SECTION 4: ALGORITHMIC THINKING

ENGR 103 - Introduction to Engineering Computing

Algorithmic Thinking

\square Algorithmic thinking:
\square The ability to identify and analyze problems, and to develop and refine algorithms for the solution of those problems
\square Algorithm:

- Detailed step-by-step procedure for the performance of a task
\square Learning to program is about developing algorithmic thinking skills, not about learning a programming language

Algorithms

\square Ultimately, algorithms will be implemented by writing code in a particular programming language
\square Algorithm design is (mostly) language-independent
\square A procedure that can be implemented in any language
\square Universal algorithm representations:

- Flowcharts

■ Graphical representation

- Pseudocode
- Natural language
- Not necessarily language-independent

Flow Charts

\square Flowcharts are graphical representations of algorithms
\square Interconnection of different types of blocks

- Start/End
\square Process
- Conditional
- Input/Output
\square Connection paths indicate flow from one step in the procedure to the next
\square Well-constructed flowcharts are easily translated into code later

Flowchart Blocks

\square Start/End

- Always indicate the start and end of any flowchart
\square Process
- Indicates the performance of some action
\square Conditional
- Performs a check and makes a decision
- Binary result: True/False, Yes/No, 1/0
- Algorithm flow branches depending on result
\square Input/Output
- Input or output of variables or data

Flowchart - Example

\square Consider the very simple example of making toast
\square Process flows from Start to the End through the process and conditional blocks

- Arrows indicate flow
- Conditional blocks control flow branching
\square Note the loop defining the waiting process
- Wait block is unnecessary

Flowchart - Example

\square Flowchart for a given procedure is not unique
\square Varying levels of complexity and detail are always possible
\square Often important to think about and account for various possible outcomes and cases
\square For example, is your toast always done after it first pops up?

- Here, part of the procedure is repeated if necessary

Flowchart - Example

\square Taking this example further, consider the possibility of burnt toast or the desire for butter
\square Another loop added for continued scraping until edible

- Also possible to bypass portions of the procedure - e.g., the scraping of the toast or the application of butter
\square Can imagine significantly more complex flow chart for the same simple procedure ...

Common Flowchart Structures

Common Flowchart Structures

\square Several basic structures occur frequently in many different types of flowcharts

- Recurrent basic structures in many algorithms
\square Ultimately translate to recurrent code structures
\square Two primary categories
- Conditional statements
- Loops
\square In this section of notes, we'll gain an understanding of flowchart structures that fall into these two categories
\square In the next section of notes we'll learn how to implement these structures in code

13

Conditional Statements

- if statements
- Logical and relational operators
- if...else statements

Conditional Statements - if

\square Flowcharts represent a set of instructions

- Blocks and block structures can be thought of as statements
\square Simplest conditional statement is a single conditional block
- An if structure
- If X is true, then do Y, if not, don't do Y
\square In either case, then proceed to do Z
- Y and Z could be any type of process or action

- E.g. add two numbers, turn on a motor, butter the toast, etc.
- X is a logical expression or Boolean expression
- Evaluates to either true (1) or false (0)

Conditional Statements - if ... else

\square Can instead specify an action to perform if X is not true

- An if ... else structure
- If X is true, then do A, else do B
- Then, move on to do C
\square Here, a different process is performed depending on the value of $\mathrm{X}(1 / 0, \mathrm{~T} / \mathrm{F}, \mathrm{Y} / \mathrm{N})$

Conditional Statements - if ... else

\square Logical expression with a single relational operator

$$
x>9
$$

- Either true (Y) or false (N)
- If true, $x=1$

ㅁ If false, $x=-1$

\square Logical expression may also include a logical operator

$$
(x>9) \text { or }(x<-9)
$$

- Again, statement is either true or false
- Next process step dependent on value of the conditional logical expression

Logical or Relational Expressions

\square Logical expressions use logical and relational operators

Operator	Relationship or Logical Operation	Example
=	Equal to	$x==b$
! =	Not equal to	$\mathrm{k}!=0$
$<$	Less than	$\mathrm{t}<12$
>	Greater than	$a>-5$
<	Less than or equal to	$7<=f$
>=	Greater than or equal to	$(4+r / 6)>=2$
and	AND - both expressions must evaluate to true for result to be true	$(\mathrm{t}>0)$ and $(\mathrm{c}==5)$
or	OR - either expression must evaluate to true for result to be true	$(p>1)$ or $(m>3)$
not	NOT- negates the logical value of an expression	not (b < ${ }^{*}$ (g$)$

Logical Expressions - Examples

Let $x=12$ and $y=-3$
\square Consider the following logical expressions:

Logical Expression	Value
$(x+y)==15$	0
$(y==2)$ or $(x>8)$	1
not $(y<0)$	0
$(y / 2+1<-1)$	1
$(x==12)$ and not $(y \geq 5)$	1
$(y!=2)$ or $(x<10)$ or $(x<y)$	1
$((x==2)$ and $(y<0))$ or $((x \geq 5)$ and $(y!=8))$	0

Conditional Statements - if ... elseif ... else

\square Two conditional logical expressions

- If the X is true, do A
- If X is false, evaluate Y
- If Y is true, do B
- If Y is false, do C
\square The if ... elseif ... else structure
\square Can include an arbitrary number of elseif statements
- Successive logical statements evaluated only if preceding statement is false

if ... elseif ... else - Example

\square Consider a piecewise linear function of x

- $y=f(x)$ not defined by a single function
- Function depends on the value of x
- Can implement with an
if ... elseif ... else structure

if Statements - Other Configurations

\square In previous examples, successive logical statements only evaluated if preceding statement is false
\square Result of a true logical expression can also be the evaluation of a second logical expression

2 Loops

while loops

- forloops

Loops

\square We've already seen some examples of flow charts that contain loops:

\square Structures where the algorithmic flow loops back and repeats process steps
\square Repeats as long as a certain condition is met, e.g., toaster has not popped up, toast is inedible, etc.

Loops

\square Algorithms employ two primary types of loops:

- while loops: loops that execute as long as a specified condition is met - loop executes as many times as is necessary
\square for loops: loops that execute a specified exact number of times
\square Similar looking flowchart structures
\square for loop can be thought of as a special case of a while loop
- However, the distinction between the two is very important

25
 while Loop

while Loop

\square Repeatedly execute an instruction or set of instructions as long as (while) a certain condition is met (is true)
\square Repeat A while X is true

- As soon as X is no longer true, break out of the loop and continue on to B
- A may never execute
- A may execute only once
- A may execute forever - an infinite loop

- If A never causes X to be false
- Usually not intentional

while Loop

\square Algorithm loops while $x \leq 4$

- Loops three times:

Iteration	x
0	1
1	6
2	3
	8
3	4
	9

\square Value of x exceeds 4 several times during execution
$\square x$ value checked at the beginning of the loop

while Loop - Infinite Loop

\square Now looping continues as long as $x<12$
ㅁ x never exceeds 12

- Loops forever - an infinite loop

Iteration	x
0	1
1	6
	3
2	8
	4
3	9
	4.5
4	9.5
	4.75
5	9.75
	4.875
6	9.875
	4.9375
:	

Infinite Loops

\square Occasionally infinite loops are desirable

- Consider for example microcontroller code for an environmental monitoring system
- Continuously takes measurements and displays results while powered on
\square Note the logical statement in the conditional block
- Logical statements are either true (Y, 1)
 or false (N, 0)
- 1 is the Boolean representation of true or Y

while Loop - Example 1

\square Consider the following algorithm:
\square Read in a number (e.g. user input, from a file, etc.)

- Determine the number of times that number can be successively divided by 2 before the result is ≤ 1
\square Use a while loop
- Divide by 2 while number is >1

while Loop - Example 1

\square Number of loop iterations depends on value of the input variable, x

- Characteristic of while loops
- \# of iterations unknown a priori
- If $x \leq 1$ loop instructions never execute
\square Note the data I/O blocks
- Typical - many algorithms have inputs and outputs

while Loop - Example 1

\square Consider a few different input, x , values:

| count | x | x | x |
| :--- | :---: | :---: | :---: | :---: |
| 0 | 5 | 16 | 0.8 |
| 1 | 2.5 | 8 | - |
| 2 | 1.25 | 4 | - |
| 3 | 0.625 | 2 | - |
| 4 | - | 1 | - |
| 5 | - | - | - |

while Loop - Example 2

\square Next, consider an algorithm to calculate x !, the factorial of x :
\square Read in a number, x

- Compute the product of all integers between 1 and x
- Initialize result, fact, to 1
- Multiply fact by x
- Decrement x by 1
\square Use a while loop
- Multiply fact by x, then decrement x while $\mathrm{x}>1$

while Loop - Example 2

\square Consider a few different input, x , values:

\mathbf{x}	fact	\mathbf{x}	fact		\mathbf{x}	fact
5	1	4	1	0	1	
5	5	4	4		-	-
4	20	3	12		-	-
3	60	2	24	-	-	
2	120	1	24	-	-	
1	120	-	-	-	-	

while Loop - Example 2

\square Let's say we want to define our factorial algorithm only for integer arguments
\square Add error checking to the algorithm
\square After reading in a value for x, check if it is an integer

- If not, generate an error message and exit
- Could also imagine rounding x, generating a warning message and continuing

* for Loop

for Loop

\square We've seen that the number of while loop iterations is not known ahead of time

- May depend on inputs, for example
\square Sometimes we want a loop to execute an exact, specified number of times
\square A for loop
- Utilize a loop counter
- Increment (or decrement) the counter on each iteration
- Loop until the counter reaches a certain value
\square Can be thought of as a while loop with the addition of a loop counter
\square But, a very distinct entity when implemented in code

for Loop

\square Initialize the loop counter
$\square \mathrm{i}, \mathrm{j}, \mathrm{k}$ are common, but name does not matter
\square Set the range for i

- Not necessary to define variable istop
\square Execute loop instructions, A
\square Increment loop counter, i
\square Repeat until loop counter reaches its stopping value

\square Continue on to B

for Loop

\square for loops are counted loops
\square Number of loop iterations is known and is constant

- Here loop executes 10 times
\square Stopping value not necessarily hard-coded
\square Could depend on an input or vector size, etc.

for Loop

\square Loop counter may start at value other than 1
\square Increment size may be a value other than 1
\square Loop counter may count backwards

Iteration	cntr	Process
1	6	A
2	4	A
3	2	A
4	0	A
5	-2	A
6	-4	B

for Loop - Example 1

\square Here, the loop counter, i, is used to update a variable, x, on each iteration

Iteration	i	x
1	0	0
2	1	1
3	2	4
4	3	9
5	4	16

\square When loop terminates, and flow proceeds to the next process step, $x=16$
\square A scalar

- No record of previous values of x

for Loop - Example 2

\square Now, modify the loop process to store values of x as a vector

- Use loop counter to index the vector

\mathbf{i}	$\mathbf{X [i]}$	\mathbf{x}
0	0	$[0]$
1	1	$[0,1]$
2	4	$[0,1,4]$
3	9	$[0,1,4,9]$
4	16	$[0,1,4,9,16]$

\square When loop terminates, $x=[0,1,4,9,16]$

- A vector
- x grows with each iteration

for Loop - Example 3

\square The loop counter does not need to be used within the loop

- Used as a counter only
\square Here, a random number is generated and displayed each of the 10 times through the loop
- Counter, i , has nothing to do with the values of the random numbers displayed

for Loop - Example 4

\square Have a vector of values, x
\square Find the mean of those values
\square Sum all values in x

- A for loop
- \# of iterations equal to the length of x
- Loop counter indexes x
\square Divide the sum by the number of elements in x
- After exiting the loop

${ }^{45} \quad$ Nested Loops

Nested Loops

\square A loop repeats some process some number of times

- The repeated process can, itself, be a loop
- A nested loop
\square Can have nested for loops or while loops
- Can nest for loops within while loops and vice versa
\square One application of a nested for loop is to step through every element in a matrix
- Loop counter variables used as matrix indices
\square Outer loop steps through rows (or columns)
- Inner loop steps through columns (or rows)

Nested for Loop - Example

\square Recall how we index the elements within a matrix:

- $A_{i j}$ is the element on the $i^{\text {th }}$ row and $j^{\text {th }}$ column of the matrix A
- Using Python syntax: A[i,j]
\square Consider a 3×2 matrix

$$
B=\left[\begin{array}{cc}
-2 & 1 \\
0 & 8 \\
7 & -3
\end{array}\right]
$$

\square To access every element in B :

- start on the first row and increment through all columns
- Increment to the second row and increment through all columns
- Continue through all rows
- Two nested for loops

Nested for Loop - Example

$$
B=\left[\begin{array}{cc}
-2 & 1 \\
0 & 8 \\
7 & -3
\end{array}\right]
$$

\square Generate a matrix C whose entries are the squares of all of the elements in B

- Nested for loop
- Outer loop steps through rows
- Counter is row index
- Inner loop steps through columns
- Counter is column index

Pseudocode \& Top-Down Design

Pseudocode

\square Flowcharts provide a useful tool for designing algorithms

- Allow for describing algorithmic structure
- Ultimately used for generation of code
- Details neglected in favor of concise structural and functional description
\square Pseudocode provides a similar tool
- One step closer to actual code
- Textual description of an algorithm
\square Natural language mixed with language-specific syntax

Pseudocode - Example

\square Consider an algorithm for determining the maximum of a vector of values
\square Pseudocode might look like:

$$
\begin{aligned}
& \mathrm{N}=\text { length of } \mathrm{x} \\
& \text { max_x }=x[0] \\
& \text { for } i=1 \text { through } N-1 \\
& \text { if } x[i] \text { is greater than current } \\
& \text { max_x, then set max_x }=x[i]
\end{aligned}
$$

\square We'll learn the Python-specific for-loop syntax in the following section of notes

Top-Down Design

\square Flowcharts and pseudocode are useful tools for topdown design

- A good approach to any complex engineering design (and writing, as well)
\square First, define the overall system or algorithm at the top level (perhaps as a flowchart)
- Then, fill in the details of individual functional blocks
\square Top-level flowchart identifies individual functional blocks and shows how each fits into the algorithm
- Each functional block may comprise its own flow chart or even multiple levels of flow charts
\square Hierarchical design

Top-Down Design - Example

\square Let's say you have deflection data from FEM analysis of a truss design

- Data stored in text files
- Deflection vs. location along truss
\square Parametric study
- Three different component thicknesses
- Two different materials
- Six data sets
\square Read in the data, calculate the max deflection and plot the deflection vs. position

Top-Down Design - Example

