-in Python functions:
 max(x): maximum value in a sequence

>>> x_max = max([2, 4, 5, 3, 1])

5

 min(x): minimum value in a sequence

>>> x_min = min([2, 4, 5, 3, 1])

1

 type(x): returns the type of an object

>>> type([2, 4, 5, 3, 1])

list

>>> type('Hello, World!')

str
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Here we will introduce the concept of 
packages, and will look specifically at the 
package we will use most for mathematical 
operations, NumPy.

NumPy44
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Packages

 Python packages
 Libraries consisting of multiple modules, or individual Python files
 Modules within a package define

 Data types
 Functions

 Must install a package before we can use it
 Anaconda distribution includes all the packages we will need

 Must import a package in our code before we can use it
 Use the import function

 Packages available for
 Array processing and mathematics
 Plotting
 Data analysis
 GUI development 
 Much, much more …
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NumPy

 We will use the NumPy (Numerical Python) 
package extensively

 Fundamental data type:
 Multi-dimensional array object – ndarray
 Useful for engineering computation

 Many built-in functions
 Mathematical operations, e.g.: 
 Trigonometric functions
 Exponents and logarithms 
 Complex number operations

 Array creation an manipulation routines
 Polynomial creation, manipulation, fitting, etc.
 Much more …
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Using NumPy

 To use NumPy functions and data types, we must first 
import it:

>>> import numpy as np

 We can assign it a shortened name, np, to keep our code 
clean

 To call functions defined in NumPy, precede the 
function name with np.

>>> N = np.log2(1024)

>>> x = 3*np.sin(np.pi/2)

 We'll now introduce a small sample of NumPy functions
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NumPy – Trigonometric Functions

 sin(x), cos(x), tan(x)
 Input in radians

>>> y = np.sin(x)
>>> y = np.sin(np.radians(x))

 arcsin(x), arccos(x), arctan(x)
 Inverse trig functions
 Output in radians

>>> theta = np.arcsin(0.6)
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NumPy – Trigonometric Functions

 arctan2(x) – quadrant-aware inverse tangent
 Accounts for the difference between, e.g. , 45° and 225°
 Output in radians

>>> phi = np.arctan2(-4, 3)
>>> phi_deg = np.degrees(np.arctan2(-4, 3))

 degrees(x) – converts from radians to degrees

>>> ang45 = np.degrees(np.pi/4)

 radians(x) – converts from degrees to radians

>>> angPi = np.radians(180)



Webb ENGR 103

50

NumPy – Rounding

 around(x, decimals=0) – round to the specified 
number of decimals (default, 0)

>>> xint = np.around(1.6)
2.0

>>> xrnd = np.around(np.pi, decimals=2)
3.14

 Numbers exactly halfway between rounded decimal values round 
to the nearest even value
>>> x0 = np.around(2.5)
2.0

>>> x1 = np.around(1.65, decimals=1)
1.6

>>> y1 = np.around(1.55, decimals=1)
1.6
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NumPy – Rounding

 fix(x) – round to the nearest integer toward zero
>>> xfix = np.fix(1.2)
1.0

>>> yfix = np.fix(-2.8)
-2.0

 floor(x) – round to the nearest integer toward negative infinity
>>> xfloor = np.floor(1.6)
1.0

>>> xflr = np.floor(-1.2)
-2.0

 ceil(x) – round to the nearest integer toward positive infinity
>>> xceil = np.fix(1.2)
2.0

