SECTION 2: VECTORS AND MATRICES

ENGR 103 - Introduction to Engineering Computing

Vectors and Matrices

Vectors and Matrices

\square Vectors and matrices are used extensively in many areas of engineering, e.g.:

- Systems of equations
- Dynamic system modeling and analysis
\square Feedback control system design
- Signal processing
- Automated test and measurement
- Data analysis and plotting
\square Here, we will briefly introduce vectors and matrices
- Matrix math - linear algebra fundamentals
- You'll cover this in much more detail in your Linear Algebra course

Matrices

\square Matrix
\square Array of numerical values, e.g.:

$$
\mathbf{A}=\left[\begin{array}{cccc}
-7 & 0 & 1 & 4 \\
4 & -2 & 9 & 5 \\
8 & 3 & 4 & 0
\end{array}\right]
$$

\square The variable, \mathbf{A}, is a matrix
\square An $m \times n$ matrix has m rows and n columns
\square These are the dimensions of the matrix
$\square \mathbf{A}$ is a 3×4 matrix

Matrix Dimensions and Indexing

\square An $m \times n$ matrix:

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

\square Use indices to refer to individual elements of a matrix

- $a_{i j}$: the element of \mathbf{A} in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column

Vectors

\square Vectors

- A matrix with one dimension equal to one
- A matrix with one row or one column
\square Row vector
- One row - a $1 \times n$ matrix, e.g.:

$$
x=\left[\begin{array}{lll}
-9 & 1 & -4
\end{array}\right]
$$

- A 1×3 row vector
\square Column vector
- One column - an $m \times 1$ matrix, e.g.:

$$
x=\left[\begin{array}{l}
5 \\
1 \\
8
\end{array}\right]
$$

- A 3×1 column vector

Scalars

$\square \underline{\text { Scalar }}$

- A 1×1 matrix
\square The numbers we are we are familiar with, e.g.:

$$
b=4, \quad x=-3+j 5.8, \quad y=-1 \times 10^{-9}
$$

\square We understand simple mathematical operations involving scalars

- Can add, subtract, multiply, or divide any pair of scalars
- Not true for matrices
- Depends on the matrix dimensions

Mathematical Matrix Operations

Matrix Addition and Subtraction

\square As long as matrices have the same dimensions, we can add or subtract them

- Addition and subtraction are done element-by-element, and the resulting matrix is the same size

$$
\begin{aligned}
& {\left[\begin{array}{ll}
4 & 8 \\
0 & 3
\end{array}\right]+\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
6 & 2
\end{array}\right]} \\
& {\left[\begin{array}{ll}
4 & 8 \\
0 & 3
\end{array}\right]-\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]=\left[\begin{array}{cc}
3 & 12 \\
-6 & 4
\end{array}\right]}
\end{aligned}
$$

\square We can also add scalars to (or subtract from) matrices

$$
\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]+5=\left[\begin{array}{cc}
6 & 1 \\
11 & 4
\end{array}\right]
$$

Matrix Addition and Subtraction

\square If matrices are not the same size, and neither is a scalar, addition/subtraction are not defined

- The following operations cannot be done

$$
\begin{aligned}
& {\left[\begin{array}{ll}
4 & 8 \\
0 & 3
\end{array}\right]+\left[\begin{array}{lll}
1 & -4 & 6 \\
6 & -1 & 9
\end{array}\right]=?} \\
& {\left[\begin{array}{l}
8 \\
3
\end{array}\right]-\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]=?}
\end{aligned}
$$

\square Addition is commutative (order does not matter):

$$
\begin{gathered}
\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}=\mathbf{C} \\
{\left[\begin{array}{ll}
4 & 8 \\
0 & 3
\end{array}\right]+\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & -4 \\
6 & -1
\end{array}\right]+\left[\begin{array}{ll}
4 & 8 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
6 & 2
\end{array}\right]}
\end{gathered}
$$

