
ENGR 103 – Introduction to Engineering Computing

SECTION 6: 
USER-DEFINED FUNCTIONS
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User-Defined Functions

 By now you’re accustomed to using Python functions in 
your scripts

 Consider, for example, np.mean()
 Commonly-used function to calculate an average value
 A Python (NumPy) module – written using other Python 

functions
 Need not write code each time an average is calculated

 Functions allow reuse of commonly-used blocks of code
 Executable from any script or the console

 Can also create user-defined functions
 Just like built-in or library functions 
 Similar syntax, structure, reusability, etc.
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Anatomy of a Function

Input 
Argument(s)

Function 
Name

Function m-file must begin 
with the keyword ‘def’

Doc string – displayed 
when help is requested in 
the console:

Python code that defines 
the function

Function code defined by whitespace 
(indents) – no brackets or 'end' statement

‘return’ keyword 
defines outputs

Required colon, :
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User-Defined Functions

 Keep your code DRY
 "Don't Repeat Yourself"

 Do not write the same code more than once
 Create functions for frequently-used code blocks
 Improves conciseness and readability of your code
 If code needs to be modified, only need to do it once

 Avoid WET code
 "Write Everything Twice"
 "Write Every Time"
 "We Enjoy Typing"
 "Waste Everyone's Time"
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Function Inputs and Outputs

 Just like built-in or library functions, user-defined functions 
may have inputs and outputs
 But, they need not have either

 Inputs
 Arguments passed into the function
 Specified inside the parentheses in the function definition

 Outputs
 Arguments returned from the function
 Specified with the return statement
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Function Inputs and Outputs

 Functions may or may not have inputs or outputs, e.g.:

 No input or output  Input only

 Output only  Input and output
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Positional and Keyword Input Arguments

def func(arg1, arg2, …, kwarg1=def1, kwarg2=def2, …)

 Two main types of input arguments:
 Positional arguments (arg1, …)

 Required inputs passed in the specified order
 Position determines what is arg1, arg2, and so on

 Keyword arguments (kwarg1=def1, …)
 Passed as keyword=value pairs
 Order does not matter
 Useful for specifying default values for optional inputs

 If kwarg1, above, is not passed, it defaults to def1

 For example:
plt.plot(x, y, linewidth=2)

 x and y are positional arguments
 linewidth is a keyword argument
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Positional and Keyword Input Arguments

 Consider a function with one positional argument and 
one keyword argument

 name: positional argument – required
 greet_str: keyword argument – optional – default: 'Hello'
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Variable Input Arguments - *args

 Some functions allow for a variable number of inputs
 Use *args in the function definition
 Multiple inputs passed to function as a tuple
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Multiple Outputs

 Functions may return multiple outputs
 Returned as a tuple or list

 To return a tuple:

return Tc, Tk

or
return (Tc, Tk)

 To return a list:

return [Tc, Tk]
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Function – Example 

 Consider a function that converts a distance in 
kilometers to a distance in both miles and feet
 Outputs returned as tuple:  Outputs returned as list:
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Variable Scope

 Inputs are values passed to a function
 Defined in and passed from the calling script
 Not defined within the function

 A function has its own namespace
 Separate set of local (to the function) variables and values
 Variables may have the same names as in the calling script, 

but they are separate variables
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Variable Scope

 Local function variables are not available in the enclosing 
script after returning from the function

x is the input 
when inside 
the function

a is the input 
passed to the 
function

x is undefined 
once execution 
has returned 
from the 
function
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Variable Scope - LEGB

 Python locates variables used in code according to the 
LEGB rule

 Namespaces are searched in LEGB order to resolve 
variable names: 
 Local:  defined within the function
 Enclosing:  defined in the outer (enclosing) function –

applies only to nested functions 
 Global:  defined in the top-level script or module
 Built-In:  defined in built-in Python libraries

 The first (in LEGB order) occurrence of a variable is used
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Variable Scope - LEGB
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Ex

er
ci

se
 Write a script to:

 Define a function, pwr, to raise an input to a 
power
 x: positional input argument
 pow: keyword input argument – default=2
 Return: 𝑦𝑦 = 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝

 Test your function using different inputs
With and without specifying pow

Exercise – Define a Function
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Function Docstrings

 Any function – built-in or user-defined – is accessible by 
the Spyder help system
 Console:  help(functionName)
 Spyder help pane

 Help text that appears is the function docstring
 Comment block following the function definition
 Enclosed in triple-quotes
 Describes function behavior, inputs, and outputs

 Docstrings serve as function documentation
 Particularly important for functions
 Often reused long after they are written
 Often used by other users
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Function Docstrings

 The Spyder editor can automatically generate a 
function docstring
 Click 'Generate docstring' popup that appears after 

typing the opening triple-quote, ''', in the function 
definition
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Importing Modules and Functions

 When we run Python, built-in functions are loaded and 
accessible by default

 To access other functions, we must first import the 
corresponding packages and modules
 For example:

import numpy as np

from matplotlib import pyplot as plt

 We can do the same for our own user-defined functions
 Can use our user-defined functions in other scripts
 Must import them first
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The Python Path

 To import a module, it must be in the Python path
 That is, it must be saved in a directory (folder) that is included in 

the Python path

 Path includes:
 Default locations, as 

shown
 Present working 

directory, PWD
 PWD always included

 Can import anything 
from the same 
directory

 Save related modules 
in a common directory

 Frequently-used user-defined 
functions:
 Save under site-packages
 Will always be able to import
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Importing Modules

 Several different ways to import modules and 
objects from modules
 How a function is imported affects how it is called

import <module_name>

import <module_name> as <loc_name>

from <module_name> import <name>

from <module_name> import <name> as <loc_name>
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Importing Modules

 Import my_mod.py to another script

 Import the entire module with the same name
 Call imported functions as:  my_mod.<fname()>
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Importing Modules

 Import a function from the module and keep its name
 Call imported functions as:  <fname()>

 Import the entire module but give it a local name
 Call imported functions as:  <loc_name>.<fname()>
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Importing Modules

 Import multiple functions, assigning local names
 Call imported functions as:  <loc_name()>

 Import multiple functions, keeping names
 Call imported functions as:  <fname()>
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Lambda Functions

 Python offers an alternative to the standard 
function definition syntax: Lambda functions
 Single-line functions
 May or may not be named (may be anonymous)
 Typically intended for one-time or temporary use

 Standard function definition:

def add3(x, y, z):
return x + y + z

 Lambda function equivalent:
add3 = lambda x, y, z: x + y + z



Webb ENGR 103

31

Lambda Functions - Syntax

func = lambda arguments: expression

Function name 
 Optional
 If not defined, it is an 

anonymous function

'lambda' keyword 
required

Function definition 
 A single executable 

Python expression
 E.g. X**2 + 3*y

A list of input variables
 E.g.  x, y
 Zero or more arguments
 Separated by commas
 Not enclosed in parentheses
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Lambda Functions – Examples 

 Simple function that 
returns half of the 
input value

 May have multiple 
inputs
 First-order system 

response – inputs: time 
constant, value of time

 Inputs may be arrays 
 Outputs may be arrays 

as well
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Passing Functions to Functions

 We often want to perform functions on other functions 
 E.g. integration, roots finding, optimization, solution of 

differential equations 
 Lambda functions commonly passed as inputs to other 

functions

 Define a lambda function
 Pass the function as an input to 

another function
 Here, integrate the function, f, 

from 0 to 10 using SciPy's
integrate.quad() function
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Passing Functions to Functions

 Several ways to pass functions to functions:

 Named lambda 
function

 Anonymous 
function

 Standard 
function 
definition



Webb ENGR 103

35

Function Function – Example 

 Consider a function that 
calculates the mean of a 
mathematical function 
evaluated at a vector of 
independent variable 
values

 Inputs:
 Function object
 Vector of 𝑥𝑥 values

 Output:
 Mean value of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)
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Recursive Functions

 Recursion is a problem solving approach in which a 
larger problem is solved by solving many smaller, 
self-similar problems

 A recursive function is one that calls itself
 Each time it calls itself, it, again, calls itself

 Two components to a recursive function:
 A base case
 A single case that can be solved without recursion

 A general case
 A recursive relationship, ultimately leading to the base case
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Recursion Example 1 – Factorial 

 We have considered iterative algorithms for computing 
𝑦𝑦 = 𝑛𝑛!
 for loop, while loop

 Factorial can also be computed using recursion
 It can be defined with a base case and a general case:

𝑛𝑛! = �1 𝑛𝑛 = 1
𝑛𝑛 ∗ 𝑛𝑛 − 1 ! 𝑛𝑛 > 1

 The general case leads back to the base case
 𝑛𝑛! defined in terms of 𝑛𝑛 − 1 !, which is, in turn, defined in terms 

of 𝑛𝑛 − 2 !, and so on
 Ultimately, the base case, for 𝑛𝑛 = 1, is reached
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Recursion Example 1 – Factorial 

𝑛𝑛! = �1 𝑥𝑥 = 1
𝑥𝑥 ∗ 𝑥𝑥 − 1 ! 𝑥𝑥 > 1

 The general case is a recursive relationship, because it 
defines the factorial function using the factorial function
 The function calls itself

 In Python:
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Recursion Example 1 – Factorial 

 Consider, for example:  𝑦𝑦 = 4!
 fact() recursively called four times
 Fourth function call terminates first, 

once the base case is reached
 Function calls terminate in reverse 

order
 Function call doesn’t terminate until 

all successive calls have terminated
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Recursion Example 2 – Binary Search

 A common search algorithm is the binary search
 Similar to searching for a name in a phone book or a word in 

a dictionary
 Look at the middle value to determine if the search item is 

in the upper or lower half
 Look at the middle value of the half that contains the search 

item to determine if it is in that half’s upper or lower half, …

 The search function gets called recursively, each time 
on half of the previous set
 Search range shrinks by half on each function call
 Recursion continues until the middle value is the search 

item – this is the required base case
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Recursion Example 2 – Binary Search

 Recursive binary search – the basic algorithm:

 Find the index, 𝑖𝑖, of 𝑥𝑥 in the sorted list, 𝐴𝐴, in the range of 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖

1) Calculate the middle index of 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖 : 

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = floor
𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖

2

2) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑥𝑥, then 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, and we’re done 

3) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑥𝑥, repeat the algorithm for 𝐴𝐴 𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙: 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 1

4) If 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑥𝑥, repeat the algorithm for 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 1: 𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖
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Recursion Example 2 – Binary Search

 Find the index of the 𝑥𝑥 = 9 in:

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴[4] = 6
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑥𝑥
 Start over for 𝐴𝐴 5: 10

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴 7 = 12
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑥𝑥
 Start over for 𝐴𝐴 5: 7

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴 5 = 7
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑥𝑥

 Start over for 𝐴𝐴 6

𝐴𝐴 = [0, 1, 3, 5, 6, 7, 9, 12, 16, 20]

 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴 6 = 9
 𝐴𝐴 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 == 𝑥𝑥

 𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 6



Webb ENGR 103

44

Recursion Example 2 – Binary Search

 Recursive binary 
search algorithm in 
Python

 Base case for 
A[imid] == x

 Function is called 
recursively on 
successively halved 
ranges until base 
case is reached
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Recursion Example 2 – Binary Search

 A=[0,1,3,5,6,7,9,12,16,20]
 x=9
 ind = binsearch(A,x,1,10)

 ind = 7
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