
ENGR 103 – Introduction to Engineering Computing

SECTION 8: 
FILE I/O
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File I/O

 As engineers, we often generate large amounts of data
 Simulation – in Python or other simulation tools
 Measurements

 Often need to process and analyze these data
 Export data from simulator to a file
 Read data using a Python script
 Process data using Python – analysis, display, etc.
 Write the data generated using Python to a file
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File I/O - Examples

 We'll go through an example of writing and reading 
data from a file in several different ways to 
introduce several of Python's file I/O options:

Data generated in 
Python simulation

Plot dataPlot data

Data file
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Low-Level File I/O

 Python packages (e.g. Pandas) includes many high-
level functions for easily importing data from files
 Usually use these – very easy to use
 Covered later in the notes

 Python also includes low-level functions for reading 
from and writing to files
 More of a manual operation – line-by-line operation
 Similar to other computer languages (e.g. C), which 

may not include simple high-level file I/O functions
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File I/O - Example

 Let's say we performed a simulation of some sort of 
dynamic system using Python

 Resulting data set:

 Three data arrays:
 Time vector, t, and two outputs, y1(t), y2(t)

 First, we'll use low-level, built-in Python functions to write 
the data to a file
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File I/O – Writing

 Use low-level, built-in 
Python functions to 
write data to a file 
line-by-line

 The basic procedure:
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Opening a Text File – open()

 Prior to reading from or writing to a text file, we must 
first open the file

fileObj = open(filename, mode)

 filename: name of the file to open – need not exist yet – a 
string

 mode: optional – a string specifying file access type, e.g. 
read-only, write access, etc. – default is read-only

 fileObj: a file object of type TextIOWrapper – has 
associated I/O methods, such as f.write() and 
f.readlines()
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File Open Modes

 Optional mode sequences indicate the type of file 
access when opening a file

Mode String Description

'r' Open file for reading (default)

'w' Open or create new file for writing –
discard existing contents

'a' Open or create new file for writing –
append data to the end of the file

'r+' Open file for reading and writing
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File I/O – Writing – Open File

 Open file for writing
 mode: 'w'
 File created if it does not already 

exist
 f is a TextIOWrapper file object

ENGR 102
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Write to a File – f.write()

 Apply the write() method to the file object, f

f.write(s)

 f: file object of type TextIOWrapper – returned from the 
open() function

 s: string to be written to f

 Writing occurs character-by-character
 Newlines, spaces, delimiters (e.g., commas, tabs) must be 

explicitly included in strings
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File I/O – Writing – Headers

 May want to insert column labels
 Improves readability
 Print a single header line before 

looping through data arrays

ENGR 102

 Note the added newline character, 
\n, at the end of the string
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File I/O – Writing – Data

 Write data arrays
 Comma-separated columns
 Loop through arrays
 Print line-by-line

ENGR 102

 Commas, spaces and newlines included 
in the write string

 Could control formatting, e.g. precision
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Closing a text file – f.close()

 After opening and writing to or reading from a file, 
that file must be closed

f.close()

 Access issues may arise if file is not closed
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File I/O – Context Managers

 In the previous example, we saw that we must 
explicitly close a file when we are done with it

 If a file does not get closed, it may be unavailable to 
us or other processes later

 Reasons a file would not get closed
 We forget to close it in our code
 Computer crashes while we have a file open

 Python provides a better way to access files
 Context managers
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File I/O – Context Managers

 Context managers:
 All file I/O code in a block following a with statement 
 File automatically closed when exiting the context 

manager block

with open('dataFile1.txt', 'w') as f:
f.write('Hello!')

 Preferred file access method



Webb ENGR 103

19

File I/O – Writing – Context Manager

 Now, write the same data as before using a context 
manager:
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 Write a script to do the following:

 Define an array of angles, x, with 100 values 
between 0 and 2𝜋𝜋

 Calculate y = sin(x)

 Use a context manager to write x and y to a text file 
as columns of data

 Separate x/y values with a comma and a space

 Format values as floating-point numbers with five 
decimal places 

 Include column labels: x,  sin(x)

Exercise – Write to a File
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File I/O – Reading

 Now, read in the data 
from the file we just 
wrote

 The basic procedure:
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File I/O – Reading – Headers 

 Read header line(s) first
 f.readline()
 Whether they'll be used or not
 Advances reading to next line
 Stored as a single string

 Strip the \n from end of string
 .strip()

 Split into individual strings on commas, 
if desired
 .split(', ')

ENGR 102
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File I/O – Reading – Read Data Lines 