Matrix Multiplication

\square In order to multiply matrices, their inner dimensions must agree
\square We can multiply $\mathbf{A} \cdot \mathbf{B}$ only if the number of columns of \mathbf{A} is equal to the number of rows of \mathbf{B}
\square Resulting Matrix has same number of rows as \mathbf{A} and same number of columns as \mathbf{B}

$$
\begin{gathered}
\mathbf{A} \cdot \underset{\sim}{\mathbf{B}}=\underset{\substack{\mathbf{C} \\
(m \times n)}}{ } \quad(n \times p)=(m \times p)
\end{gathered}
$$

Matrix Multiplication $-\mathbf{A} \cdot \mathbf{B}=\mathbf{C}$

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 p} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n p}
\end{array}\right]=\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 p} \\
\vdots & \ddots & \vdots \\
c_{m 1} & \cdots & c_{m p}
\end{array}\right]
$$

\square The $\left(i, j^{\text {th }}\right)$ entry of \mathbf{C} is the dot product of the $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of \mathbf{B}

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
$$

\square Consider the multiplication of two 2×2 matrices:

Matrix Multiplication - Examples

$\square \mathrm{A} 2 \times 2$ and a 2×3 yield a 2×3

$$
\left[\begin{array}{ll}
1 & 4 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
3 & -1 & 5 \\
6 & 2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
27 & 7 & 5 \\
12 & 0 & 10
\end{array}\right]
$$

\square A 3×3 and a 3×1 result in a 3×1

$$
\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8 \\
2 & 7 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
6 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
11 \\
20 \\
25
\end{array}\right]
$$

Matrix Multiplication - Properties

\square Matrix multiplication is not commutative

- Order matters
- Unlike scalars
\square In general,

$$
\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}
$$

\square If A and/or B is not square then one of the above operations may not be possible anyway

- Inner dimensions may not agree for both product orders

Matrix Multiplication - Properties

\square Matrix multiplication is associative

- Insertion of parentheses anywhere within a product of multiple terms does not affect the result:

$$
\begin{aligned}
(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} & =\mathbf{D} \\
\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C}) & =\mathbf{D}
\end{aligned}
$$

\square Matrix multiplication is distributive

- Multiplication distributes over addition
- Must maintain correct order, i.e. left- or right-multiplication

$$
\begin{aligned}
& \mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \\
& (\mathbf{B}+\mathbf{C}) \mathbf{A}=\mathbf{B A}+\mathbf{C A}
\end{aligned}
$$

Identity Matrix

\square Multiplication of a scalar by 1 results in that scalar

$$
a \cdot 1=1 \cdot a=a
$$

\square The matrix version of 1 is the identity matrix

- Ones along the diagonal, zeros everywhere else
- Square $(n \times n)$ matrix
- Denoted as \mathbf{I} or $\mathbf{I}_{\mathbf{n}}$, where \mathbf{n} is the matrix dimension, e.g.

$$
\mathbf{I}_{\mathbf{3}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

\square Left- or right-multiplication by an identity matrix results in that matrix, unchanged

$$
\mathbf{A} \cdot \mathbf{I}=\mathbf{I} \cdot \mathbf{A}=\mathbf{A}
$$

Identity Matrix

\square Right-multiplication of an $n \times n$ matrix by an $n \times n$ identity matrix, $\mathbf{I}_{\mathbf{n}}$

$$
\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8 \\
2 & 7 & 3
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8 \\
2 & 7 & 3
\end{array}\right]
$$

\square Same result if we left-multiply by $\mathbf{I}_{\mathbf{n}}$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8 \\
2 & 7 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8 \\
2 & 7 & 3
\end{array}\right]
$$

Identity Matrix

\square Right-multiplication of an $m \times n$ matrix by an $n \times n$ identity matrix

$$
\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8
\end{array}\right]
$$

\square Same result if we left-multiply the $m \times n$ matrix by an $m \times m$ identity matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8
\end{array}\right]=\left[\begin{array}{lll}
1 & 5 & 0 \\
0 & 4 & 8
\end{array}\right]
$$

Vector Multiplication

\square Vectors are matrices, so inner dimensions must agree
\square Two types of vector multiplication:
\square Inner product (dot product)

