
ENGR 103 – Introduction to Engineering Computing

SECTION 1:
INTRODUCTION

Webb ENGR 103

Course Overview2

Webb ENGR 103

3

What is Programming?

 Programming
 The implementation of algorithms in a particular computer

programming language for execution on a computer

 Algorithm
 A step-by-step procedure for performing a computation, solving a

problem, performing some action, etc. – a recipe
 Algorithm design is the meat of programming – the rest is just

translation into a particular language

 Programming language
 We’ll use Python. Others include C, C++, Java, MATLAB, etc.

 Computer
 May be a PC, or may be a microcontroller, FPGA, etc.

Webb ENGR 103

4

Why Programming?

 I don’t want to be a software engineer. Why do I
need to learn to program?
 All engineers will need to write computer code

throughout their careers
 Design and simulation
 Numerical solution of mathematical problems
 Data analysis – from measurements or simulation
 Firmware for the control of mechatronic systems

 More importantly: development of algorithmic
thinking ability
 Learn to think like an engineer – single most important

takeaway from your engineering education

Webb ENGR 103

5

Course Overview

Section 1: Introduction

Section 2: Vectors and Matrices

Section 4: Algorithmic Thinking &
Flow Charts

Section 5: Structured Programming in
MATLAB

Section 3: Two-Dimensional Plotting

Section 6: User-Defined Functions

Section 8: File I/O

Introductory material:
 Course overview
 Introduction to required tools
 Linear algebra basics

Algorithm fundamentals:
 Generic; Platform-independent
 Engineering thinking –

transcends programming

Package-specific tools (matplotlib):
 Data visualization
 Valuable engineering tools

Application of the fundamentals:
 Python-specific, but
 Similar to other languages

Section 7: Three-Dimensional Plotting

Section 9: Engineering Applications

Webb ENGR 103

6

Python

 This a course in programming fundamentals and
algorithmic thinking

 The language we’ll use to develop these concepts is
Python (in the Spyder development environment)
 Could just as well use another language, e.g., C, C++,

Java, MATLAB, Fortran, …
 The important concepts are not language-specific

 Two goals of this course:
 Learn to develop basic algorithms and to write

structured computer code
 Learn to use Python

Webb ENGR 103

The remainder of this section of notes is intended
to provide a brief introduction to Python and the
Spyder development environment.

Introduction to Python & Spyder7

Webb ENGR 103

8

Python – What is It?

 A general-purpose
programming language
 Used for writing programs to describe procedures to be executed

by computers
 High-level
 Readable code – includes natural-language constructs
 Makes use of extensive libraries of functions
 Highly abstracted from the machine-level instructions that will

ultimately be passed to the computer

 Interpreted
 Translation to machine instructions happens at runtime
 Not compiled – translations happens once, creating a separate

executable file

 Object oriented – more on this later

Webb ENGR 103

9

Python – How Do We Use it?

 Different ways to write and execute Python code
 Text editor
 Simple editor for writing code
 May include language specific formatting/coloring, etc.
 E.g. Vi/Vim, Sublime Text, etc.

 Integrated development environment (IDE)
 Software interface to facilitate code development

 Code editor
 Debugger
 Console
 Variable explorer
 File browser,
 Plotting support, etc.

 E.g. Spyder, Pycharm, IDLE, Visual Studio, etc.

Webb ENGR 103

10

Spyder – What is It?

 We will use the Spyder IDE
 Scientific PYthon Development EnviRonment
 Designed for scientific, engineering, and data science applications

Webb ENGR 103

11

The Spyder Interface

Console

Plot Pane

Help

Editor

File Browser

Variable Explorer

Command History

Webb ENGR 103

12

The Spyder Interface - Console

 Run Python commands interactively
 Behaves like a calculator
 Useful for:

 Quick calculations
 Simple debugging tasks

Webb ENGR 103

13

The Spyder Interface - Editor

 Editor for Python scripts
 Write and execute our

Python code here
 Auto formatting

 Highlighting
 Indenting
 Code complettion

 Built-in debugger
 Set breakpoints
 Step through code line-by-

line or by section

Webb ENGR 103

14

The Spyder Interface – Variable Explorer

 Lists all variables
currently stored in
memory
 Values for scalars

and small arrays
 Size and data

types for larger
arrays

 Double-click a
variable to open in
a separate window

Webb ENGR 103

15

The Spyder Interface – File Browser

 File browser
 A built-in

‘Windows
Explorer’ or
‘Finder’

 Open, move,
copy, rename,
delete files from
within Spyder

Webb ENGR 103

16

The Spyder Interface – Command History

 Lists previously-executed
commands
 All commands issued

through the command
window

 Copy comands from
history pane

 Arrow keys cycle
through command
history in the console
 Start typing to restrict

recalled commands

Webb ENGR 103

17

The Spyder Interface – Help Pane

 Display help documentation
for modules classes functions
and methods
 Enter object name directly in

the ‘Object’ field
 Place cursor on object in the

editor window and type Ctrl-i

Webb ENGR 103

18

The Spyder Interface – Plots Pane

 Plots displayed
here

 Docked to the
Spyder
desktop

 Plot history
thumbnails
displayed to
right

 Two ways to display plots:
 Plot pane
 no cursors or zooming

 Interactive window
 Cursors and zooming, but can’t dock

Webb ENGR 103

19

The Spyder Interface – Saving Layouts

 Configure the panes in your Spyder
desktop to suit your workflow

 Save one or more layouts to suit your
preferences

Webb ENGR 103

Variables used in Python can be of many different
types, e.g. integers, floating-point numbers,
alphanumeric characters, etc.
The following section introduces each of these data
types. You’ll gain a better understanding of each as
the course progresses.

Data Types20

Webb ENGR 103

21

Assignment of Variables

 Can define variables
and assign values
 Within a script
 In the console

 Can then operate on
those variables

 Variables appear in
variable explorer

Webb ENGR 103

22

Variable Declaration

 In Python, it isn’t necessary to declare a variable
before using it, e.g.:

a = 7.4039

 Declaration occurs automatically upon assignment
 This differs from many other languages, e.g. in C:

float a;
a = 7.4039;

or
float a = 7.4039;

Webb ENGR 103

23

Variable Names

 Variable names must start with a letter or underscore
 Names may contain letters, numbers, and underscore

characters
 No spaces

 Some examples:

Allowed Not allowed

A Var 3

var1 4x_a

x_2_a data file name

Avg_price %pop #

Webb ENGR 103

24

Variable Names

 Names are case sensitive
 For example, all three are different:
 Name_1
 Name_1
 NAME_1

 Cannot use Python keywords
 E.g., for, if, def, True, etc.

 Don’t name variables with names of built-in functions
 Can be done, but that function will become unavailable

 Preferred variable naming convention:
 All lowercase
 Separate multiple words with an underscore

Webb ENGR 103

25

Variable Declaration – Dynamic Typing

 Python variables are of can be different types, e.g.:
 Integer: int
 Floating-point number: float
 Alpha-numeric string: str

 Python is dynamically typed
 Don’t need to assign type when defining a variable
 Python interpreter determines type at runtime

Webb ENGR 103

26

Fundamental Python Data Types

 Python supports many different numeric and non-numeric
data types, for example

 Numeric types
 int
 float
 complex

 Non-numeric types
 str
 list
 tuple

 set
 dict
 bool

 We’ll introduce each of these types now, but will learn more
about them throughout the course

Webb ENGR 103

27

Mutable vs. Immutable Data Types

 Data objects of all types are values stored at specific
locations in a computer’s memory

 All data types fall into one of two categories:
 Immutable
 Values cannot be modified after the variable is created in memory

 Numbers – int, float, complex
 Strings – str
 Tuples – tuple

 Mutable
 Values can be modified after variable creation
 Can add, delete, insert, and rearrange items in a mutable

sequence
 Lists – list
 Dictionaries – dict

Webb ENGR 103

28

Data Types – int

 Integers
 Zero, positive, and negative whole numbers

>>> a = 7
>>> x = -4
>>> N = 0

 If you assign a whole-number value to a variable, it will
automatically be cast as an int

Webb ENGR 103

29

Data Types – float

 Floating point numbers
 Positive, and negative non-whole numbers

>>> a = 2.71
>>> x = -4.5
>>> bigNum = 1.8e12
>>> smallNum = 6.4E-9

 If you assign a non-whole-number value to a variable, it will
automatically be cast as a float

Webb ENGR 103

30

Scientific Notation

 Use scientific notation to represent very large or very small floating-
point numbers, e.g.:

1.58 × 10−9

 Very bad practice to type a lot of zeros – never do this:

0.00000000158

 Difficult to read, and much too easy to miscount zeros

 In Python use e or E for × 10𝑥𝑥, e.g.:

x = 1.58e-9

x = 1.58E-9

 Don’t confuse with the exponential function 𝑒𝑒𝑥𝑥 (i.e. 2.718𝑥𝑥)

Webb ENGR 103

31

Data Types – complex

 Complex numbers
 Numbers with real and imaginary parts

>>> z = 3 + 2j
>>> b = -4.5 + 6j
>>> V = 105 – 18.6j

 j is the imaginary unit
 j = −1

Webb ENGR 103

32

Data Types – str

 Strings
 Sequences of alpha-numeric characters
 Enclosed in single, double, or triple quotes

>>> str_1 = 'Hello, World!'

>>> Name = "John Doe"

>>> ml_string = '''Multi-line strings
are enclosed in
triple quotes.'''

Webb ENGR 103

33

Data Types – str – Escape Characters

 Escape characters
 Allows you to insert special characters in strings
 Backslash, \, followed by a special character

Escape
Character

Result

\' Single quote

\" Double quote

\\ Backslash

\n New line

\t Tab

Webb ENGR 103

34

Data Types – list

 Lists
 Ordered, mutable collections of one or more different

data types
 Enclosed in square brackets, [], separated by commas

>>> list1 = [3, 15.2, 12e3, -459]
>>> names = ['Jane', ‘Bob', 'Sally']
>>> mixed = [3, 'Hello', 4 + 9j]

Webb ENGR 103

35

Data Types – tuple

 Tuples
 Ordered, immutable collections of one or more different

data types
 Like a list, but immutable
 Enclosed in square parentheses, (), separated by commas

>>> tup1 = (3, 15.2, 12e3, -459)
>>> names = ('Jane', 'Bob', 'Sally')
>>> mixtup = (3, 'Hello', 4 + 9j)

Webb ENGR 103

36

Data Types – set

 Sets
 Unordered, mutable collections of one or more different data types
 Enclosed in square curly brackets, { }, separated by commas
 Sets do not store duplicate objects
 Suitable for mathematical set operations, e.g., union, intersection,

difference, etc.

>>> numset = {3, 15.2, 12e3, -459}
>>> names = {'Jane', 'Bob', 'Sally'}
>>> set3 = {3, 'Hello', 4 + 9j}

Webb ENGR 103

37

Data Types – dict

 Dictionaries
 Ordered, mutable collections of data stored as key:value pairs
 Enclosed in square curly brackets, { }
 Keys and values separated by colons
 Key:value pairs separated by commas
 Duplicate keys are not allowed

>>> person1 = {'Name':, 'Joe', 'Age':, 32, 'Hair':,
'brown', 'Eyes':, 'green'}

>>> capitals = {'OR':, 'Salem', 'WA':, 'Olympia',
'CA':, 'Sacremento', 'ID':, 'Boise}

Webb ENGR 103

38

Data Types – bool

 Booleans
 One of two logical values: True or False
 Often the result of a logical expression, e.g., a > b
 Any value can be cast as a Boolean using the bool() function
 True:

 Non-zero numbers
 Non-empty strings, lists, tuples, sets, or dictionaries

 False:
 Zero
 Empty strings, lists, tuples, sets, or dictionaries

Webb ENGR 103

Python includes the most basic mathematical
operations. Other math functions will be
accessed by importing the NumPy package

Mathematical Operations39

Webb ENGR 103

40

Basic Mathematical Operations

 Python itself includes only
seven mathematical operators
 Addition: +
 Subtraction: –
 Multiplication: *
 Division: /
 Modulus: %
 Exponentiation: **
 Floor division: //

Webb ENGR 103

41

Order of Operations

 Python order of operations:
1) () parentheses
2) ^ exponentiation
3) - negation
4) *, / multiplication, division
5) +, - addition, subtraction

 Expressions are evaluated left to right within each
level of the precedence hierarchy

Webb ENGR 103

42

Other Built-In Python Functions

 A few other math-related built-in Python functions:
 abs(x): absolute value

>>> a = abs(-1.76)

1.76

>>> z = abs(2 – 2j)

2.828

 len(x): returns the length of an object

>>> len([2, 4, 5, 3, 1])

5

>>> len('Hello, World!')

13

Webb ENGR 103

43

Other Built-In Python Functions

 A few other math-related built-in Python functions:
 max(x): maximum value in a sequence

>>> x_max = max([2, 4, 5, 3, 1])

5

 min(x): minimum value in a sequence

>>> x_min = min([2, 4, 5, 3, 1])

1

 type(x): returns the type of an object

>>> type([2, 4, 5, 3, 1])

list

>>> type('Hello, World!')

str

Webb ENGR 103

Here we will introduce the concept of
packages, and will look specifically at the
package we will use most for mathematical
operations, NumPy.

NumPy44

Webb ENGR 103

45

Packages

 Python packages
 Libraries consisting of multiple modules, or individual Python files
 Modules within a package define

 Data types
 Functions

 Must install a package before we can use it
 Anaconda distribution includes all the packages we will need

 Must import a package in our code before we can use it
 Use the import function

 Packages available for
 Array processing and mathematics
 Plotting
 Data analysis
 GUI development
 Much, much more …

Webb ENGR 103

46

NumPy

 We will use the NumPy (Numerical Python)
package extensively

 Fundamental data type:
 Multi-dimensional array object – ndarray
 Useful for engineering computation

 Many built-in functions
 Mathematical operations, e.g.:
 Trigonometric functions
 Exponents and logarithms
 Complex number operations

 Array creation an manipulation routines
 Polynomial creation, manipulation, fitting, etc.
 Much more …

Webb ENGR 103

47

Using NumPy

 To use NumPy functions and data types, we must first
import it:

>>> import numpy as np

 We can assign it a shortened name, np, to keep our code
clean

 To call functions defined in NumPy, precede the
function name with np.

>>> N = np.log2(1024)

>>> x = 3*np.sin(np.pi/2)

 We'll now introduce a small sample of NumPy functions

Webb ENGR 103

48

NumPy – Trigonometric Functions

 sin(x), cos(x), tan(x)
 Input in radians

>>> y = np.sin(x)
>>> y = np.sin(np.radians(x))

 arcsin(x), arccos(x), arctan(x)
 Inverse trig functions
 Output in radians

>>> theta = np.arcsin(0.6)

Webb ENGR 103

49

NumPy – Trigonometric Functions

 arctan2(x) – quadrant-aware inverse tangent
 Accounts for the difference between, e.g. , 45° and 225°
 Output in radians

>>> phi = np.arctan2(-4, 3)
>>> phi_deg = np.degrees(np.arctan2(-4, 3))

 degrees(x) – converts from radians to degrees

>>> ang45 = np.degrees(np.pi/4)

 radians(x) – converts from degrees to radians

>>> angPi = np.radians(180)

Webb ENGR 103

50

NumPy – Rounding

 around(x, decimals=0) – round to the specified
number of decimals (default, 0)