 Read all data lines at once
 f.readlines()
 A list of strings

 Will loop through each string in 
the list to extract data

 Initialize empty arrays to store 
data
 Same length as list of strings (i.e. 

number of lines)

ENGR 102
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File I/O – Reading – Extract Data

 Loop through each string in the list 
to extract data
 Remove \n at end of line
 .strip()

 Extract string for data value from 
each column
 .split()

 Convert each string to a float
 Insert values into data arrays

ENGR 102
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File I/O - Example

 In the previous example, we:
 Wrote data generated in Python to a file
 Read that same data back into Python

 We can verify that the data we read in is the same as that which we 
wrote out (e.g. plot it)

 Often only want to read or write, not both – process is the same

Data generated in 
Python simulation

Plot dataPlot data

Data file
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High-Level File I/O Using Pandas

 The Pandas package provides many powerful, high-
level functions for reading from and writing to files

 We'll introduce functions for reading from/writing 
to comma-separated-variable (CSV) and Excel files
 to_csv()
 read_csv()
 to_excel()
 read_excel()

 Typically use these for file I/O
 Much simpler than the low-level methods covered 

previously
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Importing the Pandas Package

 Just like with other Python packages we have used 
(e.g. NumPy, Matplotlib), we must import Pandas 
before we can use it

import pandas as pd
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Pandas Data Objects – DataFrame

 The Basic Pandas data type is the DataFrame object
 A two-dimensional, labeled data structure with columns of 

possibly different types

 To write data arrays to a file, 
first create a DataFrame:
 Create a dict of the arrays, e.g.:

data = {'t': t, 'y1': y1, 'y2': y2}

 Pass the dict of arrays to 
pd.DataFrame()

df1 = pd.DataFrame(data)
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Pandas – df.to_csv()

 Run the to_csv() method on the DataFrame
object to write to a CSV file

df.to_csv(filename, sep, index=False)

 df: DataFrame object to write 
 filename: name of file to be written to – a string 
 sep: field delimiter – optional – default: ',' 
 index=False: prevents writing column of integer indices –

optional – default: True
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Pandas – df.to_csv()
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Pandas – pd.read_csv()

 Read from a CSV file

df = pd.read_csv(filename)

 filename: name of file to be to read from – a string 
 df: DataFrame object returned

 Index by column labels to extract DataFrame data to 
arrays, e.g.:

t = df['t']
y1 = df['y1']
y2 = df['y2']
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Pandas – pd.read_csv()
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Pandas – df.to_excel()

 Run the to_excel() method on the DataFrame
object to write to an Excel file

df.to_excel(filename, sheet_name='Sheet1', index=False)

 df: DataFrame object to write
 filename: name of file to be written to – a string 
 sheet_name: name of sheet in the Excel file to be written 

to – optional – default: 'Sheet1' 
 index=False: prevents writing column of integer indices –

optional – default: True
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Pandas – df.to_excel()
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Pandas – df.to_excel() - ExcelWriter

 In the previous example a file name was passed to 
df.to_excel():

df.to_excel(filename, sheet_name='Sheet1’ …)

 Can specify sheet name, but only allowed to write to a 
single sheet

 To write to multiple sheets, create an ExcelWriter object
 Write using  context manager:

with pd.ExcelWriter(excel_file) as writer:
df1.to_excel(writer, sheet_name='Sheet1', 

index=False)
df2.to_excel(writer, sheet_name='Sheet2', 

index=False)
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Pandas – df.to_excel()
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Pandas – pd.read_excel()

 Read from an Excel file

df = pd.read_excel(filename, sheet_name='Sheet1')

 filename: name of file to be to read from – a string 
 sheet_name: name of sheet in the Excel file to read from –

optional – default: 'Sheet1'
 df: DataFrame object returned

 Index by column labels to extract DataFrame data to 
arrays
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Pandas – pd.read_excel()
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File I/O with Pandas - Example

 Again, we've seen how to write to/read from files
 Now, using Pandas – much easier
 CSV and Excel files

 Just a very brief intro
 Pandas is very powerful
 Consult the documentation as needed

Data generated in 
Python simulation

Plot dataPlot data

Data file
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 Write a script to do the following:

 Define an array of angles, x, with 100 values 
between 0 and 2𝜋𝜋

 Calculate y = sin(x)

 Create a  dict containing x and y

 Create a DataFrame from the dict

 Write the DataFrame to an Excel file

 Sheet name: y = sin(x)

Exercise – Write Data to Excel
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