- Result is a scalar

$$
\left[\begin{array}{ll}
a_{11} & a_{12}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{11} \\
b_{21}
\end{array}\right]=a_{11} b_{11}+a_{12} b_{21}
$$

\square Outer product

- Result for n -vectors is an $\mathrm{n} \times \mathrm{n}$ matrix

$$
\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] \cdot\left[\begin{array}{ll}
b_{11} & b_{12}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} b_{11} & a_{11} b_{12} \\
a_{21} b_{11} & a_{21} b_{12}
\end{array}\right]
$$

Exponentiation

\square As with scalars, raising a matrix to the power, n, is the multiplication of that matrix by itself n times

$$
\mathbf{A}^{\mathbf{3}}=\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}
$$

\square What must be true of a matrix for exponentiation to be allowable?

- Inner matrix dimensions must agree
\square Rows of A must equal columns of $\mathbf{A}-\mathrm{nxn}$
- Matrix must be square

Matrix 'Division' - Multiplication by the Inverse

\square Scalar division that we are accustomed to can be thought of as multiplication by an inverse:

$$
a \div b=a \cdot \frac{1}{b}=a \cdot b^{-1}
$$

\square This is how we 'divide' matrices as well

$$
\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{B}^{-1}=\mathbf{A}
$$

\square Multiplication of a scalar by its inverse is equal to 1 .
\square For a matrix, the result is the identity matrix

$$
\mathbf{A} \cdot \mathbf{A}^{-\mathbf{1}}=\mathbf{I}=\left[\begin{array}{ccc}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right]
$$

Matrix Inverse

\square Recall that matrix multiplication is not commutative
\square Right- and left-multiplication are different operations

$$
\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{B}^{-1}=\mathbf{A} \neq \mathbf{B}^{-1} \cdot \mathbf{A} \cdot \mathbf{B}
$$

\square The inverse does not exist for all matrices

- Non-invertible matrices are referred to as singular
\square Matrix must be square for its inverse to exist

Matrix Inverse

\square Possible to calculate matrix inverses by hand

- Simple for small matrices
- Quickly becomes tedious as matrices get larger
\square For example, the inverse of a 2×2 matrix:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

\square For example:

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ll}
2 & 5 \\
2 & 4
\end{array}\right] \\
& \mathbf{A}^{-\mathbf{1}}=\frac{1}{8-10}\left[\begin{array}{cc}
4 & -5 \\
-2 & 2
\end{array}\right]=\left[\begin{array}{cc}
-2 & 2.5 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

Matrix Inverse - Example

\square Multiplication of a matrix by its inverse yields the identity matrix
\square For example:

$$
\mathbf{A} \cdot \mathbf{A}^{-\mathbf{1}}=\left[\begin{array}{ll}
2 & 5 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{cc}
-2 & 2.5 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Or, for a 3×3 :

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right], \quad \mathbf{A}^{-\mathbf{1}}=\left[\begin{array}{ccc}
0.5 & 0 & -0.5 \\
0 & 1 & -1 \\
0 & 0 & 0.5
\end{array}\right] \\
& {\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right] \cdot\left[\begin{array}{ccc}
0.5 & 0 & -0.5 \\
0 & 1 & -1 \\
0 & 0 & 0.5
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

\square You'll learn more about this in Linear Algebra - not critical here

Matrix Transpose

\square The transpose of a matrix is that matrix with rows and columns swapped

- First row becomes the first column, second row becomes the second column, and so on
\square For example:

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 9 \\
2 & 7 \\
6 & 3
\end{array}\right] \quad \mathbf{A}^{\mathbf{T}}=\left[\begin{array}{lll}
0 & 2 & 6 \\
9 & 7 & 3
\end{array}\right]
$$

\square Row vectors become column vectors and vice versa

$$
\mathbf{x}=\left[\begin{array}{c}
7 \\
-1 \\
-4
\end{array}\right] \quad \mathbf{x}^{\mathbf{T}}=\left[\begin{array}{lll}
7 & -1 & -4
\end{array}\right]
$$

Why Do We Use Matrices?