>>> xint = np.around(1.6)
2.0

>>> xrnd = np.around(np.pi, decimals=2)
3.14

 Numbers exactly halfway between rounded decimal values round
to the nearest even value
>>> x0 = np.around(2.5)
2.0

>>> x1 = np.around(1.65, decimals=1)
1.6

>>> y1 = np.around(1.55, decimals=1)
1.6

Webb ENGR 103

51

NumPy – Rounding

 fix(x) – round to the nearest integer toward zero
>>> xfix = np.fix(1.2)
1.0

>>> yfix = np.fix(-2.8)
-2.0

 floor(x) – round to the nearest integer toward negative infinity
>>> xfloor = np.floor(1.6)
1.0

>>> xflr = np.floor(-1.2)
-2.0

 ceil(x) – round to the nearest integer toward positive infinity
>>> xceil = np.fix(1.2)
2.0

>>> yceil = np.fix(-2.8)
-2.0

Webb ENGR 103

52

NumPy – Exponents

 exp(x) – exponential: 𝑒𝑒𝑥𝑥
>>> y = np.exp(4.1)
60.3403

>>> e = np.exp(1)
2.71828

 exp2(x) – power of 2: 2𝑥𝑥
>>> x = np.exp2(3)
8.0

>>> N = np.exp2(10)
1024.0

Webb ENGR 103

53

NumPy – Logarithms

 log(x) – natural log
>>> y = np.log(5)
1.609

 log10(x) – base-10 logarithm
>>> x = np.log10(1e4)
4.0

 log2(x) – base-2 logarithm
>>> x = np.log2(256)
8.0

Webb ENGR 103

54

NumPy – Complex Numbers

 real(z) – real part of a complex number
>>> y = np.log(5)
1.609

 imag(z) – imaginary part of a complex number
>>> x = np.log10(1e4)
4.0

 angle(z) – angle of complex number in radians
>>> x = np.log2(256)
8.0

 conj(z) – complex conjugate
>>> x = np.log2(256)
8.0

Webb ENGR 103

55

NumPy – Miscellaneous

 sqrt(x) – square root
>>> y = np.sqrt(2)
1.4142

 sum(x) – sum of all elements in a sequence
>>> total = np.sum([2, 4, 5, 3, 1])
15

 sign(x) – returns: -1 if x < 0, 0 if x == 0, 1 if x > 0
>>> np.sign([-12, 4, 6, 0, -3])
array([-1, 1, 1, 0, -1])

Webb ENGR 103

56

NumPy – Element-Wise Operations

 Numpy functions operate element-by-element on
array (or other sequence) inputs
 Return array outputs (more later)

>>> np.log10([1e4, 0.001, 10, 1e-6])
array([4., -3., 1., -6.])

>>> np.sqrt([4, 9, 25, 1e4])
array([2., 3., 5., 100.])

 Eliminates the need to explicitly perform the operation
on each element in an array

Webb ENGR 103

57

Built-In Constants

 Some built-in Python and Numpy constants:

 𝜋𝜋: np.pi

 Imaginary unit (−1): i or j

 Infinity (∞): inf
 Not-a-number: NaN or nan
 Both inf and nan often result from algorithmic errors

Webb ENGR 103

Python Scripts - Modules58

Webb ENGR 103

59

Spyder Console

 As we’ve seen, we can execute Python commands
through the console
 Useful for quick calculations, debugging, etc.
 Enter one expression at a time
 To execute a sequence of commands repeatedly, must

re-enter all commands each time
 Command history is only record of executed commands

 Better practice is to write all commands to be
executed in a single file, script, or module

Webb ENGR 103

60

Python Scripts

 Scripts or modules or programs are files containing
a series of Python commands
 .py filename extension
 Quickly and easily re-run at any time – no need to re-

type all commands in the command window
 Execute in Spyder by clicking the Run button (or F5)

 Our primary mode of executing Python code

Webb ENGR 103

61

Scripts vs. Programs vs. Modules

 We’ll use the terms scripts or programs interchangeably when referring to
Python files

 Technically, they are scripts, but this distinction is not important for our
purposes.