>>> yceil = np.fix(-2.8)
-2.0
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NumPy – Exponents

 exp(x) – exponential:  𝑒𝑒𝑥𝑥
>>> y = np.exp(4.1)
60.3403

>>> e = np.exp(1)
2.71828

 exp2(x) – power of 2:  2𝑥𝑥
>>> x = np.exp2(3)
8.0

>>> N = np.exp2(10)
1024.0
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NumPy – Logarithms

 log(x) – natural log
>>> y = np.log(5)
1.609

 log10(x) – base-10 logarithm
>>> x = np.log10(1e4)
4.0

 log2(x) – base-2 logarithm
>>> x = np.log2(256)
8.0
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NumPy – Complex Numbers

 real(z) – real part of a complex number
>>> y = np.log(5)
1.609

 imag(z) – imaginary part of a complex number
>>> x = np.log10(1e4)
4.0

 angle(z) – angle of complex number in radians
>>> x = np.log2(256)
8.0

 conj(z) – complex conjugate
>>> x = np.log2(256)
8.0
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NumPy – Miscellaneous 

 sqrt(x) – square root
>>> y = np.sqrt(2)
1.4142

 sum(x) – sum of all elements in a sequence
>>> total = np.sum([2, 4, 5, 3, 1])
15

 sign(x) – returns: -1 if x < 0, 0 if x == 0, 1 if x > 0
>>> np.sign([-12, 4, 6, 0, -3])
array([-1, 1, 1, 0, -1])
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NumPy – Element-Wise Operations

 Numpy functions operate element-by-element on 
array (or other sequence) inputs
 Return array outputs (more later)

>>> np.log10([1e4, 0.001, 10, 1e-6])
array([ 4., -3.,  1., -6.])

>>> np.sqrt([4, 9, 25, 1e4])
array([  2.,   3.,   5., 100.])

 Eliminates the need to explicitly perform the operation 
on each element in an array
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Built-In Constants

 Some built-in Python and Numpy constants:

 𝜋𝜋: np.pi

 Imaginary unit ( −1): i or j

 Infinity (∞): inf
 Not-a-number: NaN or nan
 Both inf and nan often result from algorithmic errors
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Python Scripts - Modules58
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Spyder Console

 As we’ve seen, we can execute Python commands 
through the console
 Useful for quick calculations, debugging, etc.
 Enter one expression at a time
 To execute a sequence of commands repeatedly, must 

re-enter all commands each time
 Command history is only record of executed commands

 Better practice is to write all commands to be 
executed in a single file, script, or module
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Python Scripts

 Scripts or modules or programs are files containing 
a series of Python commands
 .py filename extension
 Quickly and easily re-run at any time – no need to re-

type all commands in the command window
 Execute in Spyder by clicking the Run button (or F5)

 Our primary mode of executing Python code
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Scripts vs. Programs vs. Modules

 We’ll use the terms scripts or programs interchangeably when referring to 
Python files

 Technically, they are scripts, but this distinction is not important for our 
purposes.

 Programs
 Written (possibly) in a high-level language – source code
 Compiled (once) by a compiler into a machine language executable file – object 

code
 Fast, because compilation performed once, ahead of runtime

 Scripts
 High-level source code is interpreted and executed line-by-line by an interpreter

at runtime 
 Slower than compiled programs

 Modules
 Python scripts that are intended to be imported into other scripts or modules
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Python Scripts – Best Practices

Start scripts with a comment listing the file name.

Additional comments 
with a brief overall 
script description and 
other details is useful.

Thoroughly 
comment 
your code.Define variables to be 

used in equations. 
Parameters can be 
changed in a single place.

• Keep your code DRY: 
Don't Repeat Yourself
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Comments

 Comments are explanatory or descriptive text added to your code
 Not executed commands

 In Python, comments are preceded by the hash mark: #

 Comments may occupy an 
entire line

 Or, may be inserted at the 
end of a line, after 
uncommented expressions

 Ctrl+1 comments and uncomments a line of text in the Spyder editor

 Commenting is useful for temporarily removing instructions from a 
script
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Cells

 Can divide Spyder scripts into cells
 Code blocks that can be executed at 

once, without running the entire 
script

 Cells are defined with a special 
comment line:
 Follow the hash mark, #, with two 

percent signs, %%
 Can also include comment text

# %% start of a cell

 Cell ends at the start of the next cell

 To run a cell:
 Place the cursor in the cell to be run
 Ctrl-Enter, or click 'Run current cell'
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Pseudocode