\square Vectors and matrices are used extensively in many engineering fields, for example:
\square Modeling, analysis, and design of dynamic systems
\square Controls engineering
-Image processing

- Etc. ...
\square Very common usage of vectors and matrices is to represent systems of equations
\square These regularly occur in all fields of engineering

Systems of Equations

\square Consider a system of three equations with three unknowns:

$$
\begin{aligned}
3 x_{1}+5 x_{2} & -9 x_{3}=6 \\
-3 x_{1}+7 x_{3} & =-2 \\
-x_{2}+4 x_{3} & =8
\end{aligned}
$$

\square Can represent this in matrix form:

$$
\left[\begin{array}{ccc}
3 & 5 & -9 \\
-3 & 0 & 7 \\
0 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-2 \\
8
\end{array}\right]
$$

\square Or, more compactly as:

$$
\mathbf{A x}=\mathbf{b}
$$

\square Perform algebra operations as we would if \mathbf{A}, \mathbf{x}, and \mathbf{b} were scalars - Observing matrix-specific rules, e.g. multiplication order, etc.

Matrix Multiplication

If $\mathbf{A}=\left[\begin{array}{cc}2 & 3 \\ 1 & -5 \\ 4 & 1\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ccc}4 & 3 & 6 \\ 1 & -2 & 3\end{array}\right]$ find (a) the size of \mathbf{C} when
$\mathbf{A} \cdot \mathbf{B}=\mathbf{C}$ and (b) the value of \mathbf{C}_{22}.

Systems of Equations

Determine the values of x_{1} and x_{2} if

$$
\begin{aligned}
4 x_{1}+x_{2} & =7 \\
-x_{1}+5 x_{2} & =-7
\end{aligned}
$$

Step 1: express this system of equations in matrix form $\mathbf{A x}=\mathbf{b}$

Systems of Equations

Determine the values of x_{1} and x_{2} if

$$
\begin{gathered}
4 x_{1}+x_{2}=7 \\
-x_{1}+5 x_{2}=-7
\end{gathered}
$$

Step 2: find \mathbf{A}^{-1}

Systems of Equations

Determine the values of x_{1} and x_{2} if

$$
\begin{aligned}
4 x_{1}+x_{2} & =7 \\
-x_{1}+5 x_{2} & =-7
\end{aligned}
$$

Step 3: If you multiply \mathbf{A} by $\mathbf{A}^{-1}\left(\mathbf{A}^{-1} \mathbf{A}\right)$, what do you get?

Step 4: Find the values x by multiplying both sides of $\mathbf{A x}=\mathbf{b}$ by \mathbf{A}^{-1}

Vectors \& Matrices in Python

NumPy

\square Python, itself, does not have a built-in data type for matrices

- Lists are like vectors
- Lists of lists are like matrices

- But, cannot operate on them like we would like to operate on vectors and matrices
\square Instead, we will use the NumPy package when working with matrices

NumPy

\square We will use the NumPy (Numerical Python) package extensively
\square Fundamental data type:

- Multi-dimensional array object - ndarray
- These are matrices

- Useful for engineering computation
\square Many built-in functions
- Mathematical operations, e.g.:
- Trigonometric functions
- Exponents and logarithms
- Complex number operations
- Array creation and manipulation routines
- Polynomial creation, manipulation, fitting, etc.
- Much more ...

Defining Vectors and Matrices - np. array ()

\square Let's say we want to assign the following matrix variable in Python:

$$
A=\left[\begin{array}{ccc}
2 & 5 & 1 \\
-4 & 6 & 0
\end{array}\right]
$$

\square Use NumPy's array () function

```
np.array(object)
```

-object: the array data - a nested list - one list for each row
\square For example:

$$
A=n p . \operatorname{array}([[2,5,1],[-4,6,0]])
$$

Line Continuation

\square You can continue a single Python command across multiple lines

- Improves readability
\square Useful when explicitly defining ndarrays
- Indent continued lines to align leading delimiters (i.e. square brackets)

```
import numpy as np
A = np.array ([[1, 2, 3],
    [4, 5, 6],
print('\n\n', A, type(A))
```

\square Console $1 / \mathrm{A} \times$

```
[[\begin{array}{lll}{1}&{2}&{3}\end{array}]
[4
[\begin{array}{lll}{7}&{8}&{9}\end{array}]}]\mathrm{ <class 'numpy.ndarray'>
In [445]:
```


Vector and Matrix Generation

\square Often want to automatically generate vectors and matrices without having to enter them element-byelement
\square A few of NumPy's array-generation functions:
-arange()

- linspace()
- logspace()
- ones()
- zeros()
- empty()
- diag()

口eye()

Vector Generation - arange()

\square Create vector of evenly-spaced values

- Values are on half-open interval: [start, stop)
x = np.arange(start, stop, step)
- start: optional start of interval - default: 0
- stop: end of interval
- step: optional increment value - default: 1
- X: resulting vector of points
\square Half-open interval: [start, stop)
a start is the first value in x
\square stop is not the last value in x

Vector Generation - arange()

\square Default start is 0 , default step is 1
\square Specify start and stop
\square Specify start, stop, and step
\square step may be negative

```
\square Console 1/A X
    In [497]: np.arange(8)
    Out[497]: array([0, 1, 2, 3, 4, 5, 6, 7])
    In [498]: np.arange(2, 7)
    Out[498]: array([2, 3, 4, 5, 6])
    In [499]: np.arange(2, 4, 0.5)
    Out[499]: array([2., 2.5, 3. , 3.5])
    In [500]: np.arange(10, 0, -2)
    Out[500]: array([10, 8, 6, 4, 2])
    In [501]:
```


Vector Generation - linspace()

x = np.linspace(start,stop,N)

- start: first element in the vector
- stop: last element in the vector
- N : optional number of elements - default: 50
- X: resulting vector of linearly spaced points
\square arange():
- stop is not in x
- Number of points not directly specified
\square linspace():
- stop is the last value in x
- Increment value not directly specified

Array Generation - ones(), zeros()

\square Generate an N-vector of all 1's or all 0's:

$$
A=n p \cdot o n e s(N) \text { or } A=n p \cdot z e r o s(N)
$$

\square Generate an $m \times n$ matrix of all 1's or 0's

$$
A=n p \cdot \text { ones }((m, n)) \text { or } A=n p \cdot \operatorname{zeros}((m, n))
$$

```
0. Console 1/A \
In [521]: np.ones(5)
Out[521]: array([1., 1., 1., 1., 1.])
In [522]: np.ones((5, 5))
Out[522]:
array([[1., 1., 1., 1., 1.],
    [1., 1., 1., 1., 1.],
    [1., 1., 1., 1.., 1.],
```

In [523]: np.ones((2, 5))
Out[523]:
$\operatorname{array}([[1 ., 1 ., 1 ., 1 ., 1$.$] ,$
In [524]: |

```
\square] Console 1/A \
In [528]: np.zeros(5)
Out[528]: array([0., 0., 0., 0., 0.])
In [529]: np.zeros((5, 5))
Out[529]:
array([[0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0.],
In [530]: np.zeros((2, 5))
Out[530]:
array([[0., 0., 0., 0., 0.],
    [0., 0., 0., 0., 0.]])
In [531]:
```


Identity Matrix - eye()

I = np.eye(N)
$\square \mathrm{N}$: identity matrix dimension
口 I: $N \times N$ identity matrix


```
In [540]: np.eye(2)
Out[540]:
array([[1., 0.],
    [0., 1.]])
In [541]: np.eye(4)
Out[541]:
array([[1., 0., 0., 0.],
    [0., 1., 0., 0.],
    [0., 0., 1., 0.],
    [0., 0., 0., 1.]])
In [542]:
```


Random Number Generation - default_rng()

\square Very often useful to generate random numbers
\square Simulating the effect of noise
\square Monte Carlo simulation, etc.
\square First, construct a random-number generator object:
rng = np.random.default_rng(seed)

- seed: optional initialization seed for generator
- rng: initialized generator object - will run methods on this object to generate random numbers

Normally-Distributed Random Numbers

\square Generate random values from a normal (Gaussian) distribution

$$
x \text { = rng.normal(loc=0, scale=1, size=1) }
$$

- rng: generator object created with default_rng()
- loc: optional mean of distribution - default: 0.0
- scale: optional standard deviation - default: 1.0
\square size: optional dimension of resulting array
- x : resulting array of random values
\square Note that normal () is a method that operates on the random-number generator object, rng

Uniformly-Distributed Random Numbers

\square Generate random values from a uniform distribution on the interval [low, high)

$$
x=\text { rng.uniform(low=0, high=1, size=1) }
$$

- rng: generator object created with default_rng()
- low: optional lower bound of interval - default: 0.0
- high: optional upper bound of interval - default: 1.0
- size: optional dimension of resulting array - default: 1
$\square \mathrm{x}$: resulting array of random values
\square Half-open interval:
- Resulting values are \geq low and $<$ high

Uniformly-Distributed Random Integers

\square Generate random values from a uniform distribution on the interval [low, high)

$$
x=\text { rng.integers(low, high, size=1) }
$$

- rng: generator object created with default_rng()
- low: minimum possible resulting integer
- high: one more than the maximum possible integer
- size: optional dimension of resulting array - default: 1
- x : resulting array of random integers
\square Or

$$
\begin{gathered}
x=\text { rng.integers(high, size) } \\
x=\text { rng.integers(high) }
\end{gathered}
$$

Random Numbers - Examples

$x=m g$.integers $(80,100$, size $=N$)

Array Indexing and Slicing

Array Indexing

\square We've seen how we can refer to specific elements in an array by their row, column indices, $a_{i j}$:

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

\square Python allows us to do the same thing

- Indices specified in square brackets immediately following the array variable name
- Numbering begins at 0
- Applies to any Python iterable: list, str, tuple, dict, ndarray, ...
\square For example:
- $\mathrm{B}[1,4]$: element in the $2^{\text {nd }}$ row, $5^{\text {th }}$ column of the array B

Array Indexing - Vectors, Lists, Tuples ...

\square Consider a 1-dimensional array, or vector

- Two indexing methods:
- Positive indexing
- Negative indexing
Positive Index: $\left.\begin{array}{ccccccc}0 & 1 & 2 & 3 & 4 & 5 \\ \mathbf{X}= & 3, & 5, & 7, & 9, & 11\end{array}\right]$ (1,
$\ggg x[0]$
1
$\ggg x[3]$
7

Array Indexing - ndarray

\square Pass row and column indices to index ndarrays

- In square brackets, separated by commas
- Positive or negative indexing

>>> A[0,1]
2
>>> A[1,-2]
5

Array Slicing

\square Slicing
\square Access a range of values within a Python iterable, or NumPy ndarray
\square Slicing index syntax:
[start:stop:step]

- start: index of the first value to access - default: 0
\square stop: one past the index of the last value - default: -1
a step: index increment value - default: 1
\square For example:
- $x[1: 4]$ refers to the $2^{\text {nd }}$ through $4^{\text {th }}$ elements of x

Array Slicing

\square First index is 0
\square stop (here, $x[5]$) is not included
\square Increment by step

\square Default start is 0

\square Index to x [8] to get last element at \times [7]

```
\square Console 1/A X
In [726]: x = np.arange(1,16,2)
In [727]: x
Out[727]: array([ 1, 3, 5, 7, 9, 11, 13, 15])
In [728]: x[0:3]
Out[728]: array([1, 3, 5])
In [729]: x[1:5]
Out[729]: array([3, 5, 7, 9])
In [730]: x[1:5:2]
Out[730]: array([3, 7])
In [731]: x[:3]
Out[731]: array([1, 3, 5])
In [732]: x[3:7]
Out[732]: array([ 7, 9, 11, 13])
In [733]: x[3:8]
Out[733]: array([ 7, 9, 11, 13, 15])
In [734]: x[3:]
Out[734]: array([ 7, 9, 11, 13, 15])
In [735]: x[0:-3]
Out[735]: array([1, 3, 5, 7, 9])
In [736]: x[-4:-2]
Out[736]: array([ 9, 11])
```


Array Slicing - ndarray

\square Can extend all slicing concepts to multi-dimensional arrays, or matrices

- Access a multi-dimensional range of values from within a NumPy ndarray
- Add an index range for each dimension
\square For a 2-D array, or matrix:
[r_start:r_stop:r_step, c_start:c_stop:c_step]
- r_start, r_stop, and r_step: row range
- c_start, c_stop, and r_step: column range
\square For example, $\mathrm{B}[0: 3,1: 4]$ refers elements of B in the
- $1^{\text {st }}$ through $3^{\text {rd }}$ row (rows 0,1 , and 2)
- $2^{\text {nd }}$ through $4^{\text {th }}$ column (columns 1,2 , and 3)

Array Slicing - ndarray

$$
B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

$\square \mathrm{B}[0: 2,0: 2]$

$$
\left[\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right]
$$

$\square \mathrm{B}[1: 3,0: 3]$

$\square \mathrm{B}[2,1: 3]$
$\left[\begin{array}{ll}8 & 9\end{array}\right]$

Multidimensional Arrays

\square NumPy allows for the definition of arrays with more than two dimensions

- Arbitrary number of dimensions allowed
- Three dimensional arrays are common
- Index an N -dimensional array with N indices
\square For example, a $3 \times 3 \times 3$ array looks like this:

Multidimensional Arrays - Indexing

\square Indices for additional dimensions are prepended to the index list:

- 1-D array (vector):

$$
[[0],[1],[2], \ldots, x[N-1]]
$$

x[index]

- 2-D array (matrix):

$$
\left[\begin{array}{ccc}
{[0,0]} & \cdots & {[0, N-1]} \\
\vdots & \ddots & \vdots \\
{[N-1,0]} & \cdots & {[N-1, N-1]}
\end{array}\right]
$$

A[row, col]

- 3-D array

B [page, row, col]

Multidimensional Arrays - Indexing

\square Create a 3-D array of zeros

- 3 pages, 2 rows, 4 columns
\square Set the $2^{\text {nd }}$ page, all rows, all columns equal to 2
\square Set the element on the third page, $1^{\text {st }}$ row, $2^{\text {nd }}$ column to 9

Array Dimensions - len(), shape(), size()

\square Length of a vector

- Built-in Python function
- Returns an integer

$$
\operatorname{len}(x)
$$

\square Dimensions of an array

- Tuple: (..., pages, rows, cols)
- NumPy function
np.shape(A)
\square Number of elements in an array
- Integer: product of dimensions
- NumPy function
np.size(B)

```
COnsole 1/A | |
In [838]: x
Out[838]: array([ 1, 3, 5, 7, 9, 11, 13, 15])
In [839]: len(x)
Out[839]: 8
In [840]: np.shape(x)
Out[840]: (8,)
In [841]: np.size(x)
Out[841]: 8
In [842]: A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
In [843]: A
Out[843]:
array([[1, 2, 3],
    [4, 5, 6],
In [844]: np.shape(A)
Out[844]: (3, 3)
In [845]: np.size(A)
Out[845]: 9
In [846]: B = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
In [847]: B
Out[847]:
array([[[ 1, 2, 3],
    [[ 7, 8, 9],
In [848]: np.shape(B)
Out[848]: (2, 2, 3)
In [849]: np.size(B)
Out[849]: 12
```


Matrix \& Array Operations

Matrix \& Array Operations

\square Python/NumPy operations and functions can operate on arrays

- Element-by-element (array operations) by default
- Special operators for matrix math
\square For example:
- Addition:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=\left[\begin{array}{ll}
(1+5) & (2+6) \\
(3+7) & (4+8)
\end{array}\right]=\left[\begin{array}{cc}
3 & 8 \\
10 & 12
\end{array}\right]
$$

- Multiplication:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] *\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=\left[\begin{array}{ll}
(1 * 5) & (2 * 6) \\
(3 * 7) & (4 * 8)
\end{array}\right]=\left[\begin{array}{cc}
2 & 12 \\
21 & 32
\end{array}\right]
$$

- Note, this is not matrix multiplication

Array Operations

\square More array operations:

- Division:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] /\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]=\left[\begin{array}{ll}
(1 / 5) & (2 / 6) \\
(3 / 7) & (4 / 8)
\end{array}\right]=\left[\begin{array}{cc}
0.2 & 0.333 \\
0.429 & 32
\end{array}\right]
$$

- Exponentiation:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] * * 3=\left[\begin{array}{ll}
(1 * * 3) & (2 * * 3) \\
(3 * * 3) & (4 * * 3)
\end{array}\right]=\left[\begin{array}{cc}
1 & 8 \\
27 & 64
\end{array}\right]
$$

Matrix Operations

\square Vector multiplication:

- Use the NumPy @ operator

$$
\left[\begin{array}{ll}
1 & 2
\end{array}\right] @\left[\begin{array}{ll}
3 & 4
\end{array}\right]=(1 * 3)+(2 * 4)=11
$$

- Note that 1-D ndarrays are neither row nor column vectors
- For vectors (1-D ndarrays), @ performs an inner product:

$$
\left[\begin{array}{ll}
1 & 2
\end{array}\right] @\left[\begin{array}{ll}
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 2
\end{array}\right] *\left[\begin{array}{l}
3 \\
4
\end{array}\right](1 * 3)+(2 * 4)=11
$$

\square Matrix multiplication:
$\left[\begin{array}{l}1 \\ 3\end{array}\right.$
$\left.\begin{array}{l}2 \\ 4\end{array}\right]$
@ $\left[\begin{array}{l}5 \\ 7\end{array}\right.$
$\left.\begin{array}{l}6 \\ 8\end{array}\right]=\left[\begin{array}{l}(1 * 5+2 * 7) \\ (3 * 5+4 * 7)\end{array}\right.$
$\left.\begin{array}{l}(1 * 6+2 * 8) \\ (3 * 6+4 * 8)\end{array}\right]=\left[\begin{array}{l}19 \\ 43\end{array}\right.$
$\left.\begin{array}{l}22 \\ 50\end{array}\right]$

Matrix Operations

Matrix inverse

- Use NumPy's linalg module:

```
np.linalg.inv(A)
```

```
Console 1/A | 
In [906]: B = np.array([[1, 2], [3, 4]])
In [907]: B
Out[907]:
array([[1, 2],
    [3, 4]])
In [908]: Binv = np.linalg.inv(B)
In [909]: Binv
Out[909]:
array([[-2. , 1. ],
    [ 1.5, -0.5]])
In [910]: Binv @ B
Out[910]:
array([[1.0000000e+00, 4.4408921e-16],
    [0.0000000e+00, 1.0000000e+00]])
```



```
[0.0000000e+00, 1.0000000e+00]])
```


Passing Arrays to Functions

\square Can pass arrays to most functions, just as we would a scalar
\square The sine of a vector of angles calculated all at once

- No need to pass one-at-atime
- Result is a vector of the same size
\square y passed as an input to the function round ()
\square round() run as a method applied to the ndarray object, phi

```
CO
In [961]: theta = np.linspace(0, 2*np.pi, 9)
In [962]: theta
Out[962]:
array([0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265,
    3.92699082, 4.71238898, 5.49778714, 6.28318531])
In [963]: y = np.sin(theta)
In [964]: y
Out[964]:
array([ 0.00000000e+00, 7.07106781e-01, 1.00000000e+00, 7.07106781e-01,
    1.22464680e-16, -7.07106781e-01, -1.00000000e+00, -7.07106781e-01,
    -2.44929360e-16])
In [965]: y_rnd = np.round(y, 4)
In [966]: y_rnd
Out[966]:
array([
    0. , 0.7071,
In [967]: phi = np.arcsin(y)
In [968]: phi
Out[968]
array([ 0.00000000e+00, 7.85398163e-01, 1.57079633e+00, 7.85398163e-01,
    1.22464680e-16, -7.85398163e-01, -1.57079633e+00, -7.85398163e-01,
    -2.44929360e-16])
In [969]: phi_rnd = phi.round(4)
In [970]: phi_rnd
Out[970]:
array([ 0. , 0.7854, 1.5708, 0.7854, 0. , -0.7854, -1.5708,
    -0.7854, -0. ])
```

