
ENGR 103 – Introduction to Engineering Computing

SECTION 6:
USER-DEFINED FUNCTIONS

Webb ENGR 103

2

User-Defined Functions

 By now you’re accustomed to using Python functions in
your scripts

 Consider, for example, np.mean()
 Commonly-used function to calculate an average value
 A Python (NumPy) module – written using other Python

functions
 Need not write code each time an average is calculated

 Functions allow reuse of commonly-used blocks of code
 Executable from any script or the console

 Can also create user-defined functions
 Just like built-in or library functions
 Similar syntax, structure, reusability, etc.

Webb ENGR 103

3

Anatomy of a Function

Input
Argument(s)

Function
Name

Function m-file must begin
with the keyword ‘def’

Doc string – displayed
when help is requested in
the console:

Python code that defines
the function

Function code defined by whitespace
(indents) – no brackets or 'end' statement

‘return’ keyword
defines outputs

Required colon, :

Webb ENGR 103

4

User-Defined Functions

 Keep your code DRY
 "Don't Repeat Yourself"

 Do not write the same code more than once
 Create functions for frequently-used code blocks
 Improves conciseness and readability of your code
 If code needs to be modified, only need to do it once

 Avoid WET code
 "Write Everything Twice"
 "Write Every Time"
 "We Enjoy Typing"
 "Waste Everyone's Time"

Webb ENGR 103

Function Inputs and Outputs5

Webb ENGR 103

6

Function Inputs and Outputs

 Just like built-in or library functions, user-defined functions
may have inputs and outputs
 But, they need not have either

 Inputs
 Arguments passed into the function
 Specified inside the parentheses in the function definition

 Outputs
 Arguments returned from the function
 Specified with the return statement

Webb ENGR 103

7

Function Inputs and Outputs

 Functions may or may not have inputs or outputs, e.g.:

 No input or output Input only

 Output only Input and output

Webb ENGR 103

8

Positional and Keyword Input Arguments

def func(arg1, arg2, …, kwarg1=def1, kwarg2=def2, …)

 Two main types of input arguments:
 Positional arguments (arg1, …)

 Required inputs passed in the specified order
 Position determines what is arg1, arg2, and so on

 Keyword arguments (kwarg1=def1, …)
 Passed as keyword=value pairs
 Order does not matter
 Useful for specifying default values for optional inputs

 If kwarg1, above, is not passed, it defaults to def1

 For example:
plt.plot(x, y, linewidth=2)

 x and y are positional arguments
 linewidth is a keyword argument

Webb ENGR 103

9

Positional and Keyword Input Arguments

 Consider a function with one positional argument and
one keyword argument

 name: positional argument – required
 greet_str: keyword argument – optional – default: 'Hello'

Webb ENGR 103

10

Variable Input Arguments - *args

 Some functions allow for a variable number of inputs
 Use *args in the function definition
 Multiple inputs passed to function as a tuple

Webb ENGR 103

11

Multiple Outputs

 Functions may return multiple outputs
 Returned as a tuple or list

 To return a tuple:

return Tc, Tk

or
return (Tc, Tk)

 To return a list:

return [Tc, Tk]

Webb ENGR 103

12

Function – Example

 Consider a function that converts a distance in
kilometers to a distance in both miles and feet
 Outputs returned as tuple: Outputs returned as list:

Webb ENGR 103

Variable Scope13

Webb ENGR 103

14

Variable Scope

 Inputs are values passed to a function
 Defined in and passed from the calling script
 Not defined within the function

 A function has its own namespace
 Separate set of local (to the function) variables and values
 Variables may have the same names as in the calling script,

but they are separate variables

Webb ENGR 103

15

Variable Scope

 Local function variables are not available in the enclosing
script after returning from the function

x is the input
when inside
the function

a is the input
passed to the
function

x is undefined
once execution
has returned
from the
function

Webb ENGR 103

16

Variable Scope - LEGB

 Python locates variables used in code according to the
LEGB rule

 Namespaces are searched in LEGB order to resolve
variable names:
 Local: defined within the function
 Enclosing: defined in the outer (enclosing) function –

applies only to nested functions
 Global: defined in the top-level script or module
 Built-In: defined in built-in Python libraries

 The first (in LEGB order) occurrence of a variable is used

Webb ENGR 103

17

Variable Scope - LEGB

Webb ENGR 103

18
Ex

er
ci

se
 Write a script to:

 Define a function, pwr, to raise an input to a
power
 x: positional input argument
 pow: keyword input argument – default=2
 Return: 𝑦𝑦 = 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝

 Test your function using different inputs
With and without specifying pow

Exercise – Define a Function

Webb ENGR 103

Function Docstrings19

Webb ENGR 103

20

Function Docstrings

 Any function – built-in or user-defined – is accessible by
the Spyder help system
 Console: help(functionName)
 Spyder help pane

 Help text that appears is the function docstring
 Comment block following the function definition
 Enclosed in triple-quotes
 Describes function behavior, inputs, and outputs

 Docstrings serve as function documentation
 Particularly important for functions
 Often reused long after they are written
 Often used by other users

Webb ENGR 103

21

Function Docstrings

 The Spyder editor can automatically generate a
function docstring
 Click 'Generate docstring' popup that appears after

typing the opening triple-quote, ''', in the function
definition

Webb ENGR 103

Importing Modules and Functions22

Webb ENGR 103

23

Importing Modules and Functions

 When we run Python, built-in functions are loaded and
accessible by default

 To access other functions, we must first import the
corresponding packages and modules
 For example:

import numpy as np

from matplotlib import pyplot as plt

 We can do the same for our own user-defined functions
 Can use our user-defined functions in other scripts
 Must import them first

Webb ENGR 103

24

The Python Path

 To import a module, it must be in the Python path
 That is, it must be saved in a directory (folder) that is included in

the Python path

 Path includes:
 Default locations, as

shown
 Present working

directory, PWD
 PWD always included

 Can import anything
from the same
directory

 Save related modules
in a common directory

 Frequently-used user-defined
functions:
 Save under site-packages
 Will always be able to import

Webb ENGR 103

25

Importing Modules

 Several different ways to import modules and
objects from modules
 How a function is imported affects how it is called

import <module_name>

import <module_name> as <loc_name>

from <module_name> import <name>

from <module_name> import <name> as <loc_name>

Webb ENGR 103

26

Importing Modules

 Import my_mod.py to another script

 Import the entire module with the same name
 Call imported functions as: my_mod.<fname()>

Webb ENGR 103

27

Importing Modules

 Import a function from the module and keep its name
 Call imported functions as: <fname()>

 Import the entire module but give it a local name
 Call imported functions as: <loc_name>.<fname()>

Webb ENGR 103

28

Importing Modules

 Import multiple functions, assigning local names
 Call imported functions as: <loc_name()>

 Import multiple functions, keeping names
 Call imported functions as: <fname()>

Webb ENGR 103

Lambda Functions29

Webb ENGR 103

30

Lambda Functions

 Python offers an alternative to the standard
function definition syntax: Lambda functions
 Single-line functions
 May or may not be named (may be anonymous)
 Typically intended for one-time or temporary use

 Standard function definition:

def add3(x, y, z):
return x + y + z

 Lambda function equivalent:
add3 = lambda x, y, z: x + y + z

Webb ENGR 103

31

Lambda Functions - Syntax

func = lambda arguments: expression

Function name
 Optional
 If not defined, it is an

anonymous function

'lambda' keyword
required

Function definition
 A single executable

Python expression
 E.g. X**2 + 3*y

A list of input variables
 E.g. x, y
 Zero or more arguments
 Separated by commas
 Not enclosed in parentheses

Webb ENGR 103

32

Lambda Functions – Examples

 Simple function that
returns half of the
input value

 May have multiple
inputs
 First-order system

response – inputs: time
constant, value of time

 Inputs may be arrays
 Outputs may be arrays

as well

Webb ENGR 103

33

Passing Functions to Functions

 We often want to perform functions on other functions
 E.g. integration, roots finding, optimization, solution of

differential equations
 Lambda functions commonly passed as inputs to other

functions

 Define a lambda function
 Pass the function as an input to

another function
 Here, integrate the function, f,

from 0 to 10 using SciPy's
integrate.quad() function

Webb ENGR 103

34

Passing Functions to Functions

 Several ways to pass functions to functions:

 Named lambda
function

 Anonymous
function

 Standard
function
definition

Webb ENGR 103

35

Function Function – Example

 Consider a function that
calculates the mean of a
mathematical function
evaluated at a vector of
independent variable
values

 Inputs:
 Function object
 Vector of 𝑥𝑥 values

 Output:
 Mean value of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)

Webb ENGR 103

Recursion36

Webb ENGR 103

37

Recursive Functions

 Recursion is a problem solving approach in which a
larger problem is solved by solving many smaller,
self-similar problems

 A recursive function is one that calls itself
 Each time it calls itself, it, again, calls itself

 Two components to a recursive function:
 A base case
 A single case that can be solved without recursion

 A general case
 A recursive relationship, ultimately leading to the base case

Webb ENGR 103

38

Recursion Example 1 – Factorial

 We have considered iterative algorithms for computing
𝑦𝑦 = 𝑛𝑛!
 for loop, while loop

 Factorial can also be computed using recursion
 It can be defined with a base case and a general case:

𝑛𝑛! = �1 𝑛𝑛 = 1
𝑛𝑛 ∗ 𝑛𝑛 − 1 ! 𝑛𝑛 > 1

 The general case leads back to the base case
 𝑛𝑛! defined in terms of 𝑛𝑛 − 1 !, which is, in turn, defined in terms

of 𝑛𝑛 − 2 !, and so on
 Ultimately, the base case, for 𝑛𝑛 = 1, is reached

Webb ENGR 103

39

Recursion Example 1 – Factorial

𝑛𝑛! = �1 𝑥𝑥 = 1
𝑥𝑥 ∗ 𝑥𝑥 − 1 ! 𝑥𝑥 > 1

 The general case is a recursive relationship, because it
defines the factorial function using the factorial function
 The function calls itself

 In Python:

Webb ENGR 103

40

Recursion Example 1 – Factorial

 Consider, for example: 𝑦𝑦 = 4!
 fact() recursively called four times
 Fourth function call terminates first,

once the base case is reached
 Function calls terminate in reverse

order
 Function call doesn’t terminate until

all successive calls have terminated

Webb ENGR 103

41

Recursion Example 2 – Binary Search

 A common search algorithm is the binary search
 Similar to searching for a name in a phone book or a word in

a dictionary
 Look at the middle value to determine if the search item is

in the upper or lower half
 Look at the middle value of the half that contains the search

item to determine if it is in that half’s upper or lower half, …

 The search function gets called recursively, each time
on half of the previous set
 Search range shrinks by half on each function call
 Recursion continues until the middle value is the search

item – this is the required base case

Webb ENGR 103

42

Recursion Example 2 – Binary Search

 Recursive binary search – the basic algorithm:

 Find the index, 𝑖𝑖, of 𝑥𝑥 in the sorted list, 𝐴𝐴, in the range of 𝐴𝐴 𝑖𝑖𝑙𝑙𝑝𝑝𝑝𝑝: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ

1) Calculate the middle index of 𝐴𝐴 𝑖𝑖𝑙𝑙𝑝𝑝𝑝𝑝: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ :

𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = floor
𝑖𝑖𝑙𝑙𝑝𝑝𝑝𝑝 + 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ

2

2) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 == 𝑥𝑥, then 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚, and we’re done

3) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 > 𝑥𝑥, repeat the algorithm for 𝐴𝐴 𝑖𝑖𝑙𝑙𝑝𝑝𝑝𝑝: 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 − 1

4) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑥𝑥, repeat the algorithm for 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 + 1: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖ℎ

Webb ENGR 103

43

Recursion Example 2 – Binary Search

 Find the index of the 𝑥𝑥 = 9 in:

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴[4] = 6
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑥𝑥
 Start over for 𝐴𝐴 5: 10

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 7 = 12
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 > 𝑥𝑥
 Start over for 𝐴𝐴 5: 7

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 5 = 7
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑥𝑥

 Start over for 𝐴𝐴 6

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 𝐴𝐴 6 = 9
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 == 𝑥𝑥

 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 = 6

Webb ENGR 103

44

Recursion Example 2 – Binary Search

 Recursive binary
search algorithm in
Python

 Base case for
A[imid] == x

 Function is called
recursively on
successively halved
ranges until base
case is reached

Webb ENGR 103

45

Recursion Example 2 – Binary Search

 A=[0,1,3,5,6,7,9,12,16,20]
 x=9
 ind = binsearch(A,x,1,10)

 ind = 7

	Section 6: �User-Defined Functions
	User-Defined Functions
	Anatomy of a Function
	User-Defined Functions
	Function Inputs and Outputs
	Function Inputs and Outputs
	Function Inputs and Outputs
	Positional and Keyword Input Arguments
	Positional and Keyword Input Arguments
	Variable Input Arguments - *args
	Multiple Outputs
	Function – Example
	Variable Scope
	Variable Scope
	Variable Scope
	Variable Scope - LEGB
	Variable Scope - LEGB
	Exercise – Define a Function
	Function Docstrings
	Function Docstrings
	Function Docstrings
	Importing Modules and Functions
	Importing Modules and Functions
	The Python Path
	Importing Modules
	Importing Modules
	Importing Modules
	Importing Modules
	Lambda Functions
	Lambda Functions
	Lambda Functions - Syntax
	Lambda Functions – Examples
	Passing Functions to Functions
	Passing Functions to Functions
	Function Function – Example
	Recursion
	Recursive Functions
	Recursion Example 1 – Factorial
	Recursion Example 1 – Factorial
	Recursion Example 1 – Factorial
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search
	Recursion Example 2 – Binary Search