 The most important part of the process of writing 
computer code is planning
 Determine exactly what the program should do
 And, how it will do it

 Before writing any code, write a step-by-step 
description of the program
 Natural language
 Graphical – flow chart (more later)

 This may be referred to as pseudocode
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Programming Process

 Programming process:

 Define the problem
 Ensure you have a complete understanding of the problem
 Determine exactly what the program should do

 Inputs and outputs
 Relevant equations

 Design the program
 Pseudocode – language-independent 

 Write the program
 Simple translation from pseudocode

 Validate the program 
 Do the outputs make sense
 Test with inputs that yield known outputs
 Test thoroughly – try to break it
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Pseudocode

 Comments can serve as pseudocode
 Write the comments first
 Then insert code to do what the comments say

 For example:
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Sequential Code Execution

 In general code is executed line-by-line sequentially
from the top of an m-file down

 There are, however, very important non-sequential 
code structures:
 Conditional statements – code that is executed only if 

certain conditions are met
 if
 if … else
 if … elif … else

 Loops – code that is repeated a specified number of times 
or while certain conditions are met
 for
 while
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Inputs & Outputs69
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Inputs to Scripts

 Inputs to a script:
 Assignments of variable values

 Several input methods:
 Within the script
 From external files (.csv, Excel, etc.) – more later
 Specified by user during execution – input()
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User-Specified Input – input()

 Prompt user for value to be assigned to a variable

var = input(Prompt)

 Prompt: a string that will be displayed in the console, prompting 
the user for an input

 var: string variable to which the user-specified input is stored
 Re-cast for different data types (e.g. float)

 For example:
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Outputs from Scripts

 Outputs from scripts:
 Display of values calculated by the script

 Several output methods
 Plotting (more later)
 In the console
 print()

 Writing data to files (more later)
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print()

 Output a string to the console

print(string)

 string: a string – may contain formatting sequences for 
insertion of variable values

 For example:
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Formatting Strings – .format() 

 Insert formatted numbers and strings into a string

<template>.format(args)

 <template>: a string containing replacement fields for insertion of 
variable values
 Replacement fields may include formatting specifications

 args: objects to be inserted into the <template> string
 Strings or numeric values

 For example:
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.format() – Syntax & Terminology

<template>.format(args)

 .format() is a method applied to the object,
<template>, which is an instance of the class str
 Class: a template for creating objects
 For now, think of this as the data type
 Here, the class is string, str
 Classes have attributes and methods associated with them

 Object: an instance of a class
 On the previous page, s is an object of type str

 Method: a function associated with a specific class
 Here, format() is a method that operates on str objects

 These object-oriented programming concepts will be 
covered in detail later in the course
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Formatting Strings – Replacement Fields

 Replacement fields:
 Enclosed in curly brackets, {}

 Arguments in format() are inserted in order
 May include a formatting specification, format_spec

{:format_spec}

 format_spec: specifies how to format numeric values
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Formatting Strings – format_spec

 format_spec:
 Specify how numeric values are formatted

:[width][group][.prec][type]

 Always start format_spec with a colon, :
 width: minimum width of the field into which the 

argument is inserted – may result in white space
 group: grouping character for each three digits to the left 

of the decimal point (e.g. , or _)
 .prec: number of digits after the decimal point for floating 

point numbers, or maximum field width for strings
 type: presentation type, e.g. floating point, integer, string, 

etc.
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format_spec – type

 Type characters specify how to format variable values within 
a string

Presentation Type Type Character

Decimal integer d

Binary integer b

Hexadecimal integer x

Floating point f or F

Exponential notation
(e.g., 1.6e-19 or 1.6E-19) e or E

More compact of %e or %f g

More compact of %E or %F G

Single character c

String s

Percentage %
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format_spec – Examples 

 Fixed-point notation

 Field-width control

 Exponential notation

 Compact format
 Note that .prec

specifies number of 
significant figures for 
g or G type 
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