
ENGR 103 – Introduction to Engineering Computing

SECTION 4:
ALGORITHMIC THINKING

Webb ENGR 103

Algorithmic Thinking2

Webb ENGR 103

3

Algorithmic Thinking

 Algorithmic thinking:
 The ability to identify and analyze problems, and to

develop and refine algorithms for the solution of those
problems

 Algorithm:
 Detailed step-by-step procedure for the performance of

a task
 Learning to program is about developing

algorithmic thinking skills, not about learning a
programming language

Webb ENGR 103

4

Algorithms

 Ultimately, algorithms will be implemented by
writing code in a particular programming language

 Algorithm design is (mostly) language-independent
 A procedure that can be implemented in any language

 Universal algorithm representations:
 Flowcharts
 Graphical representation

 Pseudocode
 Natural language
 Not necessarily language-independent

Webb ENGR 103

Flowcharts5

Webb ENGR 103

6

Flow Charts

 Flowcharts are graphical representations of
algorithms

 Interconnection of different types of blocks
 Start/End
 Process
 Conditional
 Input/Output

 Connection paths indicate flow from one step in the
procedure to the next

 Well-constructed flowcharts are easily translated
into code later

Webb ENGR 103

7

Flowchart Blocks

 Start/End
 Always indicate the start and end of any

flowchart

 Process
 Indicates the performance of some

action

 Conditional
 Performs a check and makes a decision
 Binary result: True/False, Yes/No, 1/0
 Algorithm flow branches depending on

result

 Input/Output
 Input or output of variables or data

Webb ENGR 103

8

Flowchart – Example

 Consider the very simple
example of making toast

 Process flows from Start to the
End through the process and
conditional blocks
 Arrows indicate flow
 Conditional blocks control flow

branching
 Note the loop defining the

waiting process
 Wait block is unnecessary

Webb ENGR 103

9

Flowchart – Example

 Flowchart for a given procedure
is not unique
 Varying levels of complexity and

detail are always possible
 Often important to think about

and account for various possible
outcomes and cases
 For example, is your toast always

done after it first pops up?
 Here, part of the procedure is

repeated if necessary

Webb ENGR 103

10

Flowchart – Example

 Taking this example further,
consider the possibility of burnt
toast or the desire for butter
 Another loop added for

continued scraping until edible
 Also possible to bypass portions

of the procedure – e.g., the
scraping of the toast or the
application of butter

 Can imagine significantly more
complex flow chart for the
same simple procedure …

Webb ENGR 103

Common Flowchart Structures 11

Webb ENGR 103

12

Common Flowchart Structures

 Several basic structures occur frequently in many
different types of flowcharts
 Recurrent basic structures in many algorithms

 Ultimately translate to recurrent code structures
 Two primary categories

 Conditional statements
 Loops

 In this section of notes, we’ll gain an understanding of
flowchart structures that fall into these two categories

 In the next section of notes we’ll learn how to
implement these structures in code

Webb ENGR 103

• if statements
• Logical and relational operators
• if…else statements

Conditional Statements13

Webb ENGR 103

14

Conditional Statements – if

 Flowcharts represent a set of
instructions
 Blocks and block structures can be

thought of as statements

 Simplest conditional statement
is a single conditional block
 An if structure
 If X is true, then do Y, if not, don’t do Y
 In either case, then proceed to do Z
 Y and Z could be any type of process or action
 E.g. add two numbers, turn on a motor, butter the toast, etc.

 X is a logical expression or Boolean expression
 Evaluates to either true (1) or false (0)

Webb ENGR 103

15

Conditional Statements – if … else

 Can instead specify an action
to perform if X is not true
 An if … else structure
 If X is true, then do A, else do B
 Then, move on to do C

 Here, a different process is
performed depending on the
value of X (1/0, T/F, Y/N)

Webb ENGR 103

16

Conditional Statements – if … else

 Logical expression with a single
relational operator

𝑥𝑥 > 9
 Either true (Y) or false (N)
 If true, 𝑥𝑥 = 1
 If false, 𝑥𝑥 = −1

 Logical expression may also include a
logical operator

𝑥𝑥 > 9 or 𝑥𝑥 < −9
 Again, statement is either true or false
 Next process step dependent on value

of the conditional logical expression

Webb ENGR 103

17

Logical or Relational Expressions

 Logical expressions use logical and relational operators
Operator Relationship or Logical Operation Example

== Equal to x == b

!= Not equal to k != 0

< Less than t < 12

> Greater than a > -5

<= Less than or equal to 7 <= f

>= Greater than or equal to (4+r/6) >= 2

and AND – both expressions must evaluate to
true for result to be true (t > 0) and (c == 5)

or OR – either expression must evaluate to
true for result to be true (p > 1) or (m > 3)

not NOT– negates the logical value of an
expression not (b < 4*g)

Webb ENGR 103

18

Logical Expressions – Examples

 Let 𝑥𝑥 = 12 and 𝑦𝑦 = −3
 Consider the following logical expressions:

Logical Expression Value

𝑥𝑥 + 𝑦𝑦 == 15 0

𝑦𝑦 == 2 or 𝑥𝑥 > 8 1

not 𝑦𝑦 < 0 0

(𝑦𝑦/2 + 1 < −1) 0

𝑥𝑥 == 12 and not (𝑦𝑦 ≥ 5) 1

𝑦𝑦! = 2 or 𝑥𝑥 < 10 or 𝑥𝑥 < 𝑦𝑦 1

((x==2) and (y<0)) or ((x≥5) and (y!=8)) 1

Webb ENGR 103

19

Conditional Statements – if … elseif … else

 Two conditional logical
expressions
 If the X is true, do A
 If X is false, evaluate Y
 If Y is true, do B
 If Y is false, do C

 The if … elseif … else
structure

 Can include an arbitrary
number of elseif statements
 Successive logical statements evaluated only if preceding

statement is false

Webb ENGR 103

20

if … elseif … else – Example

 Consider a
piecewise linear
function of 𝑥𝑥
 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) not

defined by a single
function

 Function depends
on the value of 𝑥𝑥

 Can implement
with an
if … elseif … else
structure

Webb ENGR 103

21

if Statements – Other Configurations

 In previous examples, successive logical statements only
evaluated if preceding statement is false

 Result of a true logical expression can also be the
evaluation of a second logical expression

Webb ENGR 103

• while loops
• for loops

Loops22

Webb ENGR 103

23

Loops

 We’ve already seen some examples of flow charts
that contain loops:

 Structures where the algorithmic flow loops back and
repeats process steps
 Repeats as long as a certain condition is met, e.g., toaster

has not popped up, toast is inedible, etc.

Webb ENGR 103

24

Loops

 Algorithms employ two primary types of loops:
 while loops: loops that execute as long as a specified

condition is met – loop executes as many times as is
necessary

 for loops: loops that execute a specified exact number
of times

 Similar looking flowchart structures
 for loop can be thought of as a special case of a while

loop
 However, the distinction between the two is very

important

Webb ENGR 103

while Loop25

Webb ENGR 103

26

while Loop

 Repeatedly execute an instruction or set of instructions
as long as (while) a certain condition is met (is true)

 Repeat A while X is true
 As soon as X is no longer true, break

out of the loop and continue on to B
 A may never execute
 A may execute only once
 A may execute forever – an infinite

loop
 If A never causes X to be false
 Usually not intentional

Webb ENGR 103

27

while Loop

 Algorithm loops while 𝑥𝑥 ≤ 4
 Loops three times:

Iteration x

0 1

1 6
3

2 8
4

3 9
4.5

 Value of 𝑥𝑥 exceeds 4 several times during
execution
 𝑥𝑥 value checked at the beginning of the loop

 Final value of 𝑥𝑥 is greater than 4

Webb ENGR 103

28

while Loop – Infinite Loop

 Now looping continues as long as 𝑥𝑥 < 12
 𝑥𝑥 never exceeds 12
 Loops forever – an infinite loop

Iteration x

0 1

1 6
3

2 8
4

3 9
4.5

4 9.5
4.75

5 9.75
4.875

6 9.875
4.9375

⋮ ⋮

Webb ENGR 103

29

Infinite Loops

 Occasionally infinite loops are
desirable
 Consider for example microcontroller

code for an environmental monitoring
system
 Continuously takes measurements and

displays results while powered on

 Note the logical statement in the
conditional block
 Logical statements are either true (Y, 1)

or false (N, 0)
 1 is the Boolean representation of true

or Y

Webb ENGR 103

30

while Loop – Example 1

 Consider the following
algorithm:
 Read in a number (e.g. user

input, from a file, etc.)
 Determine the number of times

that number can be
successively divided by 2 before
the result is ≤ 1

 Use a while loop
 Divide by 2 while number is > 1

Webb ENGR 103

31

while Loop – Example 1

 Number of loop iterations
depends on value of the input
variable, x
 Characteristic of while loops
 # of iterations unknown a priori

 If x ≤ 1 loop instructions never
execute

 Note the data I/O blocks
 Typical – many algorithms

have inputs and outputs

Webb ENGR 103

32

while Loop – Example 1

 Consider a few different input,
x, values:

count x x x

0 5 16 0.8

1 2.5 8 -

2 1.25 4 -

3 0.625 2 -

4 - 1 -

5 - - -

Webb ENGR 103

33

while Loop – Example 2

 Next, consider an algorithm to
calculate x!, the factorial of x:
 Read in a number, x
 Compute the product of all

integers between 1 and x
 Initialize result, fact, to 1
 Multiply fact by x
 Decrement x by 1

 Use a while loop
 Multiply fact by x, then

decrement x while x > 1

Webb ENGR 103

34

while Loop – Example 2

 Consider a few different input,
x, values:

x fact x fact x fact

5 1 4 1 0 1

5 5 4 4 - -

4 20 3 12 - -

3 60 2 24 - -

2 120 1 24 - -

1 120 - - - -

Webb ENGR 103

35

while Loop – Example 2

 Let’s say we want to define our
factorial algorithm only for
integer arguments

 Add error checking to the
algorithm
 After reading in a value for x,

check if it is an integer
 If not, generate an error message

and exit
 Could also imagine rounding x,

generating a warning message
and continuing

Webb ENGR 103

for Loop36

Webb ENGR 103

37

for Loop

 We’ve seen that the number of while loop iterations is
not known ahead of time
 May depend on inputs, for example

 Sometimes we want a loop to execute an exact,
specified number of times

 A for loop
 Utilize a loop counter
 Increment (or decrement) the counter on each iteration
 Loop until the counter reaches a certain value

 Can be thought of as a while loop with the addition of a
loop counter
 But, a very distinct entity when implemented in code

Webb ENGR 103

38

for Loop

 Initialize the loop counter
 i, j, k are common, but name

does not matter

 Set the range for i
 Not necessary to define

variable istop

 Execute loop instructions, A
 Increment loop counter, i
 Repeat until loop counter

reaches its stopping value
 Continue on to B

Webb ENGR 103

39

for Loop

 for loops are counted loops
 Number of loop iterations is

known and is constant
 Here loop executes 10 times

 Stopping value not
necessarily hard-coded
 Could depend on an input or

vector size, etc.

Webb ENGR 103

40

for Loop

 Loop counter may start at
value other than 1

 Increment size may be a
value other than 1

 Loop counter may count
backwards

Iteration cntr Process

1 6 A

2 4 A

3 2 A

4 0 A

5 -2 A

6 -4 B

Webb ENGR 103

41

for Loop – Example 1

 Here, the loop counter, i, is used
to update a variable, x, on each
iteration

Iteration i x

1 0 0

2 1 1

3 2 4

4 3 9

5 4 16

 When loop terminates, and flow
proceeds to the next process
step, x = 16
 A scalar
 No record of previous values of x

Webb ENGR 103

42

for Loop – Example 2

 Now, modify the loop process to store
values of x as a vector
 Use loop counter to index the vector

i X[i] x

0 0 [0]

1 1 [0, 1]

2 4 [0, 1, 4]

3 9 [0, 1, 4, 9]

4 16 [0, 1, 4, 9, 16]

 When loop terminates,
x = [0, 1, 4, 9, 16]
 A vector
 x grows with each iteration

Webb ENGR 103

43

for Loop – Example 3

 The loop counter does not
need to be used within the
loop
 Used as a counter only

 Here, a random number is
generated and displayed
each of the 10 times through
the loop
 Counter, i, has nothing to do

with the values of the
random numbers displayed

Webb ENGR 103

44

for Loop – Example 4

 Have a vector of values, x
 Find the mean of those

values
 Sum all values in x
 A for loop
 # of iterations equal to the

length of x
 Loop counter indexes x

 Divide the sum by the
number of elements in x
 After exiting the loop

Webb ENGR 103

Nested Loops45

Webb ENGR 103

46

Nested Loops

 A loop repeats some process some number of times
 The repeated process can, itself, be a loop
 A nested loop

 Can have nested for loops or while loops
 Can nest for loops within while loops and vice versa

 One application of a nested for loop is to step
through every element in a matrix
 Loop counter variables used as matrix indices
 Outer loop steps through rows (or columns)
 Inner loop steps through columns (or rows)

Webb ENGR 103

47

Nested for Loop – Example

 Recall how we index the elements within a matrix:
 𝐴𝐴𝑖𝑖𝑖𝑖 is the element on the 𝑖𝑖𝑡𝑡𝑡 row and 𝑗𝑗𝑡𝑡𝑡 column of the matrix 𝐴𝐴
 Using Python syntax: A[i,j]

 Consider a 3 × 2 matrix

𝐵𝐵 =
−2 1
0 8
7 −3

 To access every element in 𝐵𝐵:
 start on the first row and increment through all columns
 Increment to the second row and increment through all columns
 Continue through all rows
 Two nested for loops

Webb ENGR 103

48

Nested for Loop – Example

𝐵𝐵 =
−2 1
0 8
7 −3

 Generate a matrix 𝐶𝐶
whose entries are the
squares of all of the
elements in 𝐵𝐵
 Nested for loop
 Outer loop steps through

rows
 Counter is row index

 Inner loop steps through
columns
 Counter is column index

Webb ENGR 103

Pseudocode & Top-Down Design 49

Webb ENGR 103

50

Pseudocode

 Flowcharts provide a useful tool for designing
algorithms
 Allow for describing algorithmic structure
 Ultimately used for generation of code
 Details neglected in favor of concise structural and

functional description
 Pseudocode provides a similar tool

 One step closer to actual code
 Textual description of an algorithm
 Natural language mixed with language-specific syntax

Webb ENGR 103

51

Pseudocode – Example

 Consider an algorithm for
determining the maximum of a
vector of values

 Pseudocode might look like:
N = length of x

max_x = x[0]

for i = 1 through N-1

if x[i] is greater than current
max_x, then set max_x = x[i]

 We'll learn the Python-specific
for-loop syntax in the following
section of notes

Webb ENGR 103

52

Top-Down Design

 Flowcharts and pseudocode are useful tools for top-
down design
 A good approach to any complex engineering design (and

writing, as well)
 First, define the overall system or algorithm at the top level

(perhaps as a flowchart)
 Then, fill in the details of individual functional blocks

 Top-level flowchart identifies individual functional
blocks and shows how each fits into the algorithm
 Each functional block may comprise its own flow chart or

even multiple levels of flow charts
 Hierarchical design

Webb ENGR 103

53

Top-Down Design - Example

 Let’s say you have deflection data from FEM
analysis of a truss design
 Data stored in text files
 Deflection vs. location along truss

 Parametric study
 Three different component thicknesses
 Two different materials
 Six data sets

 Read in the data, calculate the max deflection and
plot the deflection vs. position

Webb ENGR 103

54

Top-Down Design - Example

Level 2:Level 1: Level 3:

	Section 4: �Algorithmic Thinking
	Algorithmic Thinking
	Algorithmic Thinking
	Algorithms
	Flowcharts
	Flow Charts
	Flowchart Blocks
	Flowchart – Example
	Flowchart – Example
	Flowchart – Example
	Common Flowchart Structures
	Common Flowchart Structures
	Conditional Statements
	Conditional Statements – if
	Conditional Statements – if … else
	Conditional Statements – if … else
	Logical or Relational Expressions
	Logical Expressions – Examples
	Conditional Statements – if … elseif … else
	if … elseif … else – Example
	if Statements – Other Configurations
	Loops
	Loops
	Loops
	while Loop
	while Loop
	while Loop
	while Loop – Infinite Loop
	Infinite Loops
	while Loop – Example 1
	while Loop – Example 1
	while Loop – Example 1
	while Loop – Example 2
	while Loop – Example 2
	while Loop – Example 2
	for Loop
	for Loop
	for Loop
	for Loop
	for Loop
	for Loop – Example 1
	for Loop – Example 2
	for Loop – Example 3
	for Loop – Example 4
	Nested Loops
	Nested Loops
	Nested for Loop – Example
	Nested for Loop – Example
	Pseudocode & Top-Down Design
	Pseudocode
	Pseudocode – Example
	Top-Down Design
	Top-Down Design - Example
	Top-Down Design - Example

