
ENGR 103 – Introduction to Engineering Computing

SECTION 6:
USER-DEFINED FUNCTIONS

Webb ENGR 103

2

User-Defined Functions

 By now you’re accustomed to using Python functions in
your scripts

 Consider, for example, np.mean()
 Commonly-used function to calculate an average value
 A Python (NumPy) module – written using other Python

functions
 Need not write code each time an average is calculated

 Functions allow reuse of commonly-used blocks of code
 Executable from any script or the console

 Can also create user-defined functions
 Just like built-in or library functions
 Similar syntax, structure, reusability, etc.

Webb ENGR 103

3

Anatomy of a Function

Input
Argument(s)

Function
Name

Function m-file must begin
with the keyword ‘def’

Doc string – displayed
when help is requested in
the console:

Python code that defines
the function

Function code defined by whitespace
(indents) – no brackets or 'end' statement

‘return’ keyword
defines outputs

Required colon, :

Webb ENGR 103

4

User-Defined Functions

 Keep your code DRY
 "Don't Repeat Yourself"

 Do not write the same code more than once
 Create functions for frequently-used code blocks
 Improves conciseness and readability of your code
 If code needs to be modified, only need to do it once

 Avoid WET code
 "Write Everything Twice"
 "Write Every Time"
 "We Enjoy Typing"
 "Waste Everyone's Time"

Webb ENGR 103

Function Inputs and Outputs5

Webb ENGR 103

6

Function Inputs and Outputs

 Just like built-in or library functions, user-defined functions
may have inputs and outputs
 But, they need not have either

 Inputs
 Arguments passed into the function
 Specified inside the parentheses in the function definition

 Outputs
 Arguments returned from the function
 Specified with the return statement

Webb ENGR 103

7

Function Inputs and Outputs

 Functions may or may not have inputs or outputs, e.g.:

 No input or output  Input only

 Output only  Input and output

Webb ENGR 103

8

Positional and Keyword Input Arguments

def func(arg1, arg2, …, kwarg1=def1, kwarg2=def2, …)

 Two main types of input arguments:
 Positional arguments (arg1, …)

 Required inputs passed in the specified order
 Position determines what is arg1, arg2, and so on

 Keyword arguments (kwarg1=def1, …)
 Passed as keyword=value pairs
 Order does not matter
 Useful for specifying default values for optional inputs

 If kwarg1, above, is not passed, it defaults to def1

 For example:
plt.plot(x, y, linewidth=2)

 x and y are positional arguments
 linewidth is a keyword argument

Webb ENGR 103

9

Positional and Keyword Input Arguments

 Consider a function with one positional argument and
one keyword argument

 name: positional argument – required
 greet_str: keyword argument – optional – default: 'Hello'

Webb ENGR 103

10

Variable Input Arguments - *args

 Some functions allow for a variable number of inputs
 Use *args in the function definition
 Multiple inputs passed to function as a tuple

Webb ENGR 103

11

Multiple Outputs

 Functions may return multiple outputs
 Returned as a tuple or list

 To return a tuple:

return Tc, Tk

or
return (Tc, Tk)

 To return a list:

return [Tc, Tk]

Webb ENGR 103

12

Function – Example

 Consider a function that converts a distance in
kilometers to a distance in both miles and feet
 Outputs returned as tuple:  Outputs returned as list:

Webb ENGR 103

Variable Scope13

Webb ENGR 103

14

Variable Scope

 Inputs are values passed to a function
 Defined in and passed from the calling script
 Not defined within the function

 A function has its own namespace
 Separate set of local (to the function) variables and values
 Variables may have the same names as in the calling script,

but they are separate variables

Webb ENGR 103

15

Variable Scope

 Local function variables are not available in the enclosing
script after returning from the function

x is the input
when inside
the function

a is the input
passed to the
function

x is undefined
once execution
has returned
from the
function

Webb ENGR 103

16

Variable Scope - LEGB

 Python locates variables used in code according to the
LEGB rule

 Namespaces are searched in LEGB order to resolve
variable names:
 Local: defined within the function
 Enclosing: defined in the outer (enclosing) function –

applies only to nested functions
 Global: defined in the top-level script or module
 Built-In: defined in built-in Python libraries

 The first (in LEGB order) occurrence of a variable is used

Webb ENGR 103

17

Variable Scope - LEGB

Webb ENGR 103

18
Ex

er
ci

se
 Write a script to:

 Define a function, pwr, to raise an input to a
power
 x: positional input argument
 pow: keyword input argument – default=2
 Return: 𝑦𝑦 = 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝

 Test your function using different inputs
With and without specifying pow

Exercise – Define a Function

Webb ENGR 103

Function Docstrings19

Webb ENGR 103

20

Function Docstrings

 Any function – built-in or user-defined – is accessible by
the Spyder help system
 Console: help(functionName)
 Spyder help pane

 Help text that appears is the function docstring
 Comment block following the function definition
 Enclosed in triple-quotes
 Describes function behavior, inputs, and outputs

 Docstrings serve as function documentation
 Particularly important for functions
 Often reused long after they are written
 Often used by other users

Webb ENGR 103

21

Function Docstrings

 The Spyder editor can automatically generate a
function docstring
 Click 'Generate docstring' popup that appears after

typing the opening triple-quote, ''', in the function
definition

Webb ENGR 103

Importing Modules and Functions22

Webb ENGR 103

23

Importing Modules and Functions

 When we run Python, built-in functions are loaded and
accessible by default

 To access other functions, we must first import the
corresponding packages and modules
 For example:

import numpy as np

from matplotlib import pyplot as plt

 We can do the same for our own user-defined functions
 Can use our user-defined functions in other scripts
 Must import them first

Webb ENGR 103

24

The Python Path

 To import a module, it must be in the Python path
 That is, it must be saved in a directory (folder) that is included in

the Python path

 Path includes:
 Default locations, as

shown
 Present working

directory, PWD
 PWD always included

 Can import anything
from the same
directory

 Save related modules
in a common directory

 Frequently-used user-defined
functions:
 Save under site-packages
 Will always be able to import

Webb ENGR 103

25

Importing Modules

 Several different ways to import modules and
objects from modules
 How a function is imported affects how it is called

import <module_name>

import <module_name> as <loc_name>

from <module_name> import <name>

from <module_name> import <name> as <loc_name>

Webb ENGR 103

26

Importing Modules

 Import my_mod.py to another script

 Import the entire module with the same name
 Call imported functions as: my_mod.<fname()>

Webb ENGR 103

27

Importing Modules

 Import a function from the module and keep its name
 Call imported functions as: <fname()>

 Import the entire module but give it a local name
 Call imported functions as: <loc_name>.<fname()>

Webb ENGR 103

28

Importing Modules

 Import multiple functions, assigning local names
 Call imported functions as: <loc_name()>

 Import multiple functions, keeping names
 Call imported functions as: <fname()>

Webb ENGR 103

Lambda Functions29

Webb ENGR 103

30

Lambda Functions

 Python offers an alternative to the standard
function definition syntax: Lambda functions
 Single-line functions
 May or may not be named (may be anonymous)
 Typically intended for one-time or temporary use

 Standard function definition:

def add3(x, y, z):
return x + y + z

 Lambda function equivalent:
add3 = lambda x, y, z: x + y + z

Webb ENGR 103

31

Lambda Functions - Syntax

func = lambda arguments: expression

Function name
 Optional
 If not defined, it is an

anonymous function

'lambda' keyword
required

Function definition
 A single executable

Python expression
 E.g. X**2 + 3*y

A list of input variables
 E.g. x, y
 Zero or more arguments
 Separated by commas
 Not enclosed in parentheses

Webb ENGR 103

32

Lambda Functions – Examples

 Simple function that
returns half of the
input value

 May have multiple
inputs
 First-order system

response – inputs: time
constant, value of time

 Inputs may be arrays
 Outputs may be arrays

as well

Webb ENGR 103

33

Passing Functions to Functions

 We often want to perform functions on other functions
 E.g. integration, roots finding, optimization, solution of

differential equations
 Lambda functions commonly passed as inputs to other

functions

 Define a lambda function
 Pass the function as an input to

another function
 Here, integrate the function, f,

from 0 to 10 using SciPy's
integrate.quad() function

Webb ENGR 103

34

Passing Functions to Functions

 Several ways to pass functions to functions:

 Named lambda
function

 Anonymous
function

 Standard
function
definition

Webb ENGR 103

35

Function Function – Example

 Consider a function that
calculates the mean of a
mathematical function
evaluated at a vector of
independent variable
values

 Inputs:
 Function object
 Vector of 𝑥𝑥 values

 Output:
 Mean value of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)

Webb ENGR 103

Recursion36

Webb ENGR 103

37

Recursive Functions

 Recursion is a problem solving approach in which a
larger problem is solved by solving many smaller,
self-similar problems

 A recursive function is one that calls itself
 Each time it calls itself, it, again, calls itself

 Two components to a recursive function:
 A base case
 A single case that can be solved without recursion

 A general case
 A recursive relationship, ultimately leading to the base case

Webb ENGR 103

38

Recursion Example 1 – Factorial

 We have considered iterative algorithms for computing
𝑦𝑦 = 𝑛𝑛!
 for loop, while loop

 Factorial can also be computed using recursion
 It can be defined with a base case and a general case:

𝑛𝑛! = �1 𝑛𝑛 = 1
𝑛𝑛 ∗ 𝑛𝑛 − 1 ! 𝑛𝑛 > 1

 The general case leads back to the base case
 𝑛𝑛! defined in terms of 𝑛𝑛 − 1 !, which is, in turn, defined in terms

of 𝑛𝑛 − 2 !, and so on
 Ultimately, the base case, for 𝑛𝑛 = 1, is reached

Webb ENGR 103

39

Recursion Example 1 – Factorial

𝑛𝑛! = �1 𝑥𝑥 = 1
𝑥𝑥 ∗ 𝑥𝑥 − 1 ! 𝑥𝑥 > 1

 The general case is a recursive relationship, because it
defines the factorial function using the factorial function
 The function calls itself

 In Python:

Webb ENGR 103

40

Recursion Example 1 – Factorial

 Consider, for example: 𝑦𝑦 = 4!
 fact() recursively called four times
 Fourth function call terminates first,

once the base case is reached
 Function calls terminate in reverse

order
 Function call doesn’t terminate until

all successive calls have terminated

Webb ENGR 103

41

Recursion Example 2 – Binary Search

 A common search algorithm is the binary search
 Similar to searching for a name in a phone book or a word in

a dictionary
 Look at the middle value to determine if the search item is

in the upper or lower half
 Look at the middle value of the half that contains the search

item to determine if it is in that half’s upper or lower half, …

 The search function gets called recursively, each time
on half of the previous set
 Search range shrinks by half on each function call
 Recursion continues until the middle value is the search

item – this is the required base case

Webb ENGR 103

42

Recursion Example 2 – Binary Search

 Recursive binary search – the basic algorithm:

 Find the index, 𝑖𝑖, of 𝑥𝑥 in the sorted list, 𝐴𝐴, in the range of 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖

1) Calculate the middle index of 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖 :

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = floor
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖

2

2) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑥𝑥, then 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, and we’re done

3) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑥𝑥, repeat the algorithm for 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 1

4) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑥𝑥, repeat the algorithm for 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 1: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖

Webb ENGR 103

43

Recursion Example 2 – Binary Search

 Find the index of the 𝑥𝑥 = 9 in:

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴[4] = 6
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑥𝑥
 Start over for 𝐴𝐴 5: 10

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴 7 = 12
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑥𝑥
 Start over for 𝐴𝐴 5: 7

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴 5 = 7
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑥𝑥

 Start over for 𝐴𝐴 6

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴 6 = 9
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑥𝑥

 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 6

Webb ENGR 103

44

Recursion Example 2 – Binary Search

 Recursive binary
search algorithm in
Python

 Base case for
A[imid] == x

 Function is called
recursively on
successively halved
ranges until base
case is reached

Webb ENGR 103

45

Recursion Example 2 – Binary Search

 A=[0,1,3,5,6,7,9,12,16,20]
 x=9
 ind = binsearch(A,x,1,10)

 ind = 7

	Section 6: �User-Defined Functions
	User-Defined Functions
	Anatomy of a Function
	User-Defined Functions
	Function Inputs and Outputs
	Function Inputs and Outputs
	Function Inputs and Outputs
	Positional and Keyword Input Arguments
	Positional and Keyword Input Arguments
	Variable Input Arguments - *args
	Multiple Outputs
	Function – Example
	Variable Scope
	Variable Scope
	Variable Scope
	Variable Scope - LEGB
	Variable Scope - LEGB
	Exercise – Define a Function
	Function Docstrings
	Function Docstrings
	Function Docstrings
	Importing Modules and Functions
	Importing Modules and Functions
	The Python Path
	Importing Modules
	Importing Modules
	Importing Modules
	Importing Modules
	Lambda Functions
	Lambda Functions
	Lambda Functions - Syntax
	Lambda Functions – Examples
	Passing Functions to Functions
	Passing Functions to Functions
	Function Function – Example
	Recursion
	Recursive Functions
	Recursion Example 1 – Factorial
	Recursion Example 1 – Factorial
	Recursion Example 1 – Factorial
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search

