
ENGR 103 – Introduction to Engineering Computing

SECTION 8:
FILE I/O

Webb ENGR 103

2

File I/O

 As engineers, we often generate large amounts of data
 Simulation – in Python or other simulation tools
 Measurements

 Often need to process and analyze these data
 Export data from simulator to a file
 Read data using a Python script
 Process data using Python – analysis, display, etc.
 Write the data generated using Python to a file

Webb ENGR 103

3

File I/O - Examples

 We'll go through an example of writing and reading
data from a file in several different ways to
introduce several of Python's file I/O options:

Data generated in
Python simulation

Plot dataPlot data

Data file

Webb ENGR 103

Low-Level File I/O4

Webb ENGR 103

5

Low-Level File I/O

 Python packages (e.g. Pandas) includes many high-
level functions for easily importing data from files
 Usually use these – very easy to use
 Covered later in the notes

 Python also includes low-level functions for reading
from and writing to files
 More of a manual operation – line-by-line operation
 Similar to other computer languages (e.g. C), which

may not include simple high-level file I/O functions

Webb ENGR 103

6

File I/O - Example

 Let's say we performed a simulation of some sort of
dynamic system using Python

 Resulting data set:

 Three data arrays:
 Time vector, t, and two outputs, y1(t), y2(t)

 First, we'll use low-level, built-in Python functions to write
the data to a file

Webb ENGR 103

Writing to Files7

Webb ENGR 103

8

File I/O – Writing

 Use low-level, built-in
Python functions to
write data to a file
line-by-line

 The basic procedure:

Webb ENGR 103

9

Opening a Text File – open()

 Prior to reading from or writing to a text file, we must
first open the file

fileObj = open(filename, mode)

 filename: name of the file to open – need not exist yet – a
string

 mode: optional – a string specifying file access type, e.g.
read-only, write access, etc. – default is read-only

 fileObj: a file object of type TextIOWrapper – has
associated I/O methods, such as f.write() and
f.readlines()

Webb ENGR 103

10

File Open Modes

 Optional mode sequences indicate the type of file
access when opening a file

Mode String Description

'r' Open file for reading (default)

'w' Open or create new file for writing –
discard existing contents

'a' Open or create new file for writing –
append data to the end of the file

'r+' Open file for reading and writing

Webb ENGR 103

11

File I/O – Writing – Open File

 Open file for writing
 mode: 'w'
 File created if it does not already

exist
 f is a TextIOWrapper file object

ENGR 102

Webb ENGR 103

12

Write to a File – f.write()

 Apply the write() method to the file object, f

f.write(s)

 f: file object of type TextIOWrapper – returned from the
open() function

 s: string to be written to f

 Writing occurs character-by-character
 Newlines, spaces, delimiters (e.g., commas, tabs) must be

explicitly included in strings

Webb ENGR 103

13

File I/O – Writing – Headers

 May want to insert column labels
 Improves readability
 Print a single header line before

looping through data arrays

ENGR 102

 Note the added newline character,
\n, at the end of the string

Webb ENGR 103

14

File I/O – Writing – Data

 Write data arrays
 Comma-separated columns
 Loop through arrays
 Print line-by-line

ENGR 102

 Commas, spaces and newlines included
in the write string

 Could control formatting, e.g. precision

Webb ENGR 103

15

Closing a text file – f.close()

 After opening and writing to or reading from a file,
that file must be closed

f.close()

 Access issues may arise if file is not closed

Webb ENGR 103

Context Managers16

Webb ENGR 103

17

File I/O – Context Managers

 In the previous example, we saw that we must
explicitly close a file when we are done with it

 If a file does not get closed, it may be unavailable to
us or other processes later

 Reasons a file would not get closed
 We forget to close it in our code
 Computer crashes while we have a file open

 Python provides a better way to access files
 Context managers

Webb ENGR 103

18

File I/O – Context Managers

 Context managers:
 All file I/O code in a block following a with statement
 File automatically closed when exiting the context

manager block

with open('dataFile1.txt', 'w') as f:
f.write('Hello!')

 Preferred file access method

Webb ENGR 103

19

File I/O – Writing – Context Manager

 Now, write the same data as before using a context
manager:

Webb ENGR 103

20
Ex

er
ci

se
 Write a script to do the following:

 Define an array of angles, x, with 100 values
between 0 and 2𝜋𝜋

 Calculate y = sin(x)

 Use a context manager to write x and y to a text file
as columns of data

 Separate x/y values with a comma and a space

 Format values as floating-point numbers with five
decimal places

 Include column labels: x, sin(x)

Exercise – Write to a File

Webb ENGR 103

Reading from Files21

Webb ENGR 103

22

File I/O – Reading

 Now, read in the data
from the file we just
wrote

 The basic procedure:

Webb ENGR 103

23

File I/O – Reading – Headers

 Read header line(s) first
 f.readline()
 Whether they'll be used or not
 Advances reading to next line
 Stored as a single string

 Strip the \n from end of string
 .strip()

 Split into individual strings on commas,
if desired
 .split(', ')

ENGR 102

Webb ENGR 103

24

File I/O – Reading – Read Data Lines

 Read all data lines at once
 f.readlines()
 A list of strings

 Will loop through each string in
the list to extract data

 Initialize empty arrays to store
data
 Same length as list of strings (i.e.

number of lines)

ENGR 102

Webb ENGR 103

25

File I/O – Reading – Extract Data

 Loop through each string in the list
to extract data
 Remove \n at end of line
 .strip()

 Extract string for data value from
each column
 .split()

 Convert each string to a float
 Insert values into data arrays

ENGR 102

Webb ENGR 103

26

File I/O - Example

 In the previous example, we:
 Wrote data generated in Python to a file
 Read that same data back into Python

 We can verify that the data we read in is the same as that which we
wrote out (e.g. plot it)

 Often only want to read or write, not both – process is the same

Data generated in
Python simulation

Plot dataPlot data

Data file

Webb ENGR 103

File I/O Using Pandas27

Webb ENGR 103

28

High-Level File I/O Using Pandas

 The Pandas package provides many powerful, high-
level functions for reading from and writing to files

 We'll introduce functions for reading from/writing
to comma-separated-variable (CSV) and Excel files
 to_csv()
 read_csv()
 to_excel()
 read_excel()

 Typically use these for file I/O
 Much simpler than the low-level methods covered

previously

Webb ENGR 103

29

Importing the Pandas Package

 Just like with other Python packages we have used
(e.g. NumPy, Matplotlib), we must import Pandas
before we can use it

import pandas as pd

Webb ENGR 103

30

Pandas Data Objects – DataFrame

 The Basic Pandas data type is the DataFrame object
 A two-dimensional, labeled data structure with columns of

possibly different types

 To write data arrays to a file,
first create a DataFrame:
 Create a dict of the arrays, e.g.:

data = {'t': t, 'y1': y1, 'y2': y2}

 Pass the dict of arrays to
pd.DataFrame()

df1 = pd.DataFrame(data)

Webb ENGR 103

31

Pandas – df.to_csv()

 Run the to_csv() method on the DataFrame
object to write to a CSV file

df.to_csv(filename, sep, index=False)

 df: DataFrame object to write
 filename: name of file to be written to – a string
 sep: field delimiter – optional – default: ','
 index=False: prevents writing column of integer indices –

optional – default: True

Webb ENGR 103

32

Pandas – df.to_csv()

Webb ENGR 103

33

Pandas – pd.read_csv()

 Read from a CSV file

df = pd.read_csv(filename)

 filename: name of file to be to read from – a string
 df: DataFrame object returned

 Index by column labels to extract DataFrame data to
arrays, e.g.:

t = df['t']
y1 = df['y1']
y2 = df['y2']

Webb ENGR 103

34

Pandas – pd.read_csv()

Webb ENGR 103

35

Pandas – df.to_excel()

 Run the to_excel() method on the DataFrame
object to write to an Excel file

df.to_excel(filename, sheet_name='Sheet1', index=False)

 df: DataFrame object to write
 filename: name of file to be written to – a string
 sheet_name: name of sheet in the Excel file to be written

to – optional – default: 'Sheet1'
 index=False: prevents writing column of integer indices –

optional – default: True

Webb ENGR 103

36

Pandas – df.to_excel()

Webb ENGR 103

37

Pandas – df.to_excel() - ExcelWriter

 In the previous example a file name was passed to
df.to_excel():

df.to_excel(filename, sheet_name='Sheet1’ …)

 Can specify sheet name, but only allowed to write to a
single sheet

 To write to multiple sheets, create an ExcelWriter object
 Write using context manager:

with pd.ExcelWriter(excel_file) as writer:
df1.to_excel(writer, sheet_name='Sheet1',

index=False)
df2.to_excel(writer, sheet_name='Sheet2',

index=False)

Webb ENGR 103

38

Pandas – df.to_excel()

Webb ENGR 103

39

Pandas – pd.read_excel()

 Read from an Excel file

df = pd.read_excel(filename, sheet_name='Sheet1')

 filename: name of file to be to read from – a string
 sheet_name: name of sheet in the Excel file to read from –

optional – default: 'Sheet1'
 df: DataFrame object returned

 Index by column labels to extract DataFrame data to
arrays

Webb ENGR 103

40

Pandas – pd.read_excel()

Webb ENGR 103

41

File I/O with Pandas - Example

 Again, we've seen how to write to/read from files
 Now, using Pandas – much easier
 CSV and Excel files

 Just a very brief intro
 Pandas is very powerful
 Consult the documentation as needed

Data generated in
Python simulation

Plot dataPlot data

Data file

Webb ENGR 103

42
Ex

er
ci

se
 Write a script to do the following:

 Define an array of angles, x, with 100 values
between 0 and 2𝜋𝜋

 Calculate y = sin(x)

 Create a dict containing x and y

 Create a DataFrame from the dict

 Write the DataFrame to an Excel file

 Sheet name: y = sin(x)

Exercise – Write Data to Excel

	Section 8: �File I/O
	File I/O
	File I/O - Examples
	Low-Level File I/O
	Low-Level File I/O
	File I/O - Example
	Writing to Files
	File I/O – Writing
	Opening a Text File – open()
	File Open Modes
	File I/O – Writing – Open File
	Write to a File – f.write()
	File I/O – Writing – Headers
	File I/O – Writing – Data
	Closing a text file – f.close()	
	Context Managers
	File I/O – Context Managers
	File I/O – Context Managers
	File I/O – Writing – Context Manager
	Exercise – Write to a File
	Reading from Files
	File I/O – Reading
	File I/O – Reading – Headers
	File I/O – Reading – Read Data Lines
	File I/O – Reading – Extract Data
	File I/O - Example
	File I/O Using Pandas
	High-Level File I/O Using Pandas
	Importing the Pandas Package
	Pandas Data Objects – DataFrame
	Pandas – df.to_csv()
	Pandas – df.to_csv()
	Pandas – pd.read_csv()
	Pandas – pd.read_csv()
	Pandas – df.to_excel()
	Pandas – df.to_excel()
	Pandas – df.to_excel() - ExcelWriter
	Pandas – df.to_excel()
	Pandas – pd.read_excel()
	Pandas – pd.read_excel()
	File I/O with Pandas - Example
	Exercise – Write Data to Excel