 Programs
 Written (possibly) in a high-level language – source code
 Compiled (once) by a compiler into a machine language executable file – object

code
 Fast, because compilation performed once, ahead of runtime

 Scripts
 High-level source code is interpreted and executed line-by-line by an interpreter

at runtime
 Slower than compiled programs

 Modules
 Python scripts that are intended to be imported into other scripts or modules

Webb ENGR 103

62

Python Scripts – Best Practices

Start scripts with a comment listing the file name.

Additional comments
with a brief overall
script description and
other details is useful.

Thoroughly
comment
your code.Define variables to be

used in equations.
Parameters can be
changed in a single place.

• Keep your code DRY:
Don't Repeat Yourself

Webb ENGR 103

63

Comments

 Comments are explanatory or descriptive text added to your code
 Not executed commands

 In Python, comments are preceded by the hash mark: #

 Comments may occupy an
entire line

 Or, may be inserted at the
end of a line, after
uncommented expressions

 Ctrl+1 comments and uncomments a line of text in the Spyder editor

 Commenting is useful for temporarily removing instructions from a
script

Webb ENGR 103

64

Cells

 Can divide Spyder scripts into cells
 Code blocks that can be executed at

once, without running the entire
script

 Cells are defined with a special
comment line:
 Follow the hash mark, #, with two

percent signs, %%
 Can also include comment text

%% start of a cell

 Cell ends at the start of the next cell

 To run a cell:
 Place the cursor in the cell to be run
 Ctrl-Enter, or click 'Run current cell'

Webb ENGR 103

65

Pseudocode

 The most important part of the process of writing
computer code is planning
 Determine exactly what the program should do
 And, how it will do it

 Before writing any code, write a step-by-step
description of the program
 Natural language
 Graphical – flow chart (more later)

 This may be referred to as pseudocode

Webb ENGR 103

66

Programming Process

 Programming process:

 Define the problem
 Ensure you have a complete understanding of the problem
 Determine exactly what the program should do

 Inputs and outputs
 Relevant equations

 Design the program
 Pseudocode – language-independent

 Write the program
 Simple translation from pseudocode

 Validate the program
 Do the outputs make sense
 Test with inputs that yield known outputs
 Test thoroughly – try to break it

Webb ENGR 103

67

Pseudocode

 Comments can serve as pseudocode
 Write the comments first
 Then insert code to do what the comments say

 For example:

Webb ENGR 103

68

Sequential Code Execution

 In general code is executed line-by-line sequentially
from the top of an m-file down

 There are, however, very important non-sequential
code structures:
 Conditional statements – code that is executed only if

certain conditions are met
 if
 if … else
 if … elif … else

 Loops – code that is repeated a specified number of times
or while certain conditions are met
 for
 while

Webb ENGR 103

Inputs & Outputs69

Webb ENGR 103

70

Inputs to Scripts

 Inputs to a script:
 Assignments of variable values

 Several input methods:
 Within the script
 From external files (.csv, Excel, etc.) – more later
 Specified by user during execution – input()

Webb ENGR 103

71

User-Specified Input – input()

 Prompt user for value to be assigned to a variable

var = input(Prompt)

 Prompt: a string that will be displayed in the console, prompting
the user for an input

 var: string variable to which the user-specified input is stored
 Re-cast for different data types (e.g. float)

 For example:

Webb ENGR 103

72

Outputs from Scripts

 Outputs from scripts:
 Display of values calculated by the script

 Several output methods
 Plotting (more later)
 In the console
 print()

 Writing data to files (more later)

Webb ENGR 103

73

print()

 Output a string to the console

print(string)

 string: a string – may contain formatting sequences for
insertion of variable values

 For example:

Webb ENGR 103

74

Formatting Strings – .format()

 Insert formatted numbers and strings into a string

<template>.format(args)

 <template>: a string containing replacement fields for insertion of
variable values
 Replacement fields may include formatting specifications

 args: objects to be inserted into the <template> string
 Strings or numeric values

 For example:

