
ENGR 103 – Introduction to Engineering Computing

SECTION 2: 
VECTORS AND MATRICES
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Vectors and Matrices

 Vectors and matrices are used extensively in many 
areas of engineering, e.g.:
 Systems of equations
 Dynamic system modeling and analysis
 Feedback control system design
 Signal processing
 Automated test and measurement
 Data analysis and plotting

 Here, we will briefly introduce vectors and matrices
 Matrix math – linear algebra fundamentals
 You’ll cover this in much more detail in your Linear Algebra 

course
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Matrices

 Matrix
 Array of numerical values, e.g.:

𝐀𝐀 =
−7 0 1 4
4 −2 9 5
8 3 4 0

 The variable, 𝐀𝐀, is a matrix
 An 𝑚𝑚 × 𝑛𝑛 matrix has 𝑚𝑚 rows and 𝑛𝑛 columns 
 These are the dimensions of the matrix

 𝐀𝐀 is a 3 × 4 matrix
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Matrix Dimensions and Indexing

 An 𝑚𝑚 × 𝑛𝑛 matrix:

𝐀𝐀 =

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚𝑚 𝑎𝑎𝑚𝑚𝑚 ⋯ 𝑎𝑎𝑚𝑚𝑚𝑚

 Use indices to refer to individual elements of a 
matrix
 𝑎𝑎𝑖𝑖𝑖𝑖:  the element of 𝐀𝐀 in the 𝑖𝑖𝑡𝑡𝑡 row and the 𝑗𝑗𝑡𝑡𝑡column
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Vectors

 Vectors
 A matrix with one dimension equal to one
 A matrix with one row or one column

 Row vector
 One row – a 1 × 𝑛𝑛 matrix, e.g.:

𝑥𝑥 = −9 1 −4
 A 1 × 3 row vector

 Column vector
 One column – an 𝑚𝑚 × 1 matrix, e.g.:

𝑥𝑥 =
5
1
8

 A 3 × 1 column vector
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Scalars

 Scalar
 A 1 × 1 matrix
 The numbers we are we are familiar with, e.g.: 

𝑏𝑏 = 4,       𝑥𝑥 = −3 + 𝑗𝑗𝑗.8,       𝑦𝑦 = −1 × 10−9

 We understand simple mathematical operations 
involving scalars
 Can add, subtract, multiply, or divide any pair of scalars
 Not true for matrices 
 Depends on the matrix dimensions
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Matrix Addition and Subtraction

 As long as matrices have the same dimensions, we can 
add or subtract them
 Addition and subtraction are done element-by-element, 

and the resulting matrix is the same size

4 8
0 3 + 1 −4

6 −1 = 5 4
6 2

4 8
0 3 − 1 −4

6 −1 = 3 12
−6 4

 We can also add scalars to (or subtract from) matrices

1 −4
6 −1 + 5 = 6 1

11 4
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Matrix Addition and Subtraction

 If matrices are not the same size, and neither is a scalar, 
addition/subtraction are not defined
 The following operations cannot be done

4 8
0 3 + 1 −4 6

6 −1 9 =?

8
3 − 1 −4

6 −1 =?

 Addition is commutative (order does not matter):

𝐀𝐀 + 𝐁𝐁 = 𝐁𝐁 + 𝐀𝐀 = 𝐂𝐂

4 8
0 3 + 1 −4

6 −1 = 1 −4
6 −1 + 4 8

0 3 = 5 4
6 2
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Matrix Multiplication

 In order to multiply matrices, their inner dimensions
must agree

 We can multiply 𝐀𝐀 � 𝐁𝐁 only if the number of columns
of 𝐀𝐀 is equal to the number of rows of 𝐁𝐁

 Resulting Matrix has same number of rows as 𝐀𝐀 and 
same number of columns as 𝐁𝐁

𝐀𝐀 � 𝐁𝐁 = 𝐂𝐂
(m x n) (n x p) (m x p) � =
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Matrix Multiplication – 𝐀𝐀 � 𝐁𝐁 = 𝐂𝐂

𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚𝑚 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛
⋅
𝑏𝑏11 ⋯ 𝑏𝑏1𝑝𝑝
⋮ ⋱ ⋮
𝑏𝑏𝑛𝑛1 ⋯ 𝑏𝑏𝑛𝑛𝑛𝑛

=
𝑐𝑐11 ⋯ 𝑐𝑐1𝑝𝑝
⋮ ⋱ ⋮

𝑐𝑐𝑚𝑚𝑚 ⋯ 𝑐𝑐𝑚𝑚𝑝𝑝

 The 𝑖𝑖, 𝑗𝑗𝑡𝑡𝑡 entry of 𝐂𝐂 is the dot product of the 𝑖𝑖𝑡𝑡𝑡 row of 
𝐀𝐀 with the 𝑗𝑗𝑡𝑡𝑡 column of 𝐁𝐁

𝑐𝑐𝑖𝑖𝑖𝑖 = �
𝑘𝑘=1

𝑛𝑛

𝑎𝑎𝑖𝑖𝑖𝑖 ⋅ 𝑏𝑏𝑘𝑘𝑘𝑘

 Consider the multiplication of two 2 × 2 matrices:

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22 � 𝑏𝑏11 𝑏𝑏12

𝑏𝑏21 𝑏𝑏22
= 𝑎𝑎11𝑏𝑏11 + 𝑎𝑎12𝑏𝑏21 𝑎𝑎11𝑏𝑏12 + 𝑎𝑎12𝑏𝑏22

𝑎𝑎21𝑏𝑏11 + 𝑎𝑎22𝑏𝑏21 𝑎𝑎21𝑏𝑏12 + 𝑎𝑎22𝑏𝑏22
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Matrix Multiplication – Examples

 A 2 × 2 and a 2 × 3 yield a 2 × 3

1 4
2 1 ⋅ 3 −1 5

6 2 0 = 27 7 5
12 0 10

 A 3 × 3 and a 3 × 1 result in a 3 × 1

1 5 0
0 4 8
2 7 3

⋅
6
1
2

=
11
20
25
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Matrix Multiplication – Properties 

 Matrix multiplication is not commutative
 Order matters
 Unlike scalars

 In general,
𝐀𝐀 ⋅ 𝐁𝐁 ≠ 𝐁𝐁 ⋅ 𝐀𝐀

 If 𝐴𝐴 and/or 𝐵𝐵 is not square then one of the above 
operations may not be possible anyway
 Inner dimensions may not agree for both product 

orders
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Matrix Multiplication – Properties

 Matrix multiplication is associative
 Insertion of parentheses anywhere within a product of 

multiple terms does not affect the result:

(𝐀𝐀 ⋅ 𝐁𝐁) ⋅ 𝐂𝐂 = 𝐃𝐃
𝐀𝐀 ⋅ (𝐁𝐁 ⋅ 𝐂𝐂) = 𝐃𝐃

 Matrix multiplication is distributive
 Multiplication distributes over addition
 Must maintain correct order, i.e. left- or right-multiplication

𝐀𝐀(𝐁𝐁 + 𝐂𝐂) = 𝐀𝐀𝐀𝐀 + 𝐀𝐀𝐂𝐂
(𝐁𝐁 + 𝐂𝐂)𝐀𝐀 = 𝐁𝐁𝐁𝐁 + 𝐂𝐂𝐂𝐂
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Identity Matrix

 Multiplication of a scalar by 1 results in that scalar
𝑎𝑎 ⋅ 1 = 1 ⋅ 𝑎𝑎 = 𝑎𝑎

 The matrix version of 1 is the identity matrix
 Ones along the diagonal, zeros everywhere else
 Square 𝑛𝑛 × 𝑛𝑛 matrix
 Denoted as 𝐈𝐈 or 𝐈𝐈𝐧𝐧, where 𝐧𝐧 is the matrix dimension, e.g.

𝐈𝐈𝟑𝟑 =
1 0 0
0 1 0
0 0 1

 Left- or right-multiplication by an identity matrix results in 
that matrix, unchanged

𝐀𝐀 ⋅ 𝐈𝐈 = 𝐈𝐈 ⋅ 𝐀𝐀 = 𝐀𝐀
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Identity Matrix

 Right-multiplication of an 𝑛𝑛 × 𝑛𝑛 matrix by an 𝑛𝑛 × 𝑛𝑛
identity matrix, 𝐈𝐈𝐧𝐧

1 5 0
0 4 8
2 7 3

⋅
1 0 0
0 1 0
0 0 1

=
1 5 0
0 4 8
2 7 3

 Same result if we left-multiply by 𝐈𝐈𝐧𝐧
1 0 0
0 1 0
0 0 1

⋅
1 5 0
0 4 8
2 7 3

=
1 5 0
0 4 8
2 7 3
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Identity Matrix

 Right-multiplication of an 𝑚𝑚 × 𝑛𝑛 matrix by an 𝑛𝑛 × 𝑛𝑛
identity matrix   

1 5 0
0 4 8 ⋅

1 0 0
0 1 0
0 0 1

= 1 5 0
0 4 8

 Same result if we left-multiply the 𝑚𝑚 × 𝑛𝑛 matrix by 
an 𝑚𝑚 × 𝑚𝑚 identity matrix 

1 0
0 1 ⋅ 1 5 0

0 4 8 = 1 5 0
0 4 8
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Vector Multiplication

 Vectors are matrices, so inner dimensions must agree
 Two types of vector multiplication:
 Inner product (dot product)

 Result is a scalar

𝑎𝑎11 𝑎𝑎12 � 𝑏𝑏11𝑏𝑏21
= 𝑎𝑎11𝑏𝑏11 + 𝑎𝑎12𝑏𝑏21

 Outer product
 Result for n-vectors is an n x n matrix

𝑎𝑎11
𝑎𝑎21 � 𝑏𝑏11 𝑏𝑏12 = 𝑎𝑎11𝑏𝑏11 𝑎𝑎11𝑏𝑏12

𝑎𝑎21𝑏𝑏11 𝑎𝑎21𝑏𝑏12
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Exponentiation

 As with scalars, raising a matrix to the power, n, is 
the multiplication of that matrix by itself n times

𝐀𝐀𝟑𝟑 = 𝐀𝐀 � 𝐀𝐀 � 𝐀𝐀
 What must be true of a matrix for exponentiation to 

be allowable?
 Inner matrix dimensions must agree
 Rows of 𝐀𝐀 must equal columns of 𝐀𝐀 – n x n
 Matrix must be square
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Matrix ‘Division’ – Multiplication by the Inverse

 Scalar division that we are accustomed to can be 
thought of as multiplication by an inverse:

𝑎𝑎 ÷ 𝑏𝑏 = 𝑎𝑎 �
1
𝑏𝑏

= 𝑎𝑎 � 𝑏𝑏−1

 This is how we ‘divide’ matrices as well

𝐀𝐀 � 𝐁𝐁 � 𝐁𝐁−𝟏𝟏 = 𝐀𝐀

 Multiplication of a scalar by its inverse is equal to 1. 
 For a matrix, the result is the identity matrix

𝐀𝐀 � 𝐀𝐀−𝟏𝟏 = 𝐈𝐈 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1
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Matrix Inverse

 Recall that matrix multiplication is not commutative
 Right- and left-multiplication are different operations

𝐀𝐀 � 𝐁𝐁 � 𝐁𝐁−𝟏𝟏 = 𝐀𝐀 ≠ 𝐁𝐁−𝟏𝟏 � 𝐀𝐀 � 𝐁𝐁

 The inverse does not exist for all matrices
 Non-invertible matrices are referred to as singular
 Matrix must be square for its inverse to exist
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Matrix Inverse

 Possible to calculate matrix inverses by hand
 Simple for small matrices
 Quickly becomes tedious as matrices get larger

 For example, the inverse of a 2 × 2 matrix:

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑

−1
=

1
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

𝑑𝑑 −𝑏𝑏
−𝑐𝑐 𝑎𝑎

 For example:

𝐀𝐀 = 2 5
2 4

𝐀𝐀−𝟏𝟏 =
1

8 − 10
4 −5
−2 2 = −2 2.5

1 −1
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Matrix Inverse - Example

 Multiplication of a matrix by its inverse yields the identity matrix
 For example:

𝐀𝐀 ⋅ 𝐀𝐀−𝟏𝟏 = 2 5
2 4 ⋅ −2 2.5

1 −1 = 1 0
0 1

 Or, for a 3 × 3:

𝐀𝐀 =
2 0 2
0 1 2
0 0 2

,    𝐀𝐀−𝟏𝟏 =
0.5 0 −0.5
0 1 −1
0 0 0.5

2 0 2
0 1 2
0 0 2

⋅
0.5 0 −0.5
0 1 −1
0 0 0.5

=
1 0 0
0 1 0
0 0 1

 You’ll learn more about this in Linear Algebra – not critical here
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Matrix Transpose

 The transpose of a matrix is that matrix with rows and 
columns swapped
 First row becomes the first column, second row becomes 

the second column, and so on
 For example:

𝐀𝐀 =
0 9
2 7
6 3

𝐀𝐀𝐓𝐓 = 0 2 6
9 7 3

 Row vectors become column vectors and vice versa

𝐱𝐱 =
7
−1
−4

𝐱𝐱𝐓𝐓 = 7 −1 −4
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Why Do We Use Matrices?

 Vectors and matrices are used extensively in many 
engineering fields, for example:
 Modeling, analysis, and design of dynamic systems
 Controls engineering
 Image processing
 Etc. …

 Very common usage of vectors and matrices is to 
represent systems of equations
 These regularly occur in all fields of engineering 
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Systems of Equations

 Consider a system of three equations with three unknowns:

3𝑥𝑥1 + 5𝑥𝑥2 − 9𝑥𝑥3 = 6
−3𝑥𝑥1 + 7𝑥𝑥3 = −2
−𝑥𝑥2 + 4𝑥𝑥3 = 8

 Can represent this in matrix form:

3 5 −9
−3 0 7
0 −1 4

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

=
6
−2
8

 Or, more compactly as:
𝐀𝐀𝐀𝐀 = 𝐛𝐛

 Perform algebra operations as we would if 𝐀𝐀, 𝐱𝐱, and 𝐛𝐛 were scalars
 Observing matrix-specific rules, e.g. multiplication order, etc.



Webb ENGR 103

28
EX

ER
CI

SE

If 𝐀𝐀 =
2 3
1
4

−5
1

and 𝐁𝐁 = 4 3 6
1 −2 3 find (a) the size of C when 

𝐀𝐀 � 𝐁𝐁 = 𝐂𝐂 and (b) the value of 𝐂𝐂22. 

Matrix Multiplication
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EX

ER
CI

SE
Determine the values of x1 and x2 if

4𝑥𝑥1 + 𝑥𝑥2 = 7
−𝑥𝑥1 + 5𝑥𝑥2 = −7

Step 1: express this system of equations in matrix form 𝐀𝐀𝐀𝐀 = 𝐛𝐛

Systems of Equations
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EX

ER
CI

SE
Determine the values of x1 and x2 if

4x1 + x2 = 7
−x1 + 5x2 = −7

Step 2: find 𝐀𝐀−1

Systems of Equations
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EX

ER
CI

SE
Determine the values of x1 and x2 if

4𝑥𝑥1 + 𝑥𝑥2 = 7
−𝑥𝑥1 + 5𝑥𝑥2 = −7

Step 3: If you multiply 𝐀𝐀 by 𝐀𝐀−1 (𝐀𝐀−1𝐀𝐀), what do you get?

Step 4: Find the values x by multiplying both sides of 𝐀𝐀𝐀𝐀 = 𝐛𝐛 by
𝐀𝐀−1

Systems of Equations
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Vectors & Matrices in Python32
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NumPy

 Python, itself, does not have a built-in 
data type for matrices
 Lists are like vectors
 Lists of lists are like matrices
 But, cannot operate on them like we 

would like to operate on vectors and 
matrices

 Instead, we will use the NumPy package
when working with matrices
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NumPy

 We will use the NumPy (Numerical Python) 
package extensively

 Fundamental data type:
 Multi-dimensional array object – ndarray
 These are matrices
 Useful for engineering computation

 Many built-in functions
 Mathematical operations, e.g.: 
 Trigonometric functions
 Exponents and logarithms 
 Complex number operations

 Array creation and manipulation routines
 Polynomial creation, manipulation, fitting, etc.
 Much more …
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Defining Vectors and Matrices – np.array()

 Let’s say we want to assign the following matrix 
variable in Python:

𝐀𝐀 = 2 5 1
−4 6 0

 Use NumPy's array() function

np.array(object)

 object: the array data – a nested list – one list for 
each row

 For example:
A = np.array([[2, 5, 1], [-4, 6, 0]])



Webb ENGR 103

36

Line Continuation

 You can continue a 
single Python command 
across multiple lines
 Improves readability

 Useful when explicitly 
defining ndarrays
 Indent continued lines 

to align leading 
delimiters (i.e. square 
brackets)
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Vector and Matrix Generation

 Often want to automatically generate vectors and 
matrices without having to enter them element-by-
element

 A few of NumPy’s array-generation functions:

 arange()
 linspace() 
 logspace()
 ones()

 zeros()
 empty()
 diag()
 eye()
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Vector Generation – arange()

 Create vector of evenly-spaced values 
 Values are on half-open interval: [start, stop)

x = np.arange(start, stop, step)

 start: optional start of interval – default: 0
 stop: end of interval
 step: optional increment value – default: 1
 x: resulting vector of points

 Half-open interval: [start, stop)
 start is the first value in x
 stop is not the last value in x
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Vector Generation – arange()

 Default start is 0, 
default step is 1

 Specify start and 
stop

 Specify start, 
stop, and step

 step may be 
negative



Webb ENGR 103

40

Vector Generation – linspace()

x = np.linspace(start,stop,N)

 start: first element in the vector
 stop: last element in the vector
 N: optional number of elements – default: 50
 x: resulting vector of linearly spaced points

 arange():
 stop is not in x
 Number of points not directly specified

 linspace():
 stop is the last value in x
 Increment value not directly specified
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Array Generation – ones(), zeros()

 Generate an N-vector of all 1’s or all 0’s:

A = np.ones(N) or     A = np.zeros(N)

 Generate an 𝑚𝑚 × 𝑛𝑛 matrix of all 1’s or 0’s

A = np.ones((m,n)) or     A = np.zeros((m,n))
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Identity Matrix – eye()

I = np.eye(N)

 N: identity matrix dimension
 I: 𝑁𝑁 × 𝑁𝑁 identity matrix
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Random Number Generation – default_rng()

 Very often useful to generate random numbers
 Simulating the effect of noise
 Monte Carlo simulation, etc.

 First, construct a random-number generator object:

rng = np.random.default_rng(seed)

 seed: optional initialization seed for generator
 rng: initialized generator object – will run methods on 

this object to generate random numbers
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Normally-Distributed Random Numbers

 Generate random values from a normal (Gaussian) 
distribution

x = rng.normal(loc=0, scale=1, size=1)

 rng: generator object created with default_rng()
 loc: optional mean of distribution – default: 0.0
 scale: optional standard deviation – default: 1.0
 size: optional dimension of resulting array
 x: resulting array of random values

 Note that normal() is a method that operates on 
the random-number generator object, rng
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Uniformly-Distributed Random Numbers

 Generate random values from a uniform distribution on 
the interval [low, high)

x = rng.uniform(low=0, high=1, size=1)

 rng: generator object created with default_rng()
 low: optional lower bound of interval – default: 0.0
 high: optional upper bound of interval – default: 1.0
 size: optional dimension of resulting array – default: 1
 x: resulting array of random values

 Half-open interval:
 Resulting values are ≥ low and < high
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Uniformly-Distributed Random Integers

 Generate random values from a uniform distribution on the 
interval [low, high)

x = rng.integers(low, high, size=1)

 rng: generator object created with default_rng()
 low: minimum possible resulting integer
 high: one more than the maximum possible integer
 size: optional dimension of resulting array – default: 1
 x: resulting array of random integers

 Or
x = rng.integers(high, size)

x = rng.integers(high)
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Random Numbers – Examples 
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Array Indexing and Slicing48
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Array Indexing

 We’ve seen how we can refer to specific elements in an 
array by their row, column indices, 𝑎𝑎𝑖𝑖𝑖𝑖:

𝐀𝐀 =

𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚𝑚 𝑎𝑎𝑚𝑚𝑚 ⋯ 𝑎𝑎𝑚𝑚𝑚𝑚

 Python allows us to do the same thing
 Indices specified in square brackets immediately following the 

array variable name
 Numbering begins at 0
 Applies to any Python iterable: list, str, tuple, dict, 
ndarray, …

 For example:
 B[1,4]: element in the 2nd row, 5th column of the array B
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Array Indexing – Vectors, Lists, Tuples … 

 Consider a 1-dimensional array, or vector
 Two indexing methods:
 Positive indexing
 Negative indexing

x = [1, 3, 5, 7, 9, 11]
Positive Index: 0 1 2 3 4 5

-6 -5 -4 -3 -2 -1    :Negative Index

>>> x[0]
1
>>> x[3]
7

>>> x[-1]
11
>>> x[-4]
5
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Array Indexing – ndarray

 Pass row and column indices to index ndarrays
 In square brackets, separated by commas
 Positive or negative indexing

Positive Index: 0 1 2

-3 -2 -1    :Negative Index

0

1

2

-3

-2

-1

𝐴𝐴 =
1 2 3
4 5 6
7 8 9

>>> A[0,1]
2

>>> A[1,-2]
5
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Array Slicing

 Slicing
 Access a range of values within a Python iterable, or 

NumPy ndarray
 Slicing index syntax:

[start:stop:step]

 start: index of the first value to access – default: 0
 stop: one past the index of the last value – default: -1
 step: index increment value – default: 1

 For example:
 x[1:4] refers to the 2nd through 4th elements of x
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Array Slicing

 First index is 0
 stop (here, x[5]) is 

not included
 Increment by step
 Default start is 0
 Index to x[8] to get 

last element at x[7]
 Omit stop to index 

through the end
 Negative indexing
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Array Slicing – ndarray

 Can extend all slicing concepts to multi-dimensional arrays, or 
matrices
 Access a multi-dimensional range of values from within a NumPy

ndarray
 Add an index range for each dimension

 For a 2-D array, or matrix:

[r_start:r_stop:r_step, c_start:c_stop:c_step]

 r_start, r_stop, and r_step: row range
 c_start, c_stop, and r_step: column range

 For example, B[0:3,1:4] refers elements of B in the 
 1st through 3rd row (rows 0, 1, and 2)
 2nd through 4th column (columns 1, 2, and 3)
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Array Slicing – ndarray

𝐵𝐵 =
1 2 3
4 5 6
7 8 9

 B[0:2,0:2]
1 2
4 5

 B[1:3,0:3]
4 5 6
7 8 9

 B[2,1:3]

8 9
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Multidimensional Arrays

 NumPy allows for the definition of arrays with more than two dimensions
 Arbitrary number of dimensions allowed
 Three dimensional arrays are common
 Index an N-dimensional array with N indices

 For example, a 3 × 3 × 3 array looks like this:

[2,0,0] [2,0,1] [2,0,2]
[2,1,0] [2,1,1] [2,1,2]
[2,2,0] [2,2,1] [2,2,2][1,0,0] [1,0,1] [1,0,2]

[1,1,0] [1,1,1] [1,1,2]
[1,2,0] [1,2,1] [1,2,2][0,0,0] [0,0,1] [0,0,2]

[0,1,0] [0,1,1] [0,1,2]
[0,2,0] [0,2,1] [0,2,2]

ro
w

column
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Multidimensional Arrays – Indexing 

 Indices for additional dimensions are prepended to 
the index list:
 1-D array (vector):

x[index]

 2-D array (matrix):

A[row, col]

 3-D array

B[page, row, col]

0 , 1 , 2 , … , 𝑥𝑥 𝑁𝑁 − 1

0,0 ⋯ 0,𝑁𝑁 − 1
⋮ ⋱ ⋮

𝑁𝑁 − 1,0 ⋯ 𝑁𝑁 − 1,𝑁𝑁 − 1
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Multidimensional Arrays – Indexing 

 Create a 3-D array of zeros
 3 pages, 2 rows, 4 columns

 Set the 2nd page, all rows, all 
columns equal to 2

 Set the element on the third 
page, 1st row, 2nd column to 9
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Array Dimensions – len(), shape(), size()

 Length of a vector
 Built-in Python function
 Returns an integer

len(x)

 Dimensions of an array
 Tuple: (…, pages, rows, cols)
 NumPy function

np.shape(A)

 Number of elements in an array
 Integer: product of dimensions
 NumPy function

np.size(B)
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Matrix & Array Operations

 Python/NumPy operations and functions can operate on 
arrays
 Element-by-element (array operations) by default
 Special operators for matrix math

 For example:
 Addition:

1 2
3 4 + 5 6

7 8 = 1 + 5 2 + 6
3 + 7 4 + 8 = 3 8

10 12

 Multiplication:

1 2
3 4 ∗ 5 6

7 8 = 1 ∗ 5 2 ∗ 6
3 ∗ 7 4 ∗ 8 = 2 12

21 32

 Note, this is not matrix multiplication
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Array Operations

 More array operations:
 Division:

1 2
3 4 / 5 6

7 8 = 1/5 2/6
3/7 4/8 = 0.2 0.333

0.429 32

 Exponentiation:

1 2
3 4 ∗∗ 3 = 1 ∗∗ 3 2 ∗∗ 3

3 ∗∗ 3 4 ∗∗ 3 = 1 8
27 64
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Matrix Operations

 Vector multiplication:
 Use the NumPy @ operator

1 2 @ 3 4 = 1 ∗ 3 + 2 ∗ 4 = 11

 Note that 1-D ndarrays are neither row nor column vectors
 For vectors (1-D ndarrays), @ performs an inner product:

1 2 @ 3 4 = 1 2 ∗ 3
4 1 ∗ 3 + 2 ∗ 4 = 11

 Matrix multiplication:

1 2
3 4 @ 5 6

7 8 = 1 ∗ 5 + 2 ∗ 7 1 ∗ 6 + 2 ∗ 8
3 ∗ 5 + 4 ∗ 7 3 ∗ 6 + 4 ∗ 8 = 19 22

43 50
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Matrix Operations

 Matrix inverse
 Use NumPy's linalg module:

np.linalg.inv(A)

2×2 identity matrix to 
within numerical precision
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Passing Arrays to Functions

 Can pass arrays to most 
functions, just as we would 
a scalar

 The sine of a vector of 
angles calculated all at 
once
 No need to pass one-at-a-

time
 Result is a vector of the 

same size

 y passed as an input  to 
the function round()

 round() run as a method
applied to the ndarray
object, phi


	Section 2: �Vectors and Matrices
	Vectors and Matrices
	Vectors and Matrices
	Matrices
	Matrix Dimensions and Indexing
	Vectors
	Scalars
	Mathematical Matrix Operations
	Matrix Addition and Subtraction
	Matrix Addition and Subtraction
	Matrix Multiplication
	Matrix Multiplication – 𝐀∙𝐁=𝐂
	Matrix Multiplication – Examples
	Matrix Multiplication – Properties 
	Matrix Multiplication – Properties
	Identity Matrix
	Identity Matrix
	Identity Matrix
	Vector Multiplication
	Exponentiation
	Matrix ‘Division’ – Multiplication by the Inverse
	Matrix Inverse
	Matrix Inverse
	Matrix Inverse - Example
	Matrix Transpose
	Why Do We Use Matrices?
	Systems of Equations
	Matrix Multiplication
	Systems of Equations
	Systems of Equations
	Systems of Equations
	Vectors & Matrices in Python
	NumPy
	NumPy
	Defining Vectors and Matrices – np.array()
	Line Continuation
	Vector and Matrix Generation
	Vector Generation – arange()
	Vector Generation – arange()
	Vector Generation – linspace()
	Array Generation – ones(), zeros()
	Identity Matrix – eye()
	Random Number Generation – default_rng()
	Normally-Distributed Random Numbers
	Uniformly-Distributed Random Numbers
	Uniformly-Distributed Random Integers
	Random Numbers – Examples 
	Array Indexing and Slicing
	Array Indexing
	Array Indexing – Vectors, Lists, Tuples … 
	Array Indexing – ndarray
	Array Slicing
	Array Slicing
	Array Slicing – ndarray 
	Array Slicing – ndarray 
	Multidimensional Arrays
	Multidimensional Arrays – Indexing 
	Multidimensional Arrays – Indexing 
	Array Dimensions – len(), shape(), size()
	Matrix & Array Operations
	Matrix & Array Operations
	Array Operations
	Matrix Operations
	Matrix Operations
	Passing Arrays to Functions