Webb ENGR 103

75

.format() – Syntax & Terminology

<template>.format(args)

 .format() is a method applied to the object,
<template>, which is an instance of the class str
 Class: a template for creating objects
 For now, think of this as the data type
 Here, the class is string, str
 Classes have attributes and methods associated with them

 Object: an instance of a class
 On the previous page, s is an object of type str

 Method: a function associated with a specific class
 Here, format() is a method that operates on str objects

 These object-oriented programming concepts will be
covered in detail later in the course

Webb ENGR 103

76

Formatting Strings – Replacement Fields

 Replacement fields:
 Enclosed in curly brackets, {}

 Arguments in format() are inserted in order
 May include a formatting specification, format_spec

{:format_spec}

 format_spec: specifies how to format numeric values

Webb ENGR 103

77

Formatting Strings – format_spec

 format_spec:
 Specify how numeric values are formatted

:[width][group][.prec][type]

 Always start format_spec with a colon, :
 width: minimum width of the field into which the

argument is inserted – may result in white space
 group: grouping character for each three digits to the left

of the decimal point (e.g. , or _)
 .prec: number of digits after the decimal point for floating

point numbers, or maximum field width for strings
 type: presentation type, e.g. floating point, integer, string,

etc.

Webb ENGR 103

78

format_spec – type

 Type characters specify how to format variable values within
a string

Presentation Type Type Character

Decimal integer d

Binary integer b

Hexadecimal integer x

Floating point f or F

Exponential notation
(e.g., 1.6e-19 or 1.6E-19) e or E

More compact of %e or %f g

More compact of %E or %F G

Single character c

String s

Percentage %

Webb ENGR 103

79

format_spec – Examples

 Fixed-point notation

 Field-width control

 Exponential notation

 Compact format
 Note that .prec

specifies number of
significant figures for
g or G type

	Section 1: �Introduction
	Course Overview
	What is Programming?
	Why Programming?
	Course Overview
	Python
	Introduction to Python & Spyder
	Python – What is It?
	Python – How Do We Use it?
	Spyder – What is It?
	The Spyder Interface
	The Spyder Interface - Console
	The Spyder Interface - Editor
	The Spyder Interface – Variable Explorer
	The Spyder Interface – File Browser
	The Spyder Interface – Command History
	The Spyder Interface – Help Pane
	The Spyder Interface – Plots Pane
	The Spyder Interface – Saving Layouts
	Data Types
	Assignment of Variables
	Variable Declaration
	Variable Names
	Variable Names
	Variable Declaration – Dynamic Typing
	Fundamental Python Data Types
	Mutable vs. Immutable Data Types
	Data Types – int
	Data Types – float
	Scientific Notation
	Data Types – complex
	Data Types – str
	Data Types – str – Escape Characters
	Data Types – list
	Data Types – tuple
	Data Types – set
	Data Types – dict
	Data Types – bool
	Mathematical Operations
	Basic Mathematical Operations
	Order of Operations
	Other Built-In Python Functions
	Other Built-In Python Functions
	NumPy
	Packages
	NumPy
	Using NumPy
	NumPy – Trigonometric Functions
	NumPy – Trigonometric Functions
	NumPy – Rounding
	NumPy – Rounding
	NumPy – Exponents
	NumPy – Logarithms
	NumPy – Complex Numbers
	NumPy – Miscellaneous
	NumPy – Element-Wise Operations
	Built-In Constants
	Python Scripts - Modules
	Spyder Console
	Python Scripts
	Scripts vs. Programs vs. Modules
	Python Scripts – Best Practices
	Comments
	Cells
	Pseudocode
	Programming Process
	Pseudocode
	Sequential Code Execution
	Inputs & Outputs
	Inputs to Scripts
	User-Specified Input – input()
	Outputs from Scripts
	print()
	Formatting Strings – .format()
	.format() – Syntax & Terminology
	Formatting Strings – Replacement Fields
	Formatting Strings – format_spec
	format_spec – type
	format_spec – Examples